
1Scientific RepoRtS | (2020) 10:5058 | https://doi.org/10.1038/s41598-020-61853-y

www.nature.com/scientificreports

prediction of the Vaccine-derived 
poliovirus outbreak incidence: A 
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Recently, significant attention has been devoted to vaccine-derived poliovirus (VDPV) surveillance 
due to its severe consequences. Prediction of the outbreak incidence of VDPF requires an accurate 
analysis of the alarming data. the overarching aim to this study is to develop a novel hybrid machine 
learning approach to identify the key parameters that dominate the outbreak incidence of VDPV. The 
proposed method is based on the integration of random vector functional link (RVFL) networks with a 
robust optimization algorithm called whale optimization algorithm (WOA). WOA is applied to improve 
the accuracy of the RVFL network by finding the suitable parameter configurations for the algorithm. 
The classification performance of the WOA-RVFL method is successfully validated using a number of 
datasets from the UCI machine learning repository. Thereafter, the method is implemented to track the 
VDPV outbreak incidences recently occurred in several provinces in Lao People’s Democratic Republic. 
The results demonstrate the accuracy and efficiency of the WOA-RVFL algorithm in detecting the VDPV 
outbreak incidences, as well as its superior performance to the traditional RVFL method.

Poliovirus (PV) surveillance is considered as one of the most challenging issues in countries with suboptimal 
vaccination coverage levels due to the repetitive silent circulation of the vaccine derived poliovirus (VDPV). 
Despite its durable intestinal and humoral immunity, VDPV is genetically instable that might revert to wild-type 
virulence. According to a number of studies1, vaccines can cause vaccine-associated flaccid paralysis. Noteworthy, 
it can replicate for a prolonged time coinciding with the suboptimal vaccination1. Interaction of PV and CD155 
receptors facilitates its entry2. Thereafter, the viral RNA is released. The genome enclosed in the viral particle 
is used as mRNA and translated by the host cell. The virus hijacks the cell’s translation, leading to inhibition of 
protein synthesis during viral protein production. Ribosome entry site directs the viral RNA translation and syn-
thesis of (+) RNA occurs. Some of the (+) RNA are used as templates for (−) RNA synthesis, some function as 
mRNA, and some are destined to be the genomes of virus progeny1.

Globally, the concerted surveillance with the continuous integration and interpretation of health-related data 
are required to keep the prevention and elimination programs updated. PV surveillance is considered as one of 
the most important element of the Global Polio Eradication Initiative (GPEI) endgame strategy, which is also 
useful in detecting VDPV. There are mainly two types of PV surveillance, including (1) the environmental sur-
veillance (ES) that analyzes wastewater to detect if the current collected samples carry PV3,4, and (2) the acute 
flaccid paralysis surveillance (AFPS) that depends on clinical presentation. However, the traditional PV surveil-
lance methods are resource intensive to maintain the system of AFPS for the long term2. Still, combatting disease 
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outbreaks significantly depends on gathering data from clinicians or laboratories and developing associated cen-
tral information repositories. These are usually inefficient processes that might lead to further spread of disease5–9. 
Consequently, the important and yet to be solved issue related to PV surveillance is how to rapidly unveil outbreak 
incidences. A powerful solution to deal with this issue is machine learning (ML). ML has been increasingly uti-
lized for solving complex real-world problems, its application in public health arguably needs more attention. In 
this context, the ML methods have been successfully applied to in public health problems such as the real-time 
detection of foodborne illness10, and syndromic surveillance that depends on the reporting symptoms of the 
patients11,12. Tessmer et al.13 proposed various ML techniques such as artificial neural networks (ANN), con-
volutional neural network (CNN), and long-short term memory (LSTM) to determine the parameter of basic 
reproduction number. These methods were applied to epidemiological data from outbreaks of influenza A(H1N1) 
pdm09, mumps, and measles. Moreover, the ML methods are used for syndromic surveillance based on chief 
complaint field to detect disease outbreaks. For example, Lee et al.14 compared two recurrent ANN models based 
on LSTM and gated recurrent unit (GRU) cells, multinomial naive Bayes (MNB) and support vector machine 
(SVM) to improve the syndromic surveillance. Volkova et al.15 utilized ANNs to forecast the influenza-like illness 
dynamics for military populations. To the best of our knowledge, however, most of the machine learning predic-
tion models in public health are based on ANNs and their extensions (e.g.16,17). Although the traditional ANN 
method is a powerful method for classification, clustering, and regression18,19, certain limitations are reported 
due to its basic structures, namely, the trapping in local minima and initialization process that involves assign-
ing initial random values to the weights of the network20. Those limitations severely impede the applications of 
ANN-based methods in public health.

To overcome the critical issues in ANN, random vector functional link network (RVFL) has been developed 
as a single feed-forward neural networks based on a randomized algorithm21,22. Thanks to the growing concept of 
randomization, the RVFL method considers the link between inputs and outputs and therefore, effectively over-
comes the limitations of traditional ANN algorithms. On this basis, the weights connecting the input and hidden 
layers are randomly generated and then fixed during the updating phase using Moore-Penrose pseudo-inverse 
theory23. RVFL has also been reported with other features, e.g., fast convergence24, good approximation capabil-
ity22, and compatibility for real-time applications with simple implementation of hardware20. Given its unique 
characteristics, RVFL has been used in several applications including remote sensing25, big data analytics26, fore-
casting temperature distribution27, short-term electricity load demand forecasting28, time-series data prediction29, 
language handwritten script recognition30, and semi-supervised learning31. However, the efficiency of RVFL is 
significantly affected by its parameters. Studies have been conducted to determine the influence of parameters on 
the RVFL’s efficiency. Park et al.17 concluded that a significant effect was found on the performance of RVFL when 
direct links were used between input and output layers. Additionally, the Radbas function provided RVFL with 
higher ability of reaching targets compared to using sign or hardlim as activation function17. Li et al.32 investigated 
the relation between the domain of hidden parameters and the performance of RVFL and found that it was not 
suitable to generate hidden weights from fixed domain such as [−1,1]32. Zhang and Suganthan33 conducted a 
comprehensive study to find the best parameters that enhance the performance of RVFL. In the same manner to 
traditional ANN, the process of randomly selecting RVFL network parameters typically leads to high complexity. 
Taking the advantages of the swarm optimization algorithm that emulates the social behavior of the whales to 
attack their prey34, whale optimization algorithm (WOA) offers a powerful tool to address the problem of finding 
suitable configuration in RFVL.

The classes include the IgG antibodies in Children (n = 1216) and adults (n = 1228), including health care 
workers and blood donors. Antibody titers in a subset of classes resulted from microneutralization show 92% of 
children class had anti-poliovirus antibodies. On the other hand, the antibodies seroprevalences were 81.7% and 
71.9% in adult blood donors and healthcare worker, respectively. Noteworthy, both children and adult classes 
show the neutralizing antibodies against one of the three poliovirus serotypes and had antibodies against all sero-
types. These findings were compatible with the epidemiology of the outbreak [41].

The classification supports the medical field to optimize the evaluation of the vaccination schemes in diverse 
cohorts using the seroprevalence of poliovirus antibodies. Additionally, to sustain the value of an ELISA in the 
developed countries with specific epidemiological nature. To date, acceptable underestimation of vaccine scheme 
in children by ELISA resulted; however, the low sensitivity of the ELISA in the adults. Thus, the classification 
paradigm supports ELISA to be a reasonable alternative to the microneutralization in children classes. Using 
classification model by countries with uncertain vaccination schemes and limited resources, enable them not 
only to avoid the risk of outbreaks from poliovirus vaccines but also to prevent the re-importation of wild strains 
moreover, this will improve ELISA for classes studies to judge the immunization programs.

In this study, we develop a hybrid ML paradigm by implementing WOA in RVFL to accurately track the 
immunity response of VDPV during the outbreaks. In the hybrid WOA-RVFL method, the domain search for 
the parameters in RVFL (i.e., number of neurons, activation function, link between input and output) is first 
determined. Thereafter, a random population is generated in which each solution represents a configuration of 
the RVFL network. The solutions of the population are updated using the best solutions and the operators of the 
WOA. The process of updating the solution is repeated until the best configuration is obtained. The results show 
that the presented hybrid approach lead to improving the performance of the RVFL algorithm for the prediction 
of the VDPV outbreak incidences.

Methods
In this section, basic details about the RVFL and WOA are briefly described followed by the description of the 
proposed hybrid WOA-RVFL method.
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Random vector functional link networks. RVFL benefits from the properties of random weights and the 
functional link27. In general, the RVFL algorithm has the same structure as the single layer feedforward neural 
network (SLFNN) except for a direct connection between the input and output neurons. This type of connection 
improves the ability of RVFL to avoid overfitting. Figure 1 shows the structure of the RVFL network. It can be seen 
that where the neuron at the input layer receives the dataset = ∈ ∈ = …Y y z y R z R i N{( , ) , , 1, , ,i i i

n
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m  then 
each hidden neuron (enhancement) computes its output by:
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where bj and aj are the bias and the weight between the input and enhancement neurons, respectively. S represents 
a scale factor updated during the learning process for each dataset. The output of RVFL is computed using the 
output weight ( ∈ +w R )n P  defined as:
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where B represents the input matrix to the output layer (i.e., the input data and the output of the enhancement 
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In order to update w in Eq. (2), Moore-Penrose pseudo-inverse or the ridge regression27 can be used as 
defined, respectively:
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where I  and C are the identity matrix and trading-off parameter, respectively. Note that † is the Moore-Penrose 
pseudo-inverse.

Whale optimization algorithm. WOA was proposed as a swarm algorithm to simulate the behaviors of 
whales during the process of attacking the prey34. This process can be described by two approaches, including (1) 
encircling and (2) bubble-net.

In the encircling approach, each whale ( = …x i N, 1, 2, ,i ) updates its location at current iteration (t) based 
on the distance (Di) to the prey ( ⁎x ) as:

+ = − = − 

⁎ ⁎x t x t A D D B x t x t( 1) ( ) , ( ) ( ) (6)i i i

where  is the element-wise multiplication, and the two coefficients A and b are updated as

= − = .A a r a B r2 , and 2 (7)

Figure 1. Structure of the RVFL network.
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In Eq. (7), the parameter a is decreased from 2 to 0 with the increasing of the iterations (i.e., = −a a ta
tmax

, 
where tmax  represents the maximum number of iterations). The value of r  is randomly generated in [0,1] 
interval.

In the bubble-net method, the location of the whale xi is updated using spiral, which simulates the movement 
of xi around ⁎x  using the helix-shaped34 as:

  π+ = +⁎x t x t D e l( 1) ( ) cos(2 ), (8)i i
bl

where b is a random number, l is a parameter determine the shape of a logarithmic spiral. The whales can swim 
around the prey simultaneously using the spiral-shaped path and shrinking circle based on the probability 

∈p [0, 1] as follows:
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In addition, it is possible to update the location of each whale based on the location of the random whale xr as:

+ = − = − x t x t A D D B x t x t( 1) ( ) , ( ) ( ) (10)i r r r r i

The final steps of the traditional WOA can be summarized in Algorithm 1.

The proposed WOA-RVFL method. The proposed method for classification of the VDPV outbreak inci-
dence is based on the integration of the RVFL and WOA algorithms. In WOA-RVFL, WOA is used to find the best 
configuration of the parameters for the RVFL network. The proposed WOA-RVFL approach consists of two 
stages: (1) learning stage and (2) evaluating stage. In the learning stage, WOA-RVFL starts with splitting the data-
set into training, validation and testing sets, and then generating a random population X with N  solutions. Each 
solution represents one configuration for the RVFL network. Thereafter, RVFL is constructed based on the 
parameters inside the current solution. The RVFL network is trained using the training set and then validated 
using the validation set. After evaluating all solutions within population X , the best solution is determined. The 
population X is then updated by the operators of WOA. These steps are repeated until the termination criteria are 
met. Meanwhile, the second stage starts with constructing the RVFL network using the best configuration, and 
then evaluating it the network using the testing data.

Algorithm 1. The Whale Optimization Algorithm.
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Learning stage. In this stage, the dataset is divided into three sets: training, validation and testing. The train-
ing and validation sets are used during this stage. The next step is to generate a population X that contains Ncf  and 
each solution has dimension Npar as:

= + × − = … = …( )x l rand u l i N j N, 1, , , 1, , (11)ij j j j con par

where uj and lj represent the upper and lower boundary of the jth parameter, respectively. In order to explain this process,  
consider that the current solution is = =x x x x x x x x N Bias link AF RT mode Scale[ , , , , , , ] [ , , , , , , ]i i i i i i i i h m1 2 3 4 5 6 7 .  
Nh is the number of hidden neurons; Bias is the parameter that determines if there is a bias in the output neurons; 
link refers to the network direct link to output layer; AF is the Activation Function (hardlim, sign, sig, radbas, sin, 
and tribas); RT  represents the type of randomization methods used to generate the weights here (Uniform, and 
Gaussian); mode represents the method used to update the weights (regularized least square, and Moore-Penrose 
pseudoinverse); and Scalem is a parameter representing the scaling the features (i.e., scale the feature for 1) all 
neurons, 2) each hidden neuron separately, and 3) the range of the randomization for uniform distribution. For 
instance, =x [200, 1, 1, 3, 1, 2, 1]i  means that the number of neurons is 200 and there are bias and direct link. 
The other numbers (3,1,2,1) indicate that the sig function, Uniform, Moore-Penrose pseudoinverse, scale the 
feature for all neurons are used, respectively.

The next step is to construct the RVFL network using the current solution xi, using the training set to train the 
current RVFL, and using the validation set to evaluate the trained network and compute the error between the 
prediction value and original value of the target using the following equation:

Figure 2. The WOA-RVFL classification process.

NO Dataset Features Sample
No of 
class Subject

1 Clean 1 168 476 2 Physical

2 Clean 2 168 6598 2 Physical

3 Hayes-roth 5 160 3 Social

4 IonoSphere 34 351 2 Physical

5 House-votes 16 435 2 Social

6 Madelon 500 4400 2 N/A

7 PCMAC 3289 1943 2 N/A

8 Soybean 35 307 19 Life

9 WaveForme 40 5000 3 Physical

10 Wine 13 178 3 Physical

11 Zoo 17 101 7 Life

Table 1. The UCI datasets.
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θ= −Fit 1 (12)

where θ represents the accuracy of the current RVFL network. Thereafter, the best solution is selected and the 
current population X is updated using the steps of the WOA as discussed in Algorithm 1. The process of updating 
the solutions of X is repeated until the termination criteria are met.

evaluation stage. This stage starts with selecting the best configuration of RVFL and evaluating its accuracy 
on the testing data using different performance measures. The WOA-RVFL classification process is illustrated in 
Fig. 2.

experimental study. The experimental study is conducted in two phases. The WOA-RVFL algorithm is 
first benchmarked using 11 UCI machine learning datasets [40]. Thereafter, the method is implemented for the 
prediction of the VDPV outbreak incidences. In order to analyze the performance of the WOA-RVFL method, a 
set of performance measures is used, including the Accuracy, Precision, and Recall as

Accuracy:

=
+

+ + +
Acc TP TN

TP TN FP FN (13)

Precision:

=
+

Pre TP
TP FP (14)

and Recall:

=
+

Rec TP
TP FN (15)

where TP, TN , FP, and FN  denotes the true positive, true negative, false positive, and false negative samples, 
respectively.

Phase I: UCI Datasets. The performance of the proposed method is evaluated using the widely-used set of 
UCI datasets given in Table 1. The datasets have different characteristics which makes their classification a chal-
lenging problem. For each case, the available datasets are randomly divided into training (80%), validation (10%) 
and testing (10%) subsets.

Results and discussion
The results of a comparative study between the proposed WOA-RVFL method and the traditional RVFL algo-
rithm are shown Table 2 and Figs. 3–5. The parameter settings that provide the best predictions are as follows: For 
the WOA algorithm, parameter a was set to 2, and b = 1. Also, the optimal size of population and the total num-
ber of iterations were 20. The parameters of the traditional RVFL algorithm were set based on some recom-
mended values23 and after a trial and error approach. Accordingly, radbas was taken as the activation function 
(AF), with a Bias and a link between the input and output (i.e. Bias = 1 and link = 1). The ridge regression was 
used to update the weights (i.e., mode = Ridge Regression). The optimal number of hidden neurons was 200, and 
Scalem = 1. Both of the algorithms were implemented in Matlab 2017b in Windows 10 64-bit environment using 
a PC with 4 G RAM and an Intel® Core™ i3-3110M Processor. On average, the CPU times for the training of the 
WOA-RVFL and RVFL algorithms were, respectively, 0.3936 s and 0.3833 s. As seen in Table 2, the performance 
of the proposed WOA-RVFL is notably better than RVFL in nearly all cases. The Precision, Accuracy and Recall 
rates of the proposed WOA-RVFL method are higher than RVFL on the training, validation and testing data. This 
clearly indicates that introducing the WOA into the RVFL algorithm has improved both its learning and general-
ization capabilities. This superior performance is more noticeable for six datasets (Zoo, Wine, PCMAC1, 
Hayseroth, HouseVote, Madelon).

Moreover, from Figs. 3–5 it can be noticed that the high performance of the proposed WOA-RVFL against 
the traditional RVFL in terms of Precision, Accuracy and Recall. By analysis the behaviors of the WOA-RVFL 
during the training phase, it can be observed that the difference between the accuracy, recall, and precision of the 
WOA-RVFL and the traditional RVFL is nearly 3%, 4%, 2.5%, respectively. Whereas, during the validation phase 
the difference between them in

terms of accuracy, recall, and precision is 6%, 7%, 5%, respectively. Also, by observed the difference between 
the proposed WOA-RVFL and the traditional RVFL by using the testing set it can be found it is nearly, the same of 
performance during validation phase, 6%, 5%, and 4%, for accuracy, recall, and precision, respectively.

Moreover, the Friedman (FD) test is used to determine if there is a significant difference between the 
WOA-RVFL and traditional RVFL. The results of FD are given in Table 3, it can be noticed that the proposed 
has mean rank better than the traditional RVFL according to the precision, recall, and accuracy among all the 
tested dataset and the partitions of the datasets (i.e., the row with name average). In addition, there is a significant 
difference between the WOA-RVFL and RVFL. However, by comparing the results over the training, Validation, 
and testing set, it can be noticed that there is no significant difference, but the proposed WOA-RVFL has the best 
mean rank overall these sets.
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Phase II: Prediction of the VDPV outbreak incidences. In this section, the WOA-RVFL algorithm is 
trained, validated and tested using available data related to a recent VDPV outbreak occurred in several provinces 
in Lao People’s Democratic Republic (Lao PDR) [41].

The database includes serum samples from different urban cohorts collected before poliomyelitis outbreak 
in Lao PDR in 2015. Data was approved by the National Ethics Committee for Health Research of the Ministry 
of Health in the investigated area (Reference: NECHR 2013-860, 2013-732, 2014-059, 2013-038 and 2017-016). 
The National Ethics Committee for Health Research of the Ministry of Health in Lao (Ethical approval reference 
NECHR 2013–860, 2013–732, 2014–059, 2013–038 and 2017–016) approved the open data with the Creative 
Commons Attribution 4.0 license. More details about this database can be found in [41].

Dataset Set

WOA-RVFL RVFL

Pre Rec Acc Pre Rec Acc

Zoo

Train 100 100 100 100 100 100

Validation 100 100 77.80 100 100 66.76

Test 85.71 85.71 100 71.43 64.29 90.00

Wine

Train 100 100 100 97.47 97.71 97.52

Validation 100 100 100 97.24 95.91 100

Test 100 100 100 100 100 100

Soybean

Train 100 100 100 100 100 100

Validation 100 100 100 100 100 100

Test 100 100 100 100 100 100

PCMAC1

Train 100 100 100 100 100 100

Validation 95.36 96.87 100 91.23 89.79 92.70

Test 91.21 91.36 91.24 87.63 87.63 87.63

Madelon

Train 100 100 100 74.32 74.32 74.32

Validation 60.48 67.81 61.32 48.87 46.16 43.59

Test 68.46 68.47 68.46 55.00 55.00 55.00

Ionosphere

Train 100 100 100 100 100 98.10

Validation 100 100 100 99.29 100 100

Test 100 100 95.71 100 100 94.29

House-Vote

Train 100 100 100 97.47 96.74 97.19

Validation 94.87 100 91.67 94.87 97.79 92.23

Test 94.19 93.70 94.25 93.17 92.19 93.02

Hayesroth

Train 87.68 91.01 85.71 92.03 91.31 90.76

Validation 94.67 100 91.69 47.61 63.52 61.53

Test 93.33 94.44 92.31 57.78 72.38 61.54

Clean2

Train 100 100 100 100 100 95.23

Validation 100 100 100 100 100 97.25

Test 100 100 100 100 100 94.39

Clean1

Train 100 100 100 100 100 95.12

Validation 100 100 100 100 100 100

Test 100 100 100 100 100 95.30

Table 2. Performance statistics of the WOA-RVFL and RVFL methods over different UCI datasets.

Figure 3. Accuracy, Precision and Recall rates of the WOA-RVFL and RVFL methods for the training set (UCI 
data).
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The cohorts included in this study are given as follows:
Fully vaccinated children (Cohort 1):

•	 Included 806 children, aged less than 3.5 years.
•	 All children completed Health Center records of three doses of pentavalent vaccine and of OPV.
•	 Antibodies against tetanus was used as a proxy for the vaccination session attendance.
•	 In 2013 and 2014, samples were collected in Bolikhamxay and Vientiane provinces
•	 In 2015/2016, samples were collected in Khammouane province.
•	 The weight-for-height Z-scores (WHZ), height-for-age Zscores (HAZ) and weight-for-age Z-scores (WAZ) 

nutritional indicators were measured as nutritional indicators.
•	 Birthplace was recorded.

Children from remote areas (Cohort 2):
•	 Included 90 children aged less than 5 years were recorded in Xam Tai and Kuan from Huaphan province.

Figure 4. Accuracy, Precision and Recall rates of the WOA-RVFL and RVFL methods for the validation set 
(UCI data).

Figure 5. Accuracy, Precision, and Recall of the WOA-RVFL and RVFL methods for the testing set (UCI data).

Pre Rec Acc

WOA-RVFL RVFL WOA-RVFL RVFL WOA-RVFL RVFL

Training set
Mean Rank 1.6000 1.4000 1.5500 1.4500 1.7500 1.2500

p-value 0.3173 0.5637 0. 0588

Validation
Mean Rank 2.8000 2.2000 2.9000 2.10 2.8000 2.2

p-value 0.2076 0.0881 0.2453

Test
Mean Rank 1.75 1.25 2.8500 2.15 3.0500 1.950

p-value 0.0253 0.1587 0. 0423

Average
Mean Rank 1.7 1.3 2.8167 2.1833 2.9333 2.0667

p-value 0.0013 0.0068 0.0025

Table 3. The mean rank and p-value of Friedman test to compare between WOA-RVFL and RVFL.

https://doi.org/10.1038/s41598-020-61853-y
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Children with unknown vaccination status (Cohort 3):

•	 Included 320 children aged less than 9 years
•	 In 2012, samples were measured from Bolikhamxay, Vientiane and Luang Prabang provinces.

Blood donors (Cohort 4):

•	 Included 528 blood donors, aged 16 to 56 years in 2014
•	 Unknown vaccination status from Vientiane, Huaphan, Khammouane, and Xaiyabury provinces.

Healthcare workers (Cohort 5):

•	 Included 700 people aged between 15 and 69 years in 2013
•	 Samples were collected in 3 central, 2 provincial and 8 district hospitals located in Vientiane capital, Huaphan 

and Bolikhamxay provinces respectively.

Similar to the simulations for the UCI datasets, the available datasets were randomly divided into training, 
validation and testing subsets. Out of 2448 samples, 1958, 244 and 244 sets were taken for the training, validation 
and testing of the WOA-RVFL and RVFL models. Each model is executed 25 independently runs. Table 4 shows 
the descriptive statistics of two major input parameters included in the model development namely Age and 
Titers. The other considered input parameters are the Cohort type which has five groups, Sex input which either 
male or female, and the Province which include nine places. The output parameter is Polio Immunoglobulin G 
(IgG) which includes three groups namely positive, equivocal, and negative.

Fig. 6 depicts the correlation between the five parameters and with Polio IgG. As seen, the sex parameter has 
the smallest correlation with the other parameters. Additionally, the Cohort type, Titers, Age, and Province are 
correlated with Polio IgG with value greater than 0.20.

Results and discussion
A comparison of the predictions made by the WOA-RVFL and classical RVFL methods is given in Table 5. On 
average, the CPU times for training the WOA-RVFL and RVFL algorithms were, respectively, 3.67 s and 8.62 s 
for the VDPV outbreak database. As seen in Table 5, the WOA-RVFL model significantly outperforms the RVFL 
model in terms of Accuracy, Precision and Recall rates. This involves the results for both the training, validation 
and testing data.

Moreover, the obtained results are in line with what was detected during the outbreak, where participants born 
before vaccination were significantly less to be seropositive. These results agree with the outbreak epidemiology. 
Antibodies neutralization against all poliovirus serotypes were diagnosed in all children. Likewise, antibodies 
neutralization against all serotypes was diagnosed in all health care workers. In addition, the WOA-RVFL method 
has figured out the IgG in the fully vaccinated 3.5 aged children class. In addition, the antibody seroprevalence of 
unvaccinated children, from marginalized areas, was found to be lower than vaccinated children. On the other 
hand, healthcare workers are classified to have a lower seroprevalence antibody than blood donors. Noteworthy, 
the proposed model categorizes both the children aged less than 1 year and younger adults to have antibodies 
more than older ages, supporting the idea that antibody levels were negatively associated with age.

However, VDPV outbreaks become ever-more interdisciplinary problem. In this context, scientists need to 
address how the revolutionary ML approaches can analyze the enormous amounts of data pouring in from epi-
demiology and immunology to sustain the clinical diagnostic tools [41]. The proposed WOA-RVFL approach 
presents an efficient methodological contribution to both ML and mathematical programming together with 
relevant insights into immunization evaluation. The WOA-RVFL analyzed the disparity between the different 
immunology assays. It is worth mentioning that high- risk countries may benefit from the proposed WOA-RVFL 
method for evaluating different immunization program. This can be particularly important for the cases that 
involve uncertain vaccination coverage or emergence virus neutralization tests (VNT).

In the polio-free areas considering seropositivity by ELISA, the proposed WOA-RVFL method can discrim-
inate the trivalent vaccination from vulnerability to VDPV. Nonetheless, the improved ELISA must be serotype 
distinct, and negativity thresholds should be studied for the specificity and sensitivity. It should be noted that out 
of the five examined cohorts, both healthcare workers (cohort 5) and children (cohort 1) were analyzed by VNT35. 
The WOA-RVFL method handled the healthcare workers as a practical example of an adult with a high risk dur-
ing the outbreak since they are at a higher risk for exposure to infections with a possibility to transfer the infection 
from a specific cohort to another. Thus, implementing healthcare worker in the proposed model helps understand 
the epidemiology of the outbreak to prevent the spread of disease from health care worker to patients, many of 

Age Titers

Min 5 0.8933

Max 69 203.400

Average 25.67 54.472

Table 4. Descriptive statistics of the variables included in the VDPV outbreak model development.
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whom may be highly susceptible to infections and related complications. Therefore, it is important to track the 
immunization and vaccination in professionals and to ensure their ability to perform critical caring for patients.

The WOA-RVFL algorithm can observe the ELISA serologies of the other children and adult cohorts matched 
with results of groups that tested by VNT35. The WOA-RVFL suggests a high efficiency of outreach vaccination 
activities since the children from the remote area were equally well protected as the fully vaccinated children. The 
lower seropositivity rates were classified and predicted in fully vaccinated and unknown status children. This is 
compatible with the first clinical VDPV outbreak cases that occurred in the same area36. Given these features, 
the WOA-RVFL supports the idea of repairing the deficiencies associated with vaccine management that affect 
directly on vaccination efficacy.

phase iii: comparison with other meta-heuristic methods. In this section, the performance of 
the proposed WOA-RVFL is compared with meta-heuristic techniques which used to determine the optimal 
parameters of RVFL. These methods include particle swarm optimization (PSO), artificial bee colony (ABC), and 
sine-cosine algorithm (SCA). The parameter setting for each algorithm is given as the original paper, also, the 
common parameters such as the number of solutions, and the total number of iterations are set similar to the first 
experimental. In addition to, in this study, the dataset is divided into training and testing set using the 10-fold 
cross validation. This mean the dataset is split into 10 sets, one of them is used as testing and the other nine sets 
are used as training and this process is repeated 10 times until all sets are used as testing set.

Table 6 depicts the comparison results between the four algorithms using different measures. From this table 
it can be observed that the performance of the comparative algorithms has the same performance when the train-
ing set is used. Meanwhile, the accuracy of the WOA-RVFL, according to the testing sets, is better performance 
than other methods. Followed by the SCA-RVFL which allocated the second rank with nearly 97% and the per-
formance of the ALO-RVFL is better than the MFO-RVFL. The same observation can be reached in terms of the 
precision and recall.

Figure 6. The correlation between the parameters included in the model development.

Method Set Pre Rec Acc

RVFL

Train 77.19 76.29 91.24

Validation 72.38 75.93 92.78

Test 74.90 71.45 89.36

WOA-RVFL

Train 100 100 100

Validation 93.31 94.41 96.28

Test 94.13 95.12 98.30

Table 5. Prediction performance of the WOA-RVFL and RVFL methods for classifying the VDPV outbreak 
incidences.
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conclusions
This study presents a hybrid ML approach to predict the VDPV outbreak incidences. The proposed method called 
WOA-RVFL integrates the RVFL networks with the robust WOA optimization algorithm. It was shown that 
WOA notably improves the prediction accuracy of the RVFL network through finding suitable parameter con-
figuration for this algorithm. The classification performance of the proposed WOA-RVFL method is first verified 
using a number of datasets from the UCI ML repository. The WOA-RVFL algorithm was deployed to track the 
VDPV outbreak incidences and Polio IgG recently occurred in several provinces in Lao. Based on the results, the 
WOA-RVFL algorithm is efficient in detecting the VDPV outbreak incidences and outperforms the traditional 
RVFL method. Future research can focus on implementing the WOA-RVFL algorithm to improve quantitative 
structure–activity relationship (QSAR) models and to other public health surveillance applications.
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