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time course of bilateral microglial 
activation in a mouse model of 
laser-induced glaucoma
Ana i. Ramírez  1,2,5, Rosa de Hoz1,2,5, José A. fernández-Albarral1, Elena Salobrar-Garcia1,3, 
Blanca Rojas1,3, Francisco J. Valiente-Soriano4, Marcelino Avilés-Trigueros4, María P. Villegas-
pérez4, Manuel Vidal-Sanz4, Alberto triviño1,3, José M. Ramírez  1,3* & Juan J. Salazar  1,2*

Microglial activation is associated with glaucoma. In the model of unilateral laser-induced ocular 
hypertension (OHT), the time point at which the inflammatory process peaks remains unknown. 
Different time points (1, 3, 5, 8, and 15 d) were compared to analyze signs of microglial activation both 
in OHT and contralateral eyes. In both eyes, microglial activation was detected in all retinal layers at all 
time points analyzed, including: i) increase in the cell number in the outer segment photoreceptor layer 
and plexiform layers (only in OHT eyes) from 3 d onward; ii) increase in soma size from 1 d onward; iii) 
retraction of the processes from 1 d in OHT eyes and 3 d in contralateral eyes; iv) increase in the area 
of the retina occupied by Iba-1+ cells in the nerve fiber layer/ganglion cell layer from 1 d onward; v) 
increase in the number of vertical processes from 1 d in contralateral eyes and 3 d in OHT eyes. In OHT 
eyes at 24 h and 15 d, most Iba-1+ cells were P2RY12+ and were down-regulated at 3 and 5 d. In both 
eyes, microglial activation was stronger at 3 and 5 d (inflammation peaked in this model). These time 
points could be useful to identify factors implicated in the inflammatory process.

The neurodegenerative disease glaucoma is one of the main causes of irreversible blindness1. Standard treatments 
aim to control intraocular pressure (IOP), but this is often insufficient to prevent loss of visual field2. Many studies 
have attempted to clarify the pathogenic mechanisms in glaucoma, but it remains poorly understood. This multi-
factorial optical neuropathy is known to involve the progressive loss of retinal ganglion cells3.

Risk factors for glaucoma include elevated IOP4, vascular dysfunction, oxidative stress and immune-related 
neuroinflammation5–10. Another contributing factor is microglial activation, which helps drive inflammation that 
contributes to loss of retinal ganglion cells11. Such loss can be inhibited by blocking microglial activation with 
minocycline12,13, high-dose irradiation14 or gastrodin15.

Microglial cells are activated by an increase in IOP16, which causes their soma to enlarge and processes to 
retract. Activated microglia become migratory and begin to function as antigen-presenting cells and to prolifer-
ate17. These microglia express and secrete a range of inflammatory mediators into the retina and aqueous humor, 
including receptors, proteases, reactive oxygen species, cytokines and nitric oxide18–21. Activated microglia cells 
densely extend their processes toward the lesion site within a few minutes22,23, or they migrate to the site of dam-
age24,25 to prevent lesion spread. These first responses are mediated by metabotropic purinergic P2Y12 receptors, 
which are stimulated by ATP released from dead or injured neurons22,23. P2RY12 is a specific marker for rodent 
resident microglial cells26 and is not expressed by monocytes or macrophages27,28. This chemotactic receptor 
regulates microglial activation29, and its signaling activity may enable microglia to respond to altered synaptic 
activity due to various types of injury29.

While activated microglial appear to contribute to neuronal death in glaucoma, they also express neuropro-
tective molecules and help remove debris created as retinal ganglion cells die30. Therefore, microglial activation 
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needs to be analyzed carefully in order to gain new insights into the contribution of inflammation to the patho-
physiology of this disease.

Our group took an initial step in this direction by examining microglial activation in a mouse model of unilat-
eral laser-induced ocular hypertension (OHT) at 24 h31 and 15 d32 after laser induction. This microglial activation 
was observed in OHT and contralateral normotensive eyes, being more pronounced in OHT eyes. However, 
we are unaware of studies with this mouse model in which different time points after laser-induced OHT were 
compared and in which microglial activation was examined over time, in particular when activation peaked. 
Therefore, we made a comparative study of different signs of microglial activation (cell number, soma size, pro-
cess retraction, number of vertical processes) at different time points (1, 3, 5, 8 and 15 days) in a mouse model of 
unilateral laser-induced OHT. We identified microglia based on the expression of not only Iba-1 but also P2RY12, 
allowing us to distinguish resident microglia from cells derived from infiltrating monocytes or macrophages 
during glaucoma-induced inflammation.

Results
Microglial activation is characterized by soma enlargement, process retraction and increase in microglial number. 
These parameters were measured at various times after unilateral laser induction of OHT.

iop. IOP in laser-treated eyes showed the maximum difference from naïve eyes at 1 and 3 d after treatment 
(both p < 0.01; Fig. 1a,b,d). By 5 d, pressure began to fall but was still significantly higher than in naïve eyes 
(p < 0.01; Fig. 1c,d); by 8 d, pressure in laser-treated eyes was similar to that in naïve eyes (Fig. d). At all time 
points, contralateral eyes had similar IOP as naïve eyes (p > 0.05; Fig. 1a–d).

Number of Iba-1+ cells in the OS. The number of Iba-1+ cells in the outer segment layer (OS) was 
significantly higher in OHT eyes than in naïve eyes at 3, 5, 8, and 15 d (all p < 0.01; Supplementary Fig. S1b–e; 
Fig. 2a,d,e); similarly, the number was significantly higher in contralateral eyes than in naïve eyes at 3, 5, and 8 
d (all p < 0.01; Supplementary Fig. S1b–e; Fig. 2a,d,e). The variation in OS of OHT and contralateral eyes over 
time showed that the number of Iba-1+ cells in OHT eyes was significantly higher at 5 d than at 1 d (p < 0.01) 
or 3 d (p < 0.05), while the numbers at 8 and 15 d were significantly lower than the peak at 5 d (both p < 0.01; 
Fig. 2a,e). The peak number of Iba-1+ cells in contralateral eyes occurred at 3 d (p < 0.01 vs 1 day; Fig. 2a,e), after 
which the number decreased significantly by 15 d (p < 0.01 vs 3 d), becoming similar to the number in naïve eyes 
(Fig. 2a,d,e).

In OHT eyes, no differences were found in the numbers of Iba-1+ cells among the superior, inferior, nasal and 
temporal retinal zones, either when the analysis was performed over all retinal areas or over the areas nearest to 
the optic disc.

Figure 1. Measurement of intraocular pressure. (a–d) Histograms show mean (±SD) intraocular pressure 
(IOP) for naïve, contralateral and ocular hypertensive (OHT) eyes at 1 d (a), 3 d (b), 5 d (c). d: Variation in 
IOP over time in OHT and contralateral eyes. The dotted line indicates mean IOP in naïve eyes. In OHT eyes, 
pressure rose and peaked at 1 and 3 d, remained stable at 5 d and then gradually returned to basal preoperative 
levels by 8 d. Contralateral eyes showed similar pressures as naïve eyes at all time points. *p < 0.05, **p < 0.01.
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Figure 2. Iba-1+ cell number in the photoreceptor outer segment layer (OS), outer plexiform layer (OPL) and 
inner plexiform layer (IPL) and cell body area of Iba-1+ cells in the OPL, IPL and the nerve fiber-ganglion cell 
layer (NFL-GCL) at different times after laser-induced ocular hypertension (OHT). (a–c) Variation over time 
in the number of Iba-1+ cells. Histograms compare the mean (±SD) number of Iba-1+ cells per area of 0.1502 
mm2 at 1, 3, 5, 8 and 15 d between eyes with ocular hypertension (OHT) and contralateral eyes in OS (a), OPL 
(b) and IPL (c). (d,e) Immunohistochemical images of anti-Iba-1-stained retinal whole-mounts (d: naïve; 
e: OHT and contralateral). OS (a,e) In OHT eyes, the number of Iba-1+ cells increased from 1 to 5 d, then 
decreased at 8 and 15 d. In contralateral eyes, the number of Iba-1+ cells increased from 1 to 3 d, then decreased 
slightly until 15 d. OPL and IPL (b,c,e) In OHT eyes, the largest increase in the number of microglial cells from 
1 d occurred at 3 and 5 d. The number decreased from 5 d until 8 d and 15 d. (f–h) Variation over time in the 
cell body area of Iba-1+ cells after laser-induced OHT. Histograms show mean (±SD) cell body area of Iba-1+ 
cells in OHT eyes and contralateral eyes at 1, 3, 5, 8 and 15 d in OPL (f), IPL (g) and NFL-GCL (h). OPL-IPL 
(e,f,g) The cell body area in OHT eyes was significantly larger at 1 d, then significantly decrease at 5, 8 or 15 d. In 
contralateral eyes, the cell body area was greatest at 3 d, and then it decreased significantly at 8 and 15 d. NFL/
GCL (h) In OHT eyes, the cell body area was largest at 1 d, and then it progressively decreased at 5, 8 and 15 d. 
In contralateral eyes, the cell body area was greater at 3 d, and then it decreased such that it was significantly 
smaller at 15 d than at 3 d. The dotted line indicates the mean values in naïve eyes. *p < 0.05, **p < 0.01.
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Changes in Iba-1+ cells in the plexiform layers. Comparison of OHT and contralateral eyes with 
naïve eyes (OPL and IPL). OHT and contralateral eyes showed several significant differences from naïve eyes 
in the outer plexiform layer (OPL) and inner plexiform layer (IPL). The number of Iba-1+ cells was signifi-
cantly higher in OHT eyes than in naïve eyes at 3, 5, and 15 d in both OPL and IPL (all p < 0.01; Supplementary 
Fig. S1b,c,e; Fig. 2b–e) and at 8 d in IPL (p < 0.01; Supplementary Fig. S1d; Fig. 2c–e). The number was sig-
nificantly higher in contralateral eyes than in naïve eyes only at 8 d in IPL (p < 0.05; Supplementary Fig. S1d; 
Fig. 2c–e). The number of Iba-1+ cells in the OPL was significantly higher in OHT eyes than in contralateral 
eyes at 3 d (p < 0.05; Supplementary Fig. S1b; Fig. 2b,d,e), 5 d (p < 0.05; Supplementary Fig. S1c; Fig. 2b,d,e) 
and 15 d (p < 0.01; Supplementary Fig. S1e; Fig. 2b,d,e). A similar result was observed in the IPL at 3, 5 and 8 d 
(all p < 0.05; Supplementary Fig. S1b,c,d; Fig. 2c–e) as well as 15 d (p < 0.01; Supplementary Fig. S1e; Fig. 2c–e). 
Soma size was significantly greater in OHT and contralateral eyes than in naïve eyes at all time points (all p < 0.01; 
Supplementary Fig. S1f–j; Fig. 2d–g).

In OHT eyes, no differences were found in the numbers of Iba-1+ cells among the superior, inferior, nasal and 
temporal retinal zones in the OPL or IPL, either when the analysis was performed over all retinal areas or over the 
areas nearest to the optic disc.

At all time points, the arbor area of Iba-1+ cells in the OPL was significantly smaller in OHT eyes than in naïve 
eyes at 1 d (p < 0.05; Supplementary Fig. S2a; Fig. 3a,e,f) as well as at 3, 5, 8 and 15 d (all p < 0.01; Supplementary 
Fig. S2b–e; Fig. 3a,e,f), indicating a retraction of processes. Similarly, the area in IPL was significantly smaller 
in OHT eyes than in naïve eyes at 1, 3, 5, 8 and 15 d (all p < 0.01; Supplementary Fig. S2a–e; Fig. 3b,e,f). These 
results with OHT eyes were mirrored in those with contralateral eyes, in which the arbor area in OPL was signifi-
cantly smaller than in naïve eyes at 3, 5 and 8 d (all p < 0.01; Supplementary Fig. S2b–d; Fig. 2a,e,f) as well as 15 d 
(p < 0.05; Supplementary Fig. S2e; Fig. 3a,e,f). The arbor area in IPL was significantly smaller in contralateral eyes 
than in naïve eyes at 3, 5, 8 and 15 d (all p < 0.01; Supplementary Fig. S2b–e; Fig. 3b,e,f). Arbor areas in the OPL 
were significantly larger in contralateral than OHT eyes at 3 and 5 d (both p < 0.05; Supplementary Fig. S2b–c; 
Fig. 3a,e,f); areas in the IPL were significantly larger in contralateral than OHT eyes at 1, 3, 5 and 8 d (all p < 0.05; 
Supplementary Fig. S2a–d; Fig. 3b,e,f) as well as 15 d (p < 0.01; Supplementary Fig. S2e; Fig. 3b,e,f).

The number of vertical processes between the OPL and OS was significantly greater in OHT eyes than in 
naïve eyes at all time points (p < 0.01; Supplementary Fig. S2g–j; Fig. 3c) except at 1 d (Supplementary Fig. S2f, 
Fig. 3c); the number of processes was significantly greater in contralateral eyes than in naïve eyes at all time points 
(p < 0.01; Supplementary Fig. S2f–j; Fig. 3c). At 1 d, the number of processes was significantly greater in con-
tralateral than OHT eyes (p < 0.05; Supplementary Fig. S2f; Fig. 3c). However, at 15 d, the number of processes in 
OHT eyes was significantly greater than in contralateral eyes (p < 0.01; Supplementary Fig. S2j; Fig. 3c).

Variation in plexiform layers of OHT and contralateral eyes over time. Number of Iba-1+ cells in OPL and IPL. 
In OHT eyes, the largest increase in the number of Iba-1+ cells from 1 d occurred at 3 and 5 d (both p < 0.01; 
Fig. 2b,c,e). The number decreased from 5 d until 8 d and 15 d (both p < 0.01; Fig. 2b,c,e).

Iba-1+ cell body area in OPL and IPL. Soma size in OHT eyes was significantly greater at 1 d than at 5, 8 or 
15 d (all p < 0.01; Fig. 2f,g). Soma size in the OPL decreased marginally from 1 to 3 d, after which it decreased 
significantly, such that it was significantly smaller at 8 and 15 d than at 3 d (both p < 0.01; Fig. 2f). Similar results 
were observed in the IPL, where size was significantly smaller at 8 d than at 3 d (p < 0.05; Fig. 2g). In contrast, 
soma size in contralateral eyes was greatest at 3 d, after which it decreased such that it was significantly smaller at 
8 and 15 d than at 3 d (both p < 0.05; Fig. 2f,g).

Arbor area of the Iba-1+ cells in the OPL and IPL. In OHT eyes, Iba-1+ arbor area in the OPL decreased 
marginally from 1 d to 3 d, after which it increased, such that the area was significantly greater at 8 d than at 3 d 
(p < 0.01; Fig. 3a) and greater at 8 d than at 5 d (p < 0.05; Fig. 3a). Arbor area in the IPL decreased significantly 
from 1 d to 5 d, such that the area at 3 and 5 d was significantly smaller than at 1 d (both p < 0.01; Fig. 3b). Area 
increased from 5 d, such that area at 8 and 15 d was significantly greater than at 3 or 5 d (all p < 0.01; Fig. 3b).

In contralateral eyes, arbor area in the OPL and IPL was smaller at 3 d than at 1 d, although this decrease was 
significant only in the IPL (p < 0.05; Fig. 3b). From 3 d onward, arbor area in OPL and IPL did not change signif-
icantly (Fig. 3a,b).

Iba-1+ vertical processes between OPL and OS. In OHT eyes, the number of vertical processes increased pro-
gressively from 1 to 15 d: the numbers at 5 and 15 d were greater than at 1 d (both p < 0.01; Fig. 3c), the numbers 
at 5 and 15 d were greater than at 3 d (p < 0.05 and p < 0.01, respectively; Fig. 3c), and the number at 15 d was 
greater than at 8 d (p < 0.05; Fig. 3c). In contrast, the number of vertical processes in contralateral eyes did not 
change significantly between 1 and 15 d (Fig. 3c).

Changes in the Iba-1+ cell in the nerve fiber layer-ganglion cell layer (NFL-GCL). The changes 
suffered in Iba-1+ cells of this layer after laser-induced OHT made it difficult to quantify their number. We quan-
tified the area of the retina occupied by Iba-1+ cells (abbreviated Iba1-RA) as in previous studies9,32,33 and we 
determined Iba-1+ soma area.

Comparison of OHT and contralateral eyes with naïve eyes. OHT and contralateral eyes showed several signif-
icant differences from naïve eyes. Iba1-RA was significantly greater in OHT eyes than in naïve eyes at all time 
points (p < 0.01; Supplementary Fig. S3a–e; Fig. 3d–f), and it was significantly greater in contralateral eyes than 
in naïve eyes at 1,3 and 5 d (in all cases p < 0.01; Supplementary Fig. S3a–c; Fig. 3d–f) and at 8 and 15 d (both 
p < 0.05; Supplementary Fig. S3d,e; Fig. 3d–f). In addition, Iba1-RA was significantly greater in OHT than in 
contralateral eyes at 1, 3, 5 and 8 d (p < 0.05; Supplementary Fig. S3a–d; Fig. 3d,f) as well as 15 d (p < 0.01; 
Supplementary Fig. S3e; Fig. 3d,f).
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In OHT eyes, no differences were found in Iba1-RA among the superior, inferior, nasal and temporal retinal 
zones, either when the analysis was performed over all retinal areas or over the areas nearest to the optic disc.

Soma size was significantly greater in OHT eyes than in naïve eyes at all time points (all p < 0.01; 
Supplementary Fig. S1f–j; Fig. 2h); it was greater in contralateral eyes than naïve eyes at 1, 3, 5, and 8 d (all 
p < 0.01; Supplementary Fig. S1f–I; Fig. 2h) as well as 15 d (p < 0.05; Supplementary Fig. S1j; Fig. 2h) Soma 
size was significantly greater in OHT than in contralateral eyes at 1, 3, 5 and 15 d (all p < 0.05; Supplementary 
Fig. S1f,g,h,J; Fig. 2h).

Variation in OHT and contralateral eyes over time (NFL-GCL). In OHT eyes, Iba1-RA was significantly greater 
at 5 d than at 1 d (p < 0.01; Fig. 3d,f), after which it decreased such that it was significantly lower at 15 d than 
at 5 d (p < 0.01; Fig. 3d,f). In contralateral eyes, Iba1-RA was marginally larger at 5 d than at 1 d, after which it 
decreased such that it was significantly smaller at 15 d than at 5 d (p < 0.05; Fig. 3d,f).

Figure 3. Arbor area (AA) of Iba-1 + cells in the outer plexiform layer (OPL) and inner plexiform layer (IPL); 
Iba-1 + vertical processes (VP) between OPL and the photoreceptor outer segment layer (OS) and retinal area 
occupied by Iba-1+ cells (Iba1-RA) in the nerve fiber-ganglion cell layer (NFL-GCL) at different times after 
laser-induced ocular hypertension (OHT). (a,b) Variation over time in AA. Histograms show a mean (±SD) 
AA in OHT eyes and contralateral eyes at 1, 3, 5, 8 and 15 d in OPL (a) and IPL (b). In OHT eyes, AA in the 
OPL decreased marginally from 1 d to 3 d, and then it increased significantly at 8 d. AA in the IPL decreased 
significantly from 1 d to 5 d. Then the area increased from 5 d to 15 d. In contralateral eyes, AA in the OPL 
and IPL was smaller at 3 d than at 1 d, and it was significantly noticeable only in the IPL. From 3 d onward, the 
AA in OPL and IPL did not change significantly. (c) Variation over time in the number of microglial VP. The 
histogram shows a mean (±SD) number of microglial VP between OPL and OS in OHT eyes and contralateral 
eyes at 1, 3, 5, 8 and 15 d. In OHT eyes, the number of VP increased progressively from 1 to 15 d. In contrast, the 
number of vertical processes in contralateral eyes did not change significantly between 1 and 15 d. (d) Variation 
in the Iba1-RA over time after laser-induced OHT. The histogram shows a mean (±SD) Iba1-RA in OHT eyes 
and contralateral eyes at 1, 3, 5, 8 and 15 d. Iba1-RA was significantly greater at 5 d than at 1 d in OHT eyes 
(significantly) and in contralateral eyes (marginally), after which it decreased such that it was significantly lower 
at 15 d than at 5 d in both eyes. (e,f) Immunohistochemical images of anti-Iba-1 retinal whole-mounts (e) naïve; 
(f) OHT and contralateral). The dotted line indicates the mean values in naïve eyes. *p < 0.05, **p < 0.01.
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In OHT eyes, the cell body area was largest at 1 d, and it decreased progressively such that it was significantly 
smaller at 5, 8 and 15 d than at 1 d (all p < 0.01; Fig. 2h). Size was significantly smaller at 5 and 15 d than at 3 d 
(both p < 0.05; Fig. 2h), and it was significantly smaller at 8 d than at 3 d (p < 0.01; Fig. 2h). In contralateral eyes, 
in contrast, soma size was greater at 3 d, and then it decreased such that it was significantly smaller at 15 d than 
at 3 d (p < 0.05; Fig. 2h).

P2RY12 expression over time. In order to determine whether most Iba1+ cells were activated microglia or infil-
trating macrophages in our experiments, we performed double immunostaining against Iba-1 and P2RY12.

Naïve eyes. In all retinal layers, Iba-1+ cells expressed P2RY12 (Fig. 4a–l), with the exception of perivascu-
lar microglia (Fig. 4j–l), which were located in some retinal vessels in the NFL, and dendritic-like Iba-1+ cells 
located in the juxtapapillary area and peripheral retina in the IPL. The mean values of P2RY12 expression inten-
sity in naïve eyes were (OPL = 18.47 ± 3.16; IPL = 32.21 ± 4.44 and NFL-GCL = 14.35 ± 4.28) (Fig. 4).

OHT eyes. At 1d and 15 d after laser induction, most Iba-1+ cells showed high P2RY12 expression in the OS, 
OPL, IPL and NFL/GCL (Figs. 5–8, panels a-c, m-o in all figures), except in the following cases: i) perivascular 
and dendritic-like cells, ii) some rounded cells in the OS (Fig. 5a–c, inset) and NFL/GCL (Fig. 8a–c, inset), and 
iii) very few ramified cells in the IPL (Fig. 7m–o) and NFL/GCL (Fig. 8m–o). At intermediate times (3 and 5 d), 
P2RY12 expression in Iba-1+ cells was dramatically lower than at 24 h in all retinal layers (Figs. 5–8, panels d-i in 
all figures). Expression increased weakly at 8 d (Figs. 5–8, panels j-l in all figures), reaching values similar to those 
in naïve eyes at 15 d (Figs. 5–8, panels m-o in all figures).

Figure 4. P2RY12 expression in naïve eyes in the photoreceptor outer segment layer (OS), outer plexiform 
layer (OPL) inner plexiform layer (IPL) and in the nerve fiber-ganglion cell layer (NFL-GCL). Double 
immunostaining: Iba-1 (A,D,G,J), P2RY12 (B,E,H,K), merge (C,F,I,L). Retinal whole-mounts. In all retinal 
layers analyzed, Iba-1+ cells showed P2RY12 expression, except perivascular iba-1+ cells (j–l), which were 
P2RY12- (arrow). V: vessel.
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The mean values of P2RY12 expression intensity in OHT eyes were as follows at 1d (OPL = 25.62 ± 3.20, 
p < 0.01 vs Naïve; IPL = 33.63 ± 2.40 and NFL-GCL = 12.63 ± 0.92); 3d (OPL = 5.47 ± 0.46; IPL = 1.33 ± 0.06 
and NFL-GCL = 2.99 ± 0.38; all p < 0.01 vs Naïve); 5d (OPL = 5.95 ± 0.76; IPL = 2.78 ± 0.34 and 
NFL-GCL = 1.28 ± 0.10; all p < 0.01 vs Naïve); 8d (OPL = 16.65 ± 3.98; IPL = 22.30 ± 2.76, p < 0.05 vs 
Naïve; and NFL-GCL = 6.80 ± 2.34, p < 0.01 vs Naïve) and 15d (OPL = 18.81 ± 5.28; IPL = 33.91 ± 6.14 and 
NFL-GCL = 13.44 ± 5.22). (Fig. 4).

Contralateral eyes. In contralateral eyes, as in naïve ones (Fig. 4), Iba-1+ cells were intensely labelled with 
anti-P2RY12 antibody (Fig. 9), while dendritic-like cells (Fig. 9g–i) and perivascular cells did not show staining. 

Figure 5. P2RY12 expression in ocular hypertension (OHT) eyes in the photoreceptor outer segment 
layer (OS) at different times after laser-induced OHT (1, 3, 5, 8 and 15 d). Double immunostaining: Iba-1 
(A,D,G,J,M), P2RY12 (B,E,H,K,N), merge (C,F,I,L,O). Retinal whole-mounts. At 1 and 15 d after laser 
induction, most Iba-1+ cells showed strong P2RY12 expression in OS. At 3 and 5 d, P2RY12 expression in Iba-
1+ cells was substantially down-regulated in this layer; it increased slightly at 8 d (arrowheads), reaching values 
similar to those of naïve eyes at 15 d. Rounded cells were P2RY12- (arrow) (inset A–C).
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P2RY12 expression was similar in all retinal layers at all time points (24 h, 3 d, 5 d, 8 d and 15 d; Fig. 9). The 
mean values of P2RY12 expression intensity in contralateral eyes were as follows at 1d (OPL = 23.21 ± 6.14; 
IPL = 28.03 ± 7.86 and NFL-GCL = 12.75 ± 3.92); 3d (OPL = 25.45 ± 2.84, p < 0.05 vs Naïve; p < 0.05 vs OHT; 
IPL = 37.64 ± 4.12, p < 0.05 vs Naïve; p < 0.05 vs OHT; and NFL-GCL = 13.96 ± 1.76, p < 0.05 vs OHT); 5d 
(OPL = 26.35 ± 4.64, p < 0.05 vs Naïve; p < 0.05 vs OHT; IPL = 38.40 ± 1.80, p < 0.05 vs Naïve; p < 0.05 vs OHT, 
and NFL-GCL = 12.97 ± 2.16, p < 0.05 vs OHT); 8d (OPL = 23.35 ± 4.78, p < 0.05 vs Naïve; IPL = 31.13 ± 4.22 
and NFL-GCL = 14.51 ± 4.64, p < 0.05 vs OHT); and 15d (OPL = 19.22 ± 4.40; IPL = 34.86 ± 7.86 and 
NFL-GCL = 11.69 ± 5.00) (Fig. 4).

Figure 6. P2RY12 expression in ocular hypertension (OHT) eyes in the outer plexiform layer (OPL) at different 
times after laser-induced OHT (1, 3, 5, 8 and 15 d). Double immunostaining: Iba-1 (A,D,G,J,M), P2RY12 
(B,E,H,K,N), merge (C,F,I,L,O). Retinal whole-mounts. At 1 d after laser induction, most Iba-1+ cells intensely 
expressed P2RY12. This expression was strongly reduced at 3 and 5 d (arrowheads); it increased weakly at 8 d, 
reaching values similar to those of naïve eyes at 15 d.

https://doi.org/10.1038/s41598-020-61848-9


9Scientific RepoRtS |         (2020) 10:4890  | https://doi.org/10.1038/s41598-020-61848-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
This work is, to the best of our knowledge, the first comparative study of microglial activation among different 
time points (1, 3, 5, 8 and 15 days) after unilateral laser induction of OHT in an experimental mouse model. It 
is also the first study of this OHT mouse model in which P2RY12 expression is analyzed over time in retinal 
whole-mounts. Microglial activation, measured here in terms of morphology and number of Iba-1+ cells, was 
observed in all retinal layers where these cells are present, i.e. the OS, OPL, IPL, and GCL-NFL. Most studies 
of microglial activation over time after OHT have involved a DBA/2 J mouse model of inherited glaucoma34–38. 
Other studies have relied on rat glaucoma models, in which OHT is induced differently than in our model21,39–45.

In the healthy retina, microglial cells remain in a quiescent state characterized by a ramified morphology. In 
the presence of damage, such as OHT, they become activated, their processes shorten, and their soma enlarges. 

Figure 7. P2RY12 expression in ocular hypertension (OHT) eyes in the inner plexiform layer (IPL) at different 
times after laser-induced OHT (1, 3, 5, 8 and 15 d). Double immunostaining: Iba-1 (A,D,G,J,M), P2RY12 
(B,E,H,K,N), merge (C,F,I,L,O). Retinal whole-mounts. At 1 d after laser induction, most Iba-1+ cells strongly 
expressed P2RY12, but some amoeboid cells did not express this marker (arrow in A–C). At intermediate times 
(3 and 5 d), P2RY12 expression was much lower. At 8 d, this expression increased weakly (arrowheads) to reach 
values similar to those in naïve eyes at 15 d. At 15 d, a few ramified Iba-1+ cells were P2RY12- (arrows).
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In their state of high activation, they take on amoeboid morphology and behavior, acting as macrophages to 
engulf debris9,16,32,38,46,47. The abundance of microglia increases upon activation as a result of migration and/or 
proliferation9,32,36,40,48–52. All these signs of microglial activation were observed in the present study, in OHT eyes 
and the contralateral normotensive eyes. We are confident that microglial activation was triggered by the increase 
in IOP and not by an inflammatory response to laser treatment because, in our previous work with the same 
OHT model48, no morphological signs of microglial activation were detected in animals exposed to laser in the 
non-draining portion of the sclera, and these eyes showed similar IOP as naïve ones.

Figure 8. P2RY12 expression in ocular hypertension (OHT) eyes in the nerve fiber-ganglion cell layer 
(NFL-GCL) at different times after laser-induced OHT (1, 3, 5, 8 and 15 d). Double immunostaining: Iba-1 
(A,D,G,J,M), P2RY12 (B,E,H,K,N), merge (C,F,I,L,O). Retinal whole-mounts. At 1 d, most Iba-1+ cells 
stained intensely as P2RY12+, while only a few rounded cells (inset A-C arrows) and perivascular cells (arrow) 
were P2RY12-. At 3 and 5 d, P2RY12 expression in Iba-1 + cells was dramatically reduced in this layer, then 
it increased slightly at 8 d (arrowheads) to reach values similar to those in naïve eyes at 15 d. At 15 d, a few 
ramified Iba-1+ cells did not express P2RY12 (arrows).
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Laser induction of OHT in the present study considerably increased IOP at 1 d later. This increase remained 
at 3 d and then gradually returned to the same pressure as in contralateral eyes at 8 d. They were consistent with 
several previous studies using the same model53,54.

To label microglial cells, we used anti-Iba-1 antibody, which can reveal morphological features of activated 
microglial cells55. This antibody is expressed in the cells of monocytic lineages, including microglia, dendritic 
cells, monocytes and macrophages. Thus, it cannot distinguish activated microglia from infiltrating macrophages. 
In order to determine whether Iba-1+ cells in our study were mainly microglial cells, we stained tissue with 
antibody against P2RY12, which is expressed by microglia but not by monocytes, infiltrating macrophages or 
dendritic cells27,56.

Resting microglia express abundant P2RY12, which is up-regulated after injury by ATP released from dam-
aged cells. The P2RY12 triggers the extension of microglial process towards lesions. A few hours later, P2RY12 
expression is down-regulated22. In fact, down-regulation of P2RY12 mRNA and protein levels is one of the most 
sensitive markers for the transition from resting to activated microglia26. In our study, in naïve retinas, all Iba-1+ 
cells expressed P2RY12, with the exception of perivascular and dendritic-like cells. At 24 h after OHT induction, 
most Iba-1+ cells in the OS, plexiform layers and NFL-GCL showed abundant P2RY12 expression. This expres-
sion was down-regulated at 3 and 5 d, then it rose weakly at 8 d, reaching values similar to those of naïve eyes at 
15 d. Consistent with previous studies, our results suggest that the P2RY12 receptor is down-regulated at 3 and 5 
d, when the inflammation in our model was strongest.

Figure 9. P2RY12 expression in contralateral eyes in the photoreceptor outer segment layer (OS), outer 
plexiform layer (OPL) inner plexiform layer (IPL) and in the nerve fiber-ganglion cell layer (NFL-GCL). Double 
immunostaining: Iba-1 (A,D,G,J), P2RY12 (B,E,H,K), merge (C,F,I,L). Retinal whole-mounts. In all retinal 
layers analyzed, most Iba-1+ cells were labelled with anti-P2RY12 antibody at all time points analyzed: 1 d 
(A–C), 3 d (G–H), 5 d, 8 d and 15 d (D–F,J–L). P2RY12 expression was similar in all instances. This was not the 
case for dendritic-like cells (arrow in G-I) or perivascular cells, which were P2RY12-.
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As expected, neither perivascular nor dendritic Iba-1+ cells showed P2RY12 inmunostaining in our study. 
Similarly, the sparse rounded cells observed at 1 and 15 d in the NFL-GCL and OS did not show P2RY12 expres-
sion, so they may be macrophages or monocytes infiltrating the bloodstream. P2RY12 is selectively expressed in 
resident microglia, and its expression correlates strongly with a ramified microglial morphology29. Most Iba-1+ 
cells with a ramified and macrophagic appearance were P2RY12+. The few ramified and macrophagic P2RY12- 
cells were located primarily in the IPL and NFL-GCL and may derive from bloodstream-infiltrating macrophages.

When we analyzed the morphological signs of activation, we found that in the OS, the number of Iba-1+ cells 
was much higher in OHT and contralateral eyes than in naïve eyes at all time points after 1 d. In OHT eyes, the 
number increased progressively from 1 until 5 d, when it peaked, after which the number decreased. The increase 
in cell number in the OS may be related to the increase in IOP. Microglial activation promotes a pro-inflammatory 
environment that can affect retinal pigment epithelium morphology and function57,58. Activated Iba-1+ cells in 
the OS produce pro-inflammatory factors and chemokines that can trigger rupture of the external blood-retina 
barrier, inducing blood-cell recruitment59. In a study using the same OHT model as the present study, cells possi-
bly coming from the bloodstream in the OS were observed at 15 d32.

In the plexiform layers, somata of Iba-1+ cells were significantly larger and arbor area significantly smaller 
in contralateral and OHT eyes than in naïve eyes at all time points after OHT induction. These effects were more 
pronounced in OHT than in contralateral eyes. In OHT, somata of Iba-1+ cells began to enlarge and processes to 
shorten beyond 1 d; retraction was maximum at 3 and 5 d, and somata were still large, although smaller than at 
1 d. The number of Iba-1+ cells peaked at these times. From these times through the end of the 15 d, soma area 
decreased slightly, arbor area increased and the number of Iba-1+ cells fell, though it remained higher than in 
naïve eyes. Therefore, microglial activation in the plexiform layers of hypertensive eyes was greater at 3 and 5 d 
after OHT induction, when IOP was highest (1, 3 and 5 d).

OHT-induced microglial activation may be driven in part by the expression of growth factors, some of which 
are secreted by activated macroglia52. In a previous study, using the same experimental model as the present 
work, we observed activation of astrocytes and Müller glia9, which may have contributed to the increase in num-
ber of Iba-1+ cells in plexiform layers in OHT eyes in the current work. Previous studies using rodent models 
of laser-induced OHT have shown functional alterations in full-field electroretinogram recordings60–62. Indeed, 
the amplitude of the positive scotopic threshold response associated with retinal ganglion cell activity was sig-
nificantly lower in OHT eyes than in naïve eyes throughout the 56-d measurement period. This difference was 
associated with a significant reduction in the a- and b-waves of the electroretinogram60,61. Moreover, substantial 
morphological alterations of the outer and inner retinal layers have been observed in the laser-induced OHT 
model, when rodents were analyzed for longer periods61,62. Thus, it is possible that neuronal damage in these lay-
ers may help explain the microglial activation observed in our study in the plexiform layers and OS.

In our study, soma area and Iba1-RA were higher in OHT and contralateral eyes than in naïve eyes in the 
NFL-GCL at all time points analyzed. These effects were more pronounced in OHT than contralateral eyes. In 
OHT eyes, Iba1-RA increased progressively from 1 d until its peak at 5 d, after which it decreased progressively 
until 15 d. This increase in Iba1-RA in the NFL-GCL may be explained by the increase in soma area of Iba-1+ 
cells. It may also be explained by entry of other cell types from the bloodstream, as a result of rupture of the inter-
nal blood-retina barrier due to the increased IOP31,32,41. A third possible explanation is migration of microglia 
from the IPL31.

Increased IOP triggers retinal ganglion cell degeneration and death53,60, which may have contributed to the 
microglial activation in the NFL-GCL in our study. Damaged neurons release nucleotides that can up-regulate 
purine receptors in microglia, triggering phagocytosis and migration63–65. In addition, deficiencies in the sign-
aling between microglia and retinal ganglion cells activate microglia66. Dying neurons release HMGB1, which 
stimulates the NF-κβ pathway, and NADPH oxidase in microglial cells, thereby inducing the production of mul-
tiple inflammatory and neurotoxic factors67. A study using the same experimental model as the present work 
showed a lack of retrograde axonal transport in approximately 75% of the original retinal ganglion cells at 8 d 
after laser-induced OHT, being focal and diffuse within the retina53. In order to ascertain whether the number of 
Iba-1+ cells depends on sector-specific damage of the retinal ganglion cells, we compared the numbers of Iba-
1+ cells by retinal zone (superior, inferior, nasal and temporal) in OHT eyes, over all retinal areas and over areas 
nearest to the optic disc. No significant sector-specific differences were observed in either case. The generalized 
increase in the number of Iba-1+ cells across the various retinal zones may be related to the diffuse loss of gan-
glion cells observed at 8 days after laser induction in this experimental model60.

In previous work, we demonstrated microglial activation in the contralateral eye at 1 d31 and 15 d32 after laser 
induction of OHT. Here we extend those findings to show that the activation observed at 1 d persisted through-
out the full 15 d and that it was independent of IOP elevation, since the pressure was similar in contralateral and 
naïve eyes. Several findings point to microglial activation in contralateral eyes: (i) more abundant Iba-1+ cells in 
contralateral than naïve eyes in the OS from 3 d onwards; (ii) larger soma size in contralateral eyes than naïve eyes 
from 1 d onwards, and smaller arbor area from 3 d in the plexiform layers; (iii) greater Iba1-RA and soma area 
in contralateral than naïve eyes in the NFL-GCL from 1 d onwards; and (iv) more abundant microglial vertical 
processes between OPL and OS in contralateral than naïve eyes from 1 d onwards.

Contralateral and naïve eyes showed a similar expression of P2RY12 in all retinal layers and at all time points. 
These eyes did not show the P2RY12 down-regulation at 3 and 5 d observed in OHT eyes.

Microglial activation in contralateral eyes was less intense than in OHT eyes, and it remained stable over time. 
In OHT eyes at 1 d, enlargement of somata reached a peak, and processes began to retract. In contralateral eyes, 
microglia activation was maximal at 3 d when measured in terms of soma area, arbor area, and cell number in 
OS; or at 5 d when measured in terms of Iba1-RA. These results indicate that microglia in contralateral eyes were 
activated slightly later than those in OHT eyes. The processes underlying microglial activation in contralateral 
eyes remain unclear. Such activation does not appear to require neuronal death9,32,48,60,68, and it may involve an 
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immune response triggered by impairment of the blood-retina barrier in OHT eyes31,68. This may help explain the 
observed slight delay in microglial activation in contralateral eyes.

In the present studies we have not examined the correlation of microglia activation with RGC loss. However, 
in a series of previous studies characterizing the model, using the same OHT-induction model and albino Swiss 
mice it was documented that RGC loss occurred only in the ocular hypertensive eye and not in the contralateral 
eye54,60. In the ocular hypertensive eyes, by 8 days (n = 12) after OHT-induction the population of RGCs retro-
gradely labelled from their main target in the brain, the superior colliculi, with of OHSt (a small molecule with 
similar properties to fluorogold), was reduced to approximately 25% of their fellow contralateral population; 
a loss that did not progressed with further survival intervals of 17 (n = 13), 35 (n = 21), or 63 (n = 13) days)60. 
When the expression of Brn3a was used as a marker to identify surviving RGCs, irrespective or their retrograde 
axonal transport capabilities, it was shown that by 8 days there was a loss of approximately 50% of the RGC 
population. Moreover, the study of the spatial distribution of retrogradely labelled RGCs with isodensity maps 
documented that this loss of RGCs appeared focal in wedge-shaped sectors with their vertex oriented towards the 
optic nerve head and their base toward retinal periphery as well as diffuse affecting the whole retina54,60. Thus, the 
main loss of RGCs occurs within the first week after OHT-induction and this is the period of time in which iba1+ 
cells show a peak of activation at 3 and 5d and then activation drops at 8d.

In conclusion, we report the first comparative quantification of diverse signs of microglial activation at dif-
ferent time points after unilateral laser-induced OHT. We examined this activation in OHT and contralateral 
normotensive eyes. These two eye populations were also compared with naïve eyes to allow rigorous assessment 
of microglial activation. We observed that microglial cells in OHT and contralateral eyes showed signs of acti-
vation at all times after laser induction, and that the number of microglia increased from 3 d onwards. In con-
tralateral eyes microglial activation occurred slightly later, was less intense and more constant than in OHT eyes. 
Contralateral activation may be trigged by immune signals derived from OHT eyes. Microglial activation was 
greater in OHT and contralateral eyes at 3 and 5 d, coinciding with high pressure and P2RY12 down-regulation 
in OHT eyes. These time points of greater inflammation in this glaucoma model may be useful for identifying 
factors implicated in OHT-induced inflammatory processes.

Material and Methods
Animals and anesthetics. In this study adult albino mice (of Swiss strain) of 12-16 weeks of age and 40–45 g 
of weight were used. The animals, supplied from the breeding colony of the University of Murcia, were main-
tained in cages with controlled temperature and light (12-h light/dark cycle and 9–24 lux). All mice had ad libi-
tum access to water and food. Induction of ocular hypertension (OHT) and measurement of intraocular pressure 
(IOP) were done under general anesthesia, using an intraperitoneal (ip) injection of a mixture of xylazine (10 mg/
kg; Rompún®, Bayer, Barcelona, Spain) and ketamine (75 mg/kg; Ketolar®, Parke-Davies, Barcelona, Spain). At 
the time of recovery after anesthesia, a tobramycin ointment (Tobrex®; Alcon, Barcelona, Spain) was applied 
to the cornea to prevent infection and drying. At all times, attempts were made to reduce pain and discomfort 
in the animals after surgery. Finally, the animals were sacrificed with an ip overdose of pentobarbital (Dolethal 
Vetoquinol®, Veterinary Specialties, Alcobendas, Madrid, Spain). All experiments were made in accordance with 
Spanish law and the Guidelines for Humane Endpoints for Animals Used in Biomedical Research. In addition, 
the study was accepted by the Ethics Committee for Animal Research of Murcia University (Murcia, Spain) and 
the Animal Health Service of the Murcia Regional Ministry of Agriculture and Water (approval ID number: 
A1310110807). Animal procedures were made using the institutional guidelines, European Union regulations for 
the use of animals in research, and the Association for Research in Vision and Ophthalmology (ARVO) statement 
for the use of animals in ophthalmic and vision research.

Experimental groups. Mice were allocated into six groups, each containing 8 animals: one group was com-
posed of naïve age-matched control (naïve) and five experimental groups were treated with laser in the left eye 
and examined at 1, 3, 5, 8 or 15 d.

Laser treatment and measurement of IOP. To induce OHT, we treated the left eyes of the mice with a 
single diode laser session (Viridis Ophthalmic Photocoagulator-532 nm, Quantel Medical, Clermont-Ferrand, 
France) using the methods described previously53,61. Laser beam was applied directly on episcleral and limbal 
veins, and 55–76 laser burns were performed. The laser parameters were: spot size, 50–100 μm; duration, 0.5 sec-
onds; and power, 0.3 W. IOP reading was performed on the contralateral and laser treated eyes using a rebound 
tonometer (Tono-Lab, Tiolat, OY, Helsinki, Finland)40,69. The intraocular pressure (IOP) was measured in all 
animals. In the five laser-treated groups, IOP was measured before, and at 1, 3, 5, and 8 d after OHT-induction. In 
naïve eyes IOP was taken before the animal sacrifice. Six consecutive IOP measurements were taken and then an 
average was made. IOP was recorded at the same time (approximately 9 a.m.), and just after anesthetizing the ani-
mal, to decrease pressure variations due to the animal’s circadian rhythm70 or spontaneous increases in the IOP49

Immunohistochemistry. The animals were fixed by transcardiac perfusion. A saline solution was intro-
duced briefly through the aorta and then the fixation solution composed of 4% paraformaldehyde in 0.1 M phos-
phate buffer (PB, pH 7.4). To maintain the orientation of the eyeball, a stitch was given at the posterior pole. 
Additional benchmarks such as nasal caruncle and rectus muscles were also used71. Subsequently the eyes were 
post- fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4) for two hours. Then the retinas were 
separated and the vitreous humor was eliminated to perform retinal whole-mounts13,72.

To analyze the microglial population, retina whole-mounts were immunostained as described9. Rabbit 
anti-Iba-1 (Wako, Osaka, Japan) was used as primary antibody after 1:600 dilution in phosphate-buffered saline 

https://doi.org/10.1038/s41598-020-61848-9


1 4Scientific RepoRtS |         (2020) 10:4890  | https://doi.org/10.1038/s41598-020-61848-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

(PBS) containing 1% donkey serum and 0.1% Triton-X100. The secondary antibody was donkey anti-rabbit anti-
body conjugated to Alexa Fluor 594 (Invitrogen, Paisley, UK) and diluted 1:800 in PBS.

In order to differentiate the population of retinal activated microglia from infiltrating macrophages, we used 
an antibody against P2RY12, which reacts with resident microglia, but not with infiltrating monocytes or mac-
rophages27,73. For the study of P2RY12 microglial expression, two retinas of each group (naïve, OHT and their con-
tralateral) at the different time points (1, 3, 5, 8 and 15 d, total n = 22) were double-immunostained against Iba-1 and 
P2RY12. Retinas were pretreated with antigen-unmasking solution (Vector, Burlingame, USA), then incubated with 
rat anti-P2RY12 (1:100; Biolegend, San Diego, USA) and rabbit anti-Iba-1 (1:600; Wako, Osaka, Japan). Then retinas 
were incubated with the secondary antibodies: goat anti-rat α-IgG conjugated to Alexa Fluor 488 (1:150; Invitrogen, 
Paisley UK) and donkey anti-rabbit antibody conjugated to Alexa Fluor 594 (1:800; Invitrogen).

Two negative controls were also performed. In the first, there was no primary antibody, and the samples were 
incubated with the secondary antibody and the diluents used for the antibodies. In the second, the tissue was only 
incubated with the diluents used in the primary and secondary antibodies. This second control allowed assess-
ment of how much endogenous fluorescence contributed to the observed fluorescence74.

Retinas were studied using a fluorescence microscope (Axioplan 2 Imaging Microscope, Carl Zeiss) to 
which an ApoTome device (Carl Zeiss, Munich, Germany) and a high-resolution digital camera (Cool-SNAP 
Photometrics, Tucson, AZ, USA) were associated. The microscope has a Zeiss 10 filter set for Alexa Fluor 488 
and a Zeiss 64 filter set for Alexa Fluor 594. Using the motorized xyz microscope stage, the retinal whole-mounts 
were studied along the xyz axes. Cellular components located in the same xz plane were considered to be located 
in the same focal plane. Images were taken with the apotome device, which creates optical sections of fluorescent 
samples- free of scattered light and increases the resolution in Z direction compared to conventional fluorescence 
microscopy. Z-stacks were analyzed in Axiovision version 4.2 (Carl Zeiss). Adobe Photoshop CS3 Extended 10.0 
program (Adobe Systems, San José, CA, USA) was used in the assembly of the figure plates.

Quantitative retina analysis. To define the impact of OHT on Iba-1+ cells at the various time points, the fol-
lowing outcomes were quantified by an analyst blinded to the retina treatment: (a) the number of Iba-1+ cells cells 
in the OS, OPL and IPL; (b) Iba1-RA in the NFL-GCL; (c) the arbor area of the Iba-1+ cells in the OPL and IPL; (d) 
the number of microglial vertical processes connecting the OPL and OS; (e) the cell body area of Iba-1+ cells in the 
OPL, IPL and NFL-GCL; and (f) the mean of P2RY12 expression intensity. The different morphology that the micro-
glial cells adopted in the different retinal layers (OS, OPL, IPL and NFL-GCL) allowed us to identify in which retinal 
layer we were located. In addition the weak fluorescence emitted by the somas of retinal nuclear layers and recorded 
with Zeiss filter set 10 for Alexa Fluor 488, also enabled the location of the retinal layer in the retinal whole-mount.

Quantification was carried in all naïve control eyes (n = 6) as well as all OHT and contralateral eyes of all 
animals in all the laser-treated groups as we described previously32,65,75,76. For the retinal count of Iba-1+ cells, in 
the retinal whole mounts, equivalent areas were photographed in the vertical and horizontal meridians, which 
crossed the optic nerve, and which included the upper, lower, nasal and temporal areas. To prevent a portion of 
the retinal whole-mount were being duplicated or omitted, all the fields analyzed were contiguous. Each meridian 
was analyzed using the motorized stage of the microscope to scan its entire length along the X-Y axis, giving an 
approximate total of 550 fields evaluated32,75,76. The photographs were made at 20x magnification, providing an 
area of 0.1502 mm2 per field. Besides, to quantify Iba-1+ cells in the OPL, IPL, and NFL-GCL, the entire prepa-
ration was studied along the Z axis in depth every 2 μm.

The method used for the Iba-1+ cell quantification depended on the retinal layer. In the plexiform layers, 
microglial cells were distributed throughout the retina forming a regular mosaic-shaped plexus, and therefore, 
these cells could be individually identified and counted automatically75,77. However, in the NFL-GCL the micro-
glial cells cannot be so easily identified, especially in the HTO eyes, so in this layer the Iba1-RA was used for 
quantification75,77. In OS, Iba-1+ cells easily individualized, but did not form a regular plexus, which hindered 
their automatic counting, therefore, in this layer a manual counting was used.

Iba-1+ cell number in the OS. In OS, the Iba-1 + cell count was performed using the “Interactive” manual 
counting tool in AxioVision 4.8.2 software (Carl Zeiss) that is associated with the Apotome device and the fluo-
rescence microscope.

Iba-1+ cell number in the OPL, IPL and NFL-GCL. In these retinal layers Iba-1+ cells were counted 
using an algorithm developed in MATLAB by our group75–77 that allows quantifying the number of Iba-1 + cells 
in the OPL and IPL and the Iba-1RA in the GCL-NFL. To quantify the number of Iba-1 + cells, we proceeded 
according to our protocol75,77. In summary, a Z-stack projection was performed on the selected images. The image 
was normalized to the pixel that had a higher value in the image, so that the image values were in a range between 
0–1. The threshold was then imposed so that all values <0.2 were set to 0 and the remaining values were main-
tained. The remaining image was divided into segments and the center of mass of each segment was determined 
to identify the presence or absence of cells. To avoid counting twice the same cell that is between two adjacent 
segments, the minimum distance that separates the cells was specified. All points that are at a distance less than 
this minimum distance were considered to belong to the same cell, and therefore were counted only once.

For the quantification of Iba1-RA, we use the threshold tool in MATLAB in the selected images75,77. The 
thresholds determine the objects of interest by grayscale values and allow them to be differentiated from other 
areas of the image. After that, we quantify the Iba1-RA using the “count NFL” algorithm.

Arbor area of Iba-1+ cells in the OPL and IPL. We studied four equivalent areas in each plexiform layer 
along the horizontal and vertical meridians that cross the optic nerve. To have a representation of the all retinal 
tissue, we select different retinal areas at various distances from the optic disc, in the different quadrants of the 
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retina as follow: the retinal area nearby to the optic disc in the superior retina; the area at two levels of eccentricity 
in the inferior retina; the area at three levels of eccentricity in the nasal retina and the area at four levels of eccen-
tricity in the temporal retina. In photographs taken at 20×, the arbor area of the Iba-1 + cells in the plexiform 
layers was quantified32. For it, a polygon was drawn that connected the most distal points of the Iba-1 + cellular 
processes using the” interactive Measurement” tool of the AxioVision software (Carl Zeiss).

Number of vertical processes of Iba-1+ cells connecting the OPL and OS. To make this quantifi-
cation, we took 20x photographs in the retinal plane between the OPL and the OS. The vertical processes of the 
Iba-1+ cells that connected both retinal layers were observed as points, which were quantified using the manual 
counting tool of the AxioVision software.

Cell body area of Iba-1+ cells in the OPL, IPL and NFL-GCL. The cell body area was measured in 
the OPL, IPL and NFL-GCL using the same areas as those used for the arbor area. In photographs taken at 20×, 
the contours of the cell bodies were traced using the “interactive measurement” tool of the AxioVision software.

Mean P2RY12 intensity expression. In the retinal whole mounts labelled with P2RY12 antibody, equiva-
lent areas were photographed at 20x in the vertical and horizontal meridians, including the upper, lower, nasal and 
temporal areas in different retinal layers (OPL, IPL and NFL-GCL). The photographs were taken with equal values of 
time exposure and intensity of excitation. To quantify P2RY12 expression intensity, we used an algorithm developed 
in MATLAB (© MathWorks, Inc) and AxioVision 4.8.2 software (Carl Zeiss) that is associated with the Apotome 
device and the fluorescence microscope. The algorithm allows us to identify different intensity levels of P2RY12 
expression in the OPL, IPL and NFL-GCL in the different groups of study. Image Average Intensity was calculated by 
adding the pixel values of the green channel (P2RY12 immunostaining) of each image and dividing this result by the 
total number of pixels of the image. The percentages we show in this paper are the result of normalizing the Image 
Average Intensity values by 255 that is the maximum value each pixel can represent.

Statistical analysis. The SPSS 22 program (IBM, Chicago, IL, USA) was used to perform the statistics. Data 
were provided as mean ± SD. In the following parameters: (i) IOP; (ii) Iba-1+ cell number (OS, OPL and IPL); 
(iii) Iba1-RA (NFL-GCL); (iv) arbor area of Iba-1+ cells (OPL and IPL); (v) number of Iba-1+ vertical processes; 
(vi) cell body area of Iba-1+ cells (OPL, IPL and NFL-GCL), and vii) mean P2RY12 intensity expression, differ-
ences between naïve, OHT and contralateral eyes were analyzed using the Wilcoxon W test (for paired data) and 
Mann Whitney U test (for unpaired data). At the different time points, differences between contralateral and 
OHT eyes were evaluated using the ANOVA test with Bonferroni correction.

In the following parameters of OHT eyes: (i) number of Iba-1+ cells (OS, OPL and IPL) in all retinal zones; 
(ii) number of Iba-1+ cells (OS, OPL and IPL), taking into account only the zones nearest to the optic disc; (iii) 
Iba1-RA (NFL-GCL) in all retinal zones; and (iv) Iba1-RA (NFL-GCL), taking into account only the zones closest 
to the optic disc, the differences between several areas of the retina (superior, inferior, nasal and temporal) were 
analyzed using the ANOVA test with Bonferroni correction.

We consider that the differences were significant when p < 0.05.
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