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SAeRof: an ensemble approach 
for large-scale drug-disease 
association prediction by 
incorporating rotation forest and 
sparse autoencoder deep neural 
network
Han-Jing Jiang1,2,3, Yu-An Huang4* & Zhu-Hong You1,2,3*

Drug-disease association is an important piece of information which participates in all stages of drug 
repositioning. Although the number of drug-disease associations identified by high-throughput 
technologies is increasing, the experimental methods are time consuming and expensive. As 
supplement to them, many computational methods have been developed for an accurate in silico 
prediction for new drug-disease associations. In this work, we present a novel computational model 
combining sparse auto-encoder and rotation forest (SAeRof) to predict drug-disease association. 
Gaussian interaction profile kernel similarity, drug structure similarity and disease semantic similarity 
were extracted for exploring the association among drugs and diseases. On this basis, a rotation forest 
classifier based on sparse auto-encoder is proposed to predict the association between drugs and 
diseases. In order to evaluate the performance of the proposed model, we used it to implement 10-fold 
cross validation on two golden standard datasets, Fdataset and Cdataset. As a result, the proposed 
model achieved AUCs (Area Under the ROC Curve) of Fdataset and Cdataset are 0.9092 and 0.9323, 
respectively. For performance evaluation, we compared SAEROF with the state-of-the-art support 
vector machine (SVM) classifier and some existing computational models. Three human diseases 
(Obesity, Stomach Neoplasms and Lung Neoplasms) were explored in case studies. As a result, more 
than half of the top 20 drugs predicted were successfully confirmed by the Comparative Toxicogenomics 
Database(CTD database). This model is a feasible and effective method to predict drug-disease 
correlation, and its performance is significantly improved compared with existing methods.

The average cost of a successful new drug is estimated at more than $1 billion and the process takes nearly a dec-
ade. However, drug repositioning can find some new drug efficacy in both marketed and unlisted compounds, 
thereby reducing the cycle and cost of drug development. Drug repositioning, also known as new use of old 
drugs, refers to the process of expanding indications and discovering new targets through further research for 
drugs that have been on the market. Drug-disease association is an important theoretical basis for drug reposi-
tioning. Therefore, the prediction of new drug-disease association has attracted more and more researchers’ atten-
tion. In addition to the experimental methods, computational methods to discover new drug-disease associations 
can lead to further cost savings.

Some researchers have published computational models of drug repositioning based on deep learning tech-
niques. For example, Lu et al. used regularized nuclear classifiers to construct drug and disease predictions1. Liang 
et al. used a Laplacian regularization algorithm for sparse subspaces to construct a drug repositioning prediction 
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model: LRSSL22. The method incorporates information such as medicinal chemistry information and drug tar-
gets. To solve this problem, Wu et al. proposed a semi-supervised graph cutting algorithm to find the optimal 
graph cutting to identify potential drug-disease associations, which is called SSGC3.

In the computation framework of most computational methods for predicting drug-disease associations, two 
modules of feature extraction and classification are normally constructed separately. Effective feature extrac-
tion methods could help to improve the prediction accuracy4. The similarity between drugs/disease used to 
be constructed as they are considered to be important to describe their correlation with regards to pattern of 
drug-disease associations. The first consideration is how to express the features of a particular drug or disease. 
Therefore, based on the consideration of multiple features, different feature extraction methods are proposed. For 
example, when DR2DI describing the similarity of the disease, the information content on the disease Medical 
Subject Headings (MeSH) descriptors and their corresponding Directed Acyclic Graphs (DAGs) are used5. In 
addition to the commonly used machine learning methods to extract features, sparse auto-encoders have recently 
received attention. For example, Deng et al. applied sparse auto-encoder to the study of speech emotion recog-
nition6. Su et al. used training neural networks to capture the internal structure of the human body7. In recent 
years, with the development of auto-encoder and other types of deep learning technology, some feature extraction 
methods based on deep learning are gaining more and more research attention. Feature dimension reduction can 
effectively extract useful features. Using auto-encoder to map the raw features into a low-dimensional space in 
which the relations of drug and disease can be more effectively measured. In our model, we proposed a feature 
extraction method combining sparse auto-encoder and PCA to learn the feature representation of drugs and 
diseases. Sparse auto-encoder is a variant of based auto-encoder, which integrates sparse penalty term into con-
ventional auto-encoder.

In this study, we propose a computational model that combing a sparse auto-encoder with the rotation forest. 
With a comprehensive consideration of multiple features, we use a combination method to obtain the combined 
features. A feature extraction module based on sparse autoencoder and Principal Component Analysis (PCA) is 
established, and the combined features are learned into the final feature representation by sparse auto-encoder. 
Considering that the ensemble classifier normally yield more stable prediction results than single classifier, 
we adopt rotation forest to deal with the extracted features from sparse auto-encoder for final prediction. The 
results yield from rotation forest describe the probability scores of each drug-disease pair to be interactive. Those 
drug-disease pairs with high prediction scores are considered most likely to be associated among all testing 
samples.

The results of the SAEROF model after 10-fold cross-validation on Fdataset and Cdataset were compared 
with the two most advanced drug reposition prediction models. The results show that SAEROF model has better 
performance. In addition, case studies were conducted on three human diseases, including obesity, Stomach 
Neoplasms, and Lung Neoplasms. Of the top 20 candidates predicted by SAEROF (Obesity 17/20, Stomach 
Neoplasms 16/20, Lung Neoplasms 16/20), more than 10 were validated in the CTD database8.

Materials and Methods
In this section, the model we proposed is introduced: First, we describe the datasets used. and second, we explain 
how to use datasets to calculate similarities between drugs and diseases. Last, the results of the cross-validation 
rotation forest experiment are given.

Figure 1 is a flow chart of the SAEROF model predicting potential drug-disease associations. First, two kinds 
of drug similarity and disease similarity were calculated respectively. Then, the feature matrix is obtained by 

Figure 1. Flowchart of SAEROF model.
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combining drug and disease similarity. Get the final similarity by using the sparse auto-encoder. Finally, a rotation 
forest classifier is used to predict whether a given drug-disease pair is relevant.

Dataset. We used the Fdataset and Cdataset collected by Gottlieb et al. and Luo et al.9,10, to predict the 
drug-disease association. Fdataset contains 593 drugs, 313 diseases and 1933 drug-disease associations. C data-
set contains 663 drugs, 409 diseases and 2532 drug-disease associations. (Cdataset is obtained from the pre-
vious work (Luo et al., 201610), which is generated by combining DNdatasets and Fdataset.)Drug information 
are extracted from DrugBank and PubChem11,12. DrugBank is a database of drugs that contains comprehensive 
information. PubChem database provides information on the chemical substructure of drugs. The OMIM data-
base provides disease information, which focuses on human genes and diseases13. The number of all associations, 
drugs, and diseases contained in the two datasets is listed in Table 1.

Similarity for drugs and disease. We here introduce two kinds of drug similarities and two kinds of 
disease similarities in this section. Drug structure similarity is calculated based on the chemical structure of the 
drug. Simplified molecular-input line-entry system (SMILE) is a notation that describes the structure of a mol-
ecule in a short text string and for a given drug is downloaded from DrugBank14. Chemical similarity kits were 
used to calculate the similarity between the two drugs15. Similarities that do not provide prediction information 
are converted to values close to 0. Next, group drugs based on existing drug-disease relationships. We adjust the 
similarity by applying the logistic function.

L x
e

( ) 1
1 (1)cx f( )=

+ +

Such that for ∈ . ≈x L x[0, 0 3], ( ) 0,and for ∈ . ≈x L x[0 6, 1], ( ) 1. This means that L(0) needs to be as close 
as possible to zero, so f  is log(999). The value of c is determined as −15 by the PRINCE algorithm. The idea of the 
PRINCE algorithm is: (a) performance comparison of various logistic regression parameters; (b) performance 
comparison under different iterations; (c) performance comparison of various alpha values.

Using the above method, drug similarity DEr  can be obtained. We established a new weighting network for 
drug sharing (As shown in Fig. 2). Nodes in the drug mapping network, common diseases of drug pairs represent 
edge weights.

In the SAEROF model, we use ClusterONE16 to identify clusters. The definition of cohesion of cluster V is as 
follows:

=
+ +
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W V( )in  represent the total weight of the edge in H. W V( )bound  represent the total weight of vertex set and other 
edges of the group. P V( ) represent a penalty term. Assuming that drug ri and rj belong to the same cluster V . Drug 
structure similarity DE between ri and rj was defined as:

DE C V DE(1 ( )) (3)r= + ∗

It is worth noting that for the structural similarity between drugs, if its value is not less than 1, use 0.99 
instead10.

Datasets Drugs Diseases Associations

Cdataset 663 409 2532

Fdataset 593 313 1933

Table 1. The data comparison list of the database.

Figure 2. Weighted drug sharing network. The dotted line represents the drug-disease association between, 
and the shared diseases of drug pairs represent the weight.
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Directed acyclic graphs (DAG) can be used to describe semantic similarity of diseases, which can be down-
loaded from the national liary of medicine’s comprehensive retrieval control vocabulary, medical subject words 
(MeSH) database17. Suppose in DAGf i( ) of disease b, the effect of ancestral disease t to disease b is:

{ }
D b if b f i

D b max D b b children of b if b f i

( ) 1 ( )

( ) ( ) ( ) (4)

f i

f i f i

( )

( ) ( )
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Where ψ is the semantic effect parameter, which is related to b and its sub-disease b́. In DAGf i( ), semantic effect of 
the disease f i( ) itself is defined as one. The semantic value DV f i( ( )) is:

∑=
∈
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The higher the proportion of DAGs sred by the two diseases, the higher the similarity. The semantic similarity 
score of disease f(i) and f(j) is:
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Next, the semantic similarity of disease is improved by using the same measure of drug structure similarity. 
The similarity was adjusted by analyzing the drug-disease association. Finally, ClusterONE was used to cluster the 
diseases to obtain the comprehensive similarity DS of the diseases.

Define the adjacency matrix A, where the columns represent the drug and the rows represent the disease. The 
i th−  column vector of the adjacency matrix A is represented by the binary vector V g i( ( )). Calculate the Gaussian 
interaction profile kernel of drug g i( ) and drug g(j)18:

GE g i g j V g i V g j( ( ), ( )) exp( ( ( )) ( ( )) ) (7)g
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where Parameter θg  is could adjust the kernel bandwidth and normalize the original parameter gθ
˙
.

Similar to the calculation method of drug similarity, disease Gaussian interaction profile kernel similarity 
formula is:
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where binary vector V d i( ( ))(or V d j( ( )) represents the association profiles of disease d i( ) (or d j( )) by observing 
whether d i( ) (or d j( )) is associated with each of drugs and is equivalent to the i th−  (or j th− ) row vector of 
adjacency matrix A. Parameter d∂  is implemented to adjust the kernel bandwidth and normalize the original 
parameter d∂′ . The value of gθ′  and ∂′

d are set to 0.5 for simplicity.

feature fusion. In this section, descriptors from multiple data sources are integrated to predict drug-disease 
associations. The data set contains some unknown drug -disease associations, and the corresponding Gaussian 
interaction. profile kernel is 0. To solve this problem, we decided to fuse the structural similarity of drugs and 
the semantic similarity of diseases. This solution can reflect the related characteristics of diseases and drugs from 
different perspectives.

Drug semantic similarity DE (Eq. 3) was filled in drug Gaussian interaction profile kernel similarity GE  
(Eq. 7) to form drug similarity matrix SIMdrug . The drug similarity SIM g i g j( ( ), ( ))drug  formula for drug g i( ) and 
drug g j( ) is as follows:

SIM g i g j
GE g i g j if g i and g j has Gaussian

interaction profile kernel similarity
DE otherwise

( ( ), ( ))
( ( ), ( )) ( ) ( )

(11)
drug =









For the similarity of diseases, Disease semantic similarity DS was filled in disease Gaussian interaction profile 
kernel similarity GD (Eq. 9). The formula is:

SIM
GD d i d j if d i and d j has Gaussian

interaction profile kernel similarity
DS otherwise
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Feature extraction based on SAEROF. In recent years, bioinformatics has paid great attention to the 
application of deep learning. As an effective learning strategy, deep learning is widely used. As an unsupervised 
neural network model, the autoencoder can learn the hidden features of the input samples. Its basic structure 
is shown in Fig. 3. However, autoencoders cannot effectively extract useful features. Aiming at this problem, a 
sparse autoencoder (SAE) is proposed, which introduces a sparse penalty term to learn relatively sparse features.

SAE is a three-layered symmetric neural network. Select x e( ) 1/(1 )xσ = + − as the activation function of the 
network. Encoder function,

h W x i b( ( ) ) (13)encoder encoderσ= +

The input layer x is mapped to the hidden layer h. The decoder function is:

σ= +y W h b( ) (14)decoder encoder

where W represents the connection parameter between the two layers, b is an offset.
Add sparsity penalty to the target function of the auto-encoder to obtain valid features. Suppose a x( )j  denotes 

the activation of hidden unit t. The average activation amount of hidden unit t is:

n
a x i1 [ ( ( ))]

(15)t
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n
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The sparse term is added to the objective function that penalizes tρ  if it deviates significantly from ρ. The pen-
alty term is expressed as:

P KL( )
(16)penalty
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S2 is the number of neurons in the hidden layer. ρ is a sparsity parameter, usually a small value close zero. 
There is a weight attached to the penalty, which is 10e-7. Kullback-leibler ( ρ ρ||KL( )t ) is the relative entropy 
between two Bernoulli random variables with a mean value of ρ and a mean value of ρ̂  19. Relative entropy is a 
standard measure of the difference between two distributions.
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This penalty function possesses the property that 


ρ ρ|| =KL( ) 0t  if ρ ρ=t . Otherwise, it increases monotoni-
cally as ρ

t  diverges from ρ, which acts as the sparsity constraint.
The cost function with sparse penalty term added is defined as:

ˆ∑γ ρ ρ= + ||
=
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(18)sparse

t
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2

C W b( , ) is the cost function of the neural network. γ is the weight of the sparse penalty. As shown in formula 
15, the cost function be solved by minimizing W and b. This can be calculated through the backpropagation algo-
rithm, where the random gradient descent method is used for training. The parameters W and b of each iteration 
are updated as follows:

Figure 3. The structure of an auto-encoder.
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where σ is represent the learning rate. The average activation degree is calculated through the forward traversal 
of all training examples to obtain the sparse error. To optimize the hyperparameters in our models20, we keep 
trying by setting the dimension from 10 to 200. As a result, we found that the performance actually robust to the 
setting when the dimension is higher than 5021. Specially, the performance reaches its highest within the interval 
of [95,105]. Therefore, the dimension of the hidden layer was optimized as 100.The output layer of Fdataset is 100 
dimensions and the input layer is 906 dimensions. The output layer of Cdataset is 100 dimensions and the input 
layer is 1072 dimensions. We used a single layer sparse automatic encoder. To reduce the computational cost of 
the classifier, we used the bottleneck hidden layer as the output, which is 100 dimensional. The learning rate is 
adaptively changed during the optimization by the adadelta algorithm.

Dimensionality reduction is a kind of data set preprocessing technology, which is usually used before the data 
is applied in other algorithms. It can remove some redundant information and noise of the data, making data 
more simply and efficiently, so as to improve the data processing speed and save a lot of time and cost. Dimension 
reduction has also become a widely used data preprocessing method. Principal Component Analysis (PCA) is the 
most widely used data dimension reduction algorithm. The main idea of PCA is to map n-dimensional features to 
k-dimensional features, which are brand new orthogonal features and also known as principal components. They 
are k-dimensional features reconstructed on the basis of the original n-dimensional features. The essence of PCA 
algorithm is to find some projection directions, so that the variance of the data in these projection directions is 
the largest, and these projection directions are orthogonal to each other. Here, we reduced the 100-dimensional 
features obtained by SAE to 84 dimensions through PCA to obtain the final eigenvector.

Ensemble learning complete learning tasks by building and combining multiple machine learning models. 
Since ensemble learning algorithms are more accurate than single classifiers, they have received more and more 
attention in recent years. Rotation forest (RF) is a popular ensemble classifier proposed by Rodriguez et al.22. 
which has been widely used in various fields. First, RF randomly divides samples into different subsets. Local 
principal component analysis (PCA) is then used to rotate each subset to increase diversity. Input the rotated 
subset into different decision trees. The final result of the classification is produced by voting on all the decision 
trees. Due to the introduction of randomness, RF can prevent overfitting, resist noise and be insensitive to abnor-
mal outliers. Therefore, in this work, we chose the rotation forest as a classifier to process the learned features. We 
optimize parameters through a grid search, and the parameters of rotation forest, K and n_classifiers are set as 
200 and 139, respectively. The ensemble classifier is composed of several weak classifiers, and the subtree selects 
the feature subset with fewer dimensions. The subtree training is simple as the same as the way to train a decision 
tree. Its time cost complexity is O(n*|D|*log(|D|)), where |D| is the feature dimension.

Results and discussion
Evaluation Criteria. We evaluated the performance of SAEROF by 10-fold cross validation. The evaluation 
criteria used include precision (Prec.), recall, F1-score and accuracy (Acc.). The calculation formula is defined as:

Prec TP
TP FP (21)

. =
+

. =
+

Recall TP
TP FN (22)

F score PR
P R

1 2
(23)

− =
+

Acc TP TN
TP TN FP FN (24)

. =
+

+ + +

TP is defined as a positive sample, which is actually a positive sample. TN is defined as a negative sample, and 
in fact is a negative sample. FP stands for positive sample, but actually negative sample. FN is defined as a negative 
sample, but it’s actually a positive sample. In addition, the Receiver Operating Characteristic (ROC) curve and 
the area under the curve (AUC) that can comprehensively reflect the performance of the model are also used in 
the experiment.

Evaluate prediction performance. We chose to use a 10-fold cross-validation method to evaluate the 
ability of the SAEROF model to predict drug-disease associations. On the Fdataset and Cdataset, all data sets were 
randomly divided into 10 equal parts. Choose one group at a time as the test set and the other nine as the training 
set. Finally, the mean and standard deviation of the results of ten experiments were calculated.

Tables 2, 3 and Fig. 4 list the experimental results of SAEROF model on Fdataset and Cdataset. On the Fdataset, 
the results were as follows: accuracy is 81.17% ± 1.47%, precision is 83.41% ± 1.90%, recall is 77.91% ± 3.35%, 
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f1-score is 80.51% ± 1.75% and mean AUC is 0.9092 ± 0.0103. On the Cdataset, the results were as follows: accu-
racy is 83.47% ± 1.59%, precision is 85.83% ± 1.17%, recall is 80.21% ± 3.67%, f1-score is 82.87% ± 1.98% and 
mean AUC is 0.9323 ± 0.0081.

The high accuracy of the SAEROF model stems from the feature extraction method and the choice of classi-
fiers. Combined with sparse auto-encoder, relatively sparse features can be extracted. The ensemble strategy and 
random tree rotation strategy make the rotation forest classifier have better classification ability.

In order to evaluate the SAEROF model from multiple perspectives, we compared the results with those of two 
state-of-the-art models, DrugNet and HGBI23,24. For all methods we used a ten-fold cross validation. Experiment 
results (As show in Table 4) show that the AUC of SAEROF is obviously superior to the other two. The AUC val-
ues of DrugNet model on Fdataset and Cdataset are 0.778 and 0.804, respectively. The AUC values of the HGBI 
model on Fdataset and Cdataset are 0.829 and 0.858, respectively. In addition, the AUC values of the SAEROF 
model on the two data sets are higher than the DrugNet model, respectively. 0.1312 and 0.128, which are 0.0802 

Test set Acc. (%) Pre. (%) Recall. (%) F1-score. (%)

0 83.76 83.25 84.54 83.89

1 79.90 82.95 75.26 78.92

2 79.90 79.90 79.90 79.90

3 79.53 80.32 78.24 79.27

4 79.79 84.43 73.06 78.33

5 82.90 84.70 80.31 82.45

6 81.09 86.14 74.09 79.67

7 82.38 83.78 80.31 82.01

8 82.38 85.31 78.24 81.62

9 80.05 83.33 75.13 79.02

Average 81.17 ± 1.47 83.41 ± 1.90 77.91 ± 3.35 80.51 ± 1.75

Table 2. 10-fold cross-validation results performed by SAEROF on Fdataset.

Test set Acc. (%) Pre. (%) Recall. (%) F1-score. (%)

0 86.42 87.45 85.04 86.23

1 84.45 84.58 84.25 84.42

2 82.81 85.78 78.66 82.06

3 84.78 84.38 85.38 84.87

4 82.61 86.67 77.08 81.59

5 83.40 84.49 81.82 83.13

6 81.23 85.27 75.49 80.08

7 82.81 86.73 77.47 81.84

8 81.23 85.27 75.49 80.08

9 84.98 87.66 81.42 84.43

Average 83.47 ± 1.59 85.83 ± 1.17 80.21 ± 3.67 82.87 ± 1.98

Table 3. 10-fold cross-validation results performed by SAEROF on Cdataset.

Figure 4. Comparison of ROC curves on Fdataset and Cdataset. (a) Is the ROC curve of 10-fold cross 
validation on the Fdataset. (b) s is the ROC curve of 10-fold cross validation on the Cdataset.
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and 0.074 higher than the DrugNet model, respectively. The comparison results show that the SAEROF model 
is significantly better than the other two models. Unlike these two models, the use of sparse autoencoders can 
learn sparse features and combine with rotation forest classification to obtain more meaningful prediction results.

Comparison among different classifier. In this section, in order to evaluate the effectiveness of the pro-
posed feature extraction method combined with the rotation forest classifier, an attempt is made to replace the 
rotation forest classifier with SVM classifier25. Tables 5, 6 and Fig. 5 summarize the results of the SVM classifier 
10-fold cross-validation on dataset. On Fdataset, the indicators of SVM classifier are: accuracy 74.06% ± 1.83%, 
precision 71.12% ± 1.83%, recall 81.12% ± 3.62%, f1-score 75.74% ± 1.94% and mean AUC is 0.8068 ± 0.0224. 
On Cdataset, the indicators of SVM classifier are: accuracy 76.92% ± 1.99%, precision 74.25% ± 2.05%, recall 
82.46% ± 2.26%, f1-score 78.13% ± 1.86% and mean AUC is 0.8390 ± 0.0175. It can be seen from the results that 
the results of the rotation forest classifier are significantly better than the SVM classifier. Due to the idea of ensem-
ble learning and the rotation strategy of the random tree, the rotation forest classifier has better performance than 
the SVM classifier when using the same feature descriptor.

case studies. We implemented the case studies on Fdataset and Cdataset, respectively. Case studies on 
Obesity and Stomach Neoplasms were carried out on Fdataset, and case studies on Lung Neoplasms were carried 
out on Cdataset. Specifically, in the experiment, we used Fdataset and Cdataste to train the model. It is important 
to note that when predicting the drug associated with a disease, all associations between a particular disease and 
the drug should be removed from the data set. We used the CTD database to validate the top 20 drugs predicted 
by SAEROF. The World Health Organization has defined obesity as diseases that pose a threat to human health, 

Method Fdataset Cdatase

DrugNet 0.778(0.001) 0.804(0.001)

HGBI 0.829(0.012) 0.858(0.014)

SAEROF 0.9092(0.010) 0.932(0.008)

Table 4. AUC Results of cross validation experiments.

Test set Acc. (%) Pre. (%) Recall. (%) F1-score. (%)

0 75.52 71.06 86.08 77.86

1 74.23 70.61 82.99 76.30

2 76.55 75.12 79.38 77.19

3 70.73 69.42 74.09 71.68

4 74.35 70.26 84.46 76.71

5 71.50 67.97 81.35 74.06

6 72.28 70.48 76.68 73.45

7 75.39 71.49 84.46 77.43

8 74.35 72.38 78.76 75.43

9 75.65 72.40 82.90 77.29

Average 74.06 ± 1.83 71.12 ± 1.83 81.12 ± 3.62 75.74 ± 1.94

SAEROF 81.61 ± 1.35 78.55 ± 1.78 87.07 ± 2.27 82.56 ± 1.28

Table 5. 10-fold cross validation used in Fdataset with SVM classifier.

Test set Acc. (%) Pre. (%) Recall. (%) F1-score. (%)

0 74.61 72.08 80.31 75.98

1 79.13 75.00 87.40 80.73

2 77.87 75.09 83.40 79.03

3 77.47 75.09 82.21 78.49

4 75.69 74.07 79.05 76.48

5 80.63 78.60 84.19 81.30

6 75.69 73.21 81.03 76.92

7 75.10 71.67 83.00 76.92

8 74.51 71.83 80.63 75.98

9 78.46 75.90 83.40 79.47

Average 76.92 ± 1.99 74.25 ± 2.05 82.46 ± 2.26 78.13 ± 1.86

SAEROF 83.35 ± 1.49 81.71 ± 1.60 85.98 ± 2.35 83.77 ± 1.50

Table 6. 10-fold cross validation used in Cdataset with SVM classifier.
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manifested by excessive accumulation of fat. Obesity is major threats to many chronic diseases, including dia-
betes, cardiovascular disease and even cancer. We selected obesity as the first case study and used SAEROF to 
predict related drug. As shown in Table 7, after comparing prediction results with the CTD dataset, 17 of the top 
20 predicted drugs were confirmed.

Stomach Neoplasms are common digestive disorders that are both benign and malignant. We selected this 
disease as a case study to validate the predictive power of SAEROF. Table 8 lists the 20 drugs that SAEROF pre-
dicts are highly associated with Stomach Neoplasms. Comparison with CTD database shows that 16 of the top-20 
drugs predicted by Stomach Neoplasms can be identified.

The incidence and mortality of Lung Neoplasms have increased significantly in recent decades. We chose 
lung tumors on Cdataset as case studies to verify SAEROF’s predictive power. As shown in Table 9, comparing 
the predicted results with the CTD data set, 16 of the top 20 predicted drugs proved to be associated with Lung 
Neoplasms.

Case studies of obesity, Stomach Neoplasms and Lung Neoplasms have shown that SAEROF performs well in 
predicting the most promising drugs.

Figure 5. Comparison of ROC curves of SVM classifier in Fdataset and Cdataset. (a) Is the ROC curve of 10-
fold cross validation on the Fdataset. (b) s is the ROC curve of 10-fold cross validation on the Cdataset.

Index Drug Name Evidence Index Drug Name Evidence

1 Topiramate Confirmed 11 Benzphetamine Confirmed

2 Sibutramine N.A. 12 Methotrexate Confirmed

3 Phenylpropanolamine Confirmed 13 Prednisone Confirmed

4 Phentermine Confirmed 14 Mitoxantrone Confirmed

5 Phendimetrzaine N.A. 15 Scopolamine Confirmed

6 Orlistat Confirmed 16 Imipramine Confirmed

7 Methamphetamine Confirmed 17 Dexamethasone Confirmed

8 Diethylpropion Confirmed 18 Azathioprine N.A.

9 Cimetidine Confirmed 19 Diazepam Confirmed

10 Bupropion Confirmed 20 Clonazepam Confirmed

Table 7. The top-20 drugs predicted to be associated with Obesity.

Index Drug Name Evidence Index Drug Name Confirmed

1 Terazosin Confirmed 11 Diethylpropion N.A.

2 Tacrolimus Confirmed 12 Beclomethasone Confirmed

3 Spironolactone Confirmed 13 Baclofen Confirmed

4 Meloxicam Confirmed 14 Prazosin Confirmed

5 Hyoscyamine N.A. 15 Metoclopramide N.A.

6 Glatiramer acetate N.A. 16 Methotrexate Confirmed

7 Famotidine Confirmed 17 Memantine Confirmed

8 Escitalopram Confirmed 18 Thalidomide Confirmed

9 Carbamazepine Confirmed 19 Ibuprofen Confirmed

10 Phenobarbital Confirmed 20 Gliclazide Confirmed

Table 8. The top 20 drugs predicted to be associated with Stomach Neoplasms.
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conclusion
In order to further accelerate the process of drug repositioning, effective methods for predicting drug-disease 
association are urgently needed. Our model opens up new perspectives for predicting drug-disease associations. 
In the feature extraction process, three kinds of descriptor, Gaussian interaction profile kernel, drug structure 
similarity and disease semantic similarity are extracted from the drug-disease association pair. The represent-
ative features are extracted using sparse auto-encoder. Finally, the rotation forest classifier is used for sample 
classification.

Experiments have shown that the SAEROF model is suitable for large-scale prediction of drug-disease associ-
ations, and the results of case studies on obesity, Stomach Neoplasms, and Lung Neoplasms confirm this view. In 
order to further improve the accuracy of the prediction model, protein information and disease gene information 
can be integrated in the future.

Data availability
The datasets that we collected in this work is freely available on https://github.com/HanJingJiang/SAEROF.
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