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ectMB: a robust method to 
estimate and classify tumor 
mutational burden
Lijing Yao, Yao fu, Marghoob Mohiyuddin & Hugo Y. K. Lam*

tumor Mutational Burden (tMB) is a measure of the abundance of somatic mutations in a tumor, 
which has been shown to be an emerging biomarker for both anti-PD-(L)1 treatment and prognosis; 
however, multiple challenges still hinder the adoption of TMB as a biomarker. The key challenges are the 
inconsistency of tumor mutational burden measurement among assays and the lack of a meaningful 
threshold for TMB classification. Here we describe a new method, ecTMB (Estimation and Classification 
of TMB), which uses an explicit background mutation model to predict TMB robustly and to classify 
samples into biologically meaningful subtypes defined by tumor mutational burden.

Cancers can be caused by an accumulation of genetic mutations in oncogenes or tumor suppressors1. These muta-
tions are known as “driver” mutations and they are under positive selection; however, only a very small fraction 
of somatic mutations in a tumor sample are expected to be drivers. The remaining majority of somatic mutations 
are “passengers,” accumulated randomly with a background mutation rate (BMR) during cancer progression2. 
Moreover, it has been shown that the somatic mutation rates of cancer patients vary3. A patient with a high 
somatic mutation rate is referred as having a hypermutated phenotype. Environmental exposure4, DNA synthe-
sis/repair dysfunction3,5, and regional mutation heterogeneity3,6 account for the mutational rate heterogeneity. For 
example, deleterious mutations in POLE, POLD1, and the MMR system defects may lead to a hypermutated phe-
notype3,7. Seven genes have been identified as essential components for MMR system, including MLH1, MLH3, 
MSH2, MSH3, MSH6, PMS1, and PMS28.

Recently, immunotherapies targeting immune checkpoints, such as programmed cell death protein 1 (PD-1), 
along with its receptor (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), have shown remark-
able clinical benefits for various advanced cancers9. Nevertheless, only a fraction of patients are responsive to the 
treatment, making it critical to identify predictive biomarkers to distinguish responsive patients. PD-L1 expres-
sion level and microsatellite instability-high (MSI-H) have been used as predictive biomarkers for anti-PD-L1 
therapy10. Microsatellite instability (MSI) is a phenotype of an accumulation of deletions/insertions in repetitive 
DNA tracts, called microsatellites. Similar to hypermutation, evidences have indicated that MSI results from a 
deficient MMR system11.

Hypermutation was first associated with the response to CTLA-4 blockade therapy in 201412 and PD-1 
blockade therapy in 201513. Since then, tumor mutational burden (TMB), which is a measure of the abundance 
of somatic mutations, has become a new promising biomarker for both prognosis14 and immunotherapy15. 
Nevertheless, multiple challenges still hinder the adoption of TMB for clinical decision making. The major chal-
lenge is that even though the current well-accepted TMB measurement requires counting the non-synonymous 
somatic mutations in a paired tumor-normal sample using whole-exome sequencing (WES), current diagnos-
tics based on sequencing technologies still rely heavily on targeted panel sequencing. Although studies have 
shown that panel-based TMB measurements were highly correlated with WES-based TMB15–17, inconsistencies 
between these two measurements have been observed16–19. One reason for this inconsistency is that targeted panel 
sequencing might overestimate TMB due to panel design biases, which aim for a high enrichment of mutation hot 
spots and driver mutations. In order to avoid overestimating TMB, various filtering strategies have been applied. 
For example, Foundation Medicine used COSMIC to filter out driver mutations and added synonymous muta-
tions to reach an agreement with WES-based TMB16. These arbitrary filters are dependent on frequently updated 
databases, worsening the inconsistency, reproducibility and robustness of the calculation. Another non-negligible 
challenge is the relatively arbitrary selection of the TMB-high cutoff such as 10–20 per Mb or top 10–20% quan-
tile20. Although these thresholds were enough to illustrate the predictive value of TMB as a biomarker, an adaptive 
TMB cutoff derived from relevant studies or clinical trials is still needed for robust performance.
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To improve the robustness of TMB measurement for targeted-panel sequencing and TMB subtype classifi-
cation, here we propose a novel method called ecTMB (estimation and classification of TMB) (Fig. 1). While 
WES-based TMB is akin to the overall BMR due to the low incidence of driver mutation in whole exome, targeted 
sequencing panels require additional attention due to their size and targets. Our method uses a statistical model 
with a Bayesian framework for TMB prediction to systematically correct panel design biases. It was evaluated by 
assessing the agreement of the TMB prediction methods with the reference TMB from WES, by the TMB subtype 
classification accuracy with sliding TMB cutoffs, and by the classification assessment of subtypes from Gaussian 
Mixture Model (GMM) with WES data from The Cancer Genome Atlas (TCGA).

Results
Background mutation rate (BMR) modeling. BMR modeling is a major challenge for driver mutation 
detection and multiple methods using binomial3 and Poisson21 models have been developed for BMR; however, 
over-dispersion of mutation count has been observed in previous studies22,23. In our approach, we used a negative 
binomial model to capture the over-dispersion and assumed the occurrence of silent mutations follows the BMR 
in the absence of selection pressures. Studies have also shown that the BMRs vary as much as ~1000 fold, among 
cancer types, among patients for a given cancer type, and across different genomic regions. To incorporate all 
known cancer mutational heterogeneity factors (e.g. tri-nucleotide context5, sample-specific BMR, gene expres-
sion level3, and replication timing24), the Generalized Linear Model (GLM) was used to estimate the general 
impact of these factors by pooling genes together (Fig. 1a).

In order to evaluate our model, we divided samples corresponding to each cancer type into training and 
test sets with a 70%:30% split. GLM model parameters were determined from the training set, followed by the 
calculation of the number of background mutations of each gene for each sample (see Methods). Since synony-
mous mutations were accumulated with a BMR, the comparison of predicted number of synonymous mutations 
against observed was used to assess the performance of the model. We found that GLM could not explain all the 
variations in the observed number of synonymous mutations. For example, two suspicious false-positive driver 
genes3, membrane-associated mucin (MUC16) and titin (TTN), had much lower predicted number of synony-
mous mutations than actually observed in both the training and test sets (Supplementary Fig. 1). Therefore, there 
were likely unknown sequencing or biological factors influencing BMR as well.

To handle unknown factors, we separately modeled each gene as an independent negative binomial process. 
The final adjusted gene-specific BMRs were then generated through a Bayesian framework to consolidate the esti-
mators from the previous two steps (Fig. 1a) (details in Methods). Compared with the prediction of synonymous 
mutations from GLM, the final model improved the R-squared from ~0.5 to ~0.9 in the training set and from ~0.3 
to ~0.6 in the test set. It also reduced the mean absolute error (MAE) and the root mean square error (RMSE). 
The mutation predictions for MUC16 and TTN then became much closer to the observed values (Supplementary 
Fig. 1). In addition, the observed number of non-synonymous mutations in well-known cancer-specific driver 
genes, such as TP53, KRAS, and PIK3CA, were much higher than the predicted background ones due to positive 
selection (Supplementary Fig. 1). Our results showed that the three-step approach gained an improved perfor-
mance overall.
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Figure 1. ecTMB workflow. (a) An explicit background mutation model for TMB prediction. (b) TMB subtype 
classification based on log-transformed TMB using GMM.
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Because other BMR modeling methods developed for driver gene detection3,21,25,26 only reported statistical 
p-values for driver genes instead of their predicted background mutation, we generated driver gene statistics 
(described in Supplementary Method) to compare ecTMB against other methods and used the enrichment of 
known cancer drivers from Cancer Gene Census (CGC)27 as a benchmark. The comparison demonstrated that 
our method performed the best (Supplementary Fig. 2).

TMB prediction. In our BMR model, the trinucleotide BMR and gene-specific BMR can be determined from 
a training cohort. With the assumption that sample-specific BMR is equivalent to TMB, a new sample’s TMB 
could be calculated as the number of non-synonymous mutations per Mb, which is equivalent to TMB. With 
determined gene-specific BMRs from training set as described above, sample-specific BMR for a new sample 
could be estimated by Maximum Likelihood Estimation (MLE) through modeling each gene as an independent 
negative binomial process (Fig. 1a; see Methods).

Using our test sets, we evaluated the prediction performance of ecTMB by using all mutations, 
non-synonymous, and synonymous mutations from WES. ecTMB was compared against the standard TMB 
measurement (WES-based TMB), calculated by the number of non-synonymous mutations divided by the 
sequenced genomic region size. Even correlation coefficient (R) is widely used to assess the agreement of TMB 
measurements among assays, a high correlation does not mean two methods agree because R only measures the 
strength of a relation between two variables but not the exact agreement between them28. In order to comprehen-
sively assess the agreement, we not only used Spearman correlation coefficient (R), but also measured R2, MAE, 
RMSE, slope of regression line, and standard error of regression (sigma), as well as performed Bland-Altman 
analyses. We found that the TMB predictions by ecTMB were highly concordant with standard TMB calculations, 
as exemplified in lung cancer (R = 0.99 and MAE = 0.31; see Supplementary Fig. 3).

ecTMB can use synonymous mutations for TMB prediction since synonymous mutations follow the back-
ground mutation accumulation. It is also able to incorporate non-synonymous mutations as most of which fol-
low the BMR as well. We further assessed the impact of including non-synonymous mutations from different 
proportions of genes. Genes were ranked based on the ratio of observed vs expected number of mutations for 
each cancer type in the training set, with top ranked genes having higher likelihood to be driver genes. Then, 
non-synonymous mutations from the genes with the lowest ratios (bottom 0%, 20%, 40%, 60%, 80%, 95%, 99%, 
99.9%, and 100%) were added to the prediction. While predictions with only synonymous mutations already 
achieved a great concordance with R > 0.975, the addition of non-synonymous mutations further improved the 
concordance, where R > 0.999 (Supplementary Fig. 3).

We further conducted in silico assessments of panel-based TMB prediction by three methods: (1) count-
ing method; (2) counting after filtering COSMIC variants to remove known driver mutations; and (3) 
ecTMB. Six cancer panels were used, including Agilent ClearSeq, Illumina TruSight Tumor 170 (TST170), 
the 341-gene Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT_341 gene)29, the 
468-gene MSK-IMPACT, FoundationOne CDx, and Thermo Fisher Oncomine Tumor Mutation Load Assay 
(Oncomine-TML). The size of exonic region on the panels ranges from 400 kb to ~1.1 Mb (Supplementary 
Table 2). To evaluate panel TMB prediction, we only used cancer types with at least 10 samples with TMB > 10 
in the test set (Supplementary Table 1), which included bladder urothelial carcinoma (BLCA), skin cutaneous 
melanoma (SKCM), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), colon adenocarci-
noma (COAD), rectal adenocarcinoma (READ), stomach adenocarcinoma (STAD), uterine corpus endometrial 
carcinoma (UCEC), and head and neck squamous cell carcinoma (HNSC). We conducted the evaluations using 
both aggregated samples from all 9 cancer types and each cancer separately.

Similar to other studies15–17, we detected a high correlation between WES-based standard TMB and 
panel-based TMB by simply counting mutations. The Spearman correlation coefficient (R) ranged from 0.71 to 
0.9, and generally increased with the size of the panel (Fig. 2). The standard error of regression (sigma) decreased 
as panel size increased, indicating a narrower prediction interval for larger panel. Nevertheless, Bland-Altman 
analyses showed significant biases (>5) of counting method and a slope of ~1.5 for all six panels, indicating an 
over-estimation. Filtering out variants in COSMIC removed prediction biases but introduced more variation 
(Fig. 3), where a portion of samples got a higher reduction of mut/Mb than the rest (Supplementary Fig. 5). The 
non-uniform reduction of mut/Mb led to a higher standard error of regression (sigma) and a lower correlation 
score (Fig. 2).

In contrast, ecTMB predictions, using both synonymous and non-synonymous mutations, not only improved 
correlation coefficients with WES-based TMB, but also reduced MSE, RMSE, sigma, and biases while keeping 
the slope close to 1. As an example, for the predictions of the TST170 panel, ecTMB improved R from 0.71 
to 0.77, reduced MAE from 7.05 to 3.21, and decreased sigma from 6.04 to 4.13 if compared with the count-
ing method without filtering (Fig. 2). For the FMI panel, which is another large panel, ecTMB generated better 
TMB estimation (R = 0.87, MAE = 2.13, sigma = 2.67 and slope = 1.07) than the counting method (R = 0.86, 
MAE = 5.76, sigma = 3.79 and slope = 1.55) and counting with COSMIC filtering (R = 0.54, MAE = 3.62, sigma 
= 5.34 and slope 0.71). These performance metrics demonstrated that TMB prediction by ecTMB has a higher 
agreement with WES-based TMB. The evaluation for each cancer type can be found in supplementary figures 
(Supplementary Figs. 5 and 6).

Classification performance by a range of TMB thresholds. Although a wide range of cutoffs (5–20 
mut/Mb) have been used to define samples with higher TMB in multiple clinical trials20, there is no definite 
threshold to classify TMB subtypes yet. Therefore, we evaluated the classification accuracy at multiple thresh-
olds (ranging from 5 to 20) using aggregated samples from 9 cancer types with WES-TMB in 0–40 mut/Mb. 
Compared to subtypes defined by WES-based TMB, F1 score, true positive rate (TPR), and positive predic-
tive value (PPV) were calculated for each threshold using the predicted panel-based TMB by the three methods 
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aforementioned. A higher accuracy (F1 score) of classification was observed in larger panels for all the three 
methods. Counting method without filtering had the highest sensitivity (TPR) but consistently low precision 
(PPV). Counting method with COSMIC filtering showed low sensitivity but relatively good precision in small 
panels. ecTMB prediction had pretty good sensitivity and also high precision, leading to higher overall accuracy 
when comparing to the other 2 methods (Fig. 4). Within each cancer type, the same analyses were conducted, and 
ecTMB showed the best classification performance most of the time (Supplementary Fig. 7).

Classification performance for subtype defined by GMM. While exploring the distribution of TMB, 
we discovered that the distribution of log-transformed WES-based TMB resembled a mixture of gaussians in 
colorectal, stomach, and endometrial cancers (Fig. 5a–c); however, we could not identify a similar pattern in other 
cancers (see Supplementary Method), indicating this may be unique to cancers with a high percentage of MSI-H 
cases. Because of the lack of the same pattern in those cancer types, we focused our analyses only on colorectal, 
stomach, and endometrial cancers. All three cancer types had at least two Gaussian clusters which consisted of 
TMB-low and TMB-high samples, respectively. In colorectal and endometrial cancers, there was a third Gaussian 
cluster, in which samples possessed extremely high TMB, namely TMB-extreme. We further classified each sam-
ple to these three subtypes by Gaussian Mixture Model (GMM) for investigation of their significance.

To gain insights into which mechanism may be responsible for the distinct TMB levels among the three sub-
types, we examined the non-synonymous mutations in POLE and seven MMR genes, as well as their MSI status 
detected as described in earlier works30–32. We found that a large fraction (92%) of TMB-extreme samples pos-
sessed at least one non-synonymous mutation in POLE in aggregated colorectal, endometrial, and stomach cancer 
samples, among which we detected a high recurrence of 2 known POLE driver mutations (P286R and V411L)7 
(Supplementary Fig. 10). Additionally, almost all of the TMB-high samples (85%) were MSI-High (MSI-H). 
The comparison of non-synonymous mutations in seven MMR genes between TMB-high samples against the 
rest revealed 2 highly recurred mutations: N674lfs*6 in MLH3 and K383Rfs*32 in MSH3, which have not been 
reported as driver mutation before (Supplementary Fig. 10). We also found that TMB-high samples generally had 
a significantly higher fraction (~17%) of INDEL mutations than what was observed in both TMB-low (~5%) and 
TMB-extreme (~1%) samples (Fig. 5d), consistent with the MMR defect phenotype. These distinct mutation pro-
files suggest that defective MMR system could be the likely cause for TMB-high whereas mutated POLE system 
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Figure 2. Evaluation of the panel-based TMB prediction performance. Plots show linear regression line of 
predicted panel-based TMBs against WES-based standard TMB for each panel using aggregated samples from 
9 cancer types (in range of 0–40 mut/Mb WES-based TMB). Three methods were used for panel-based TMB 
predictions, including counting method (in cyan), counting with COSMIC filtering (in green) and ecTMB (in 
red). Their performance measurements (Spearman correlation coefficient, MAE, RMSE, slope and sigma) are 
plotted for each method in each plot.
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for TMB-extreme. Additionally, the survival at different levels after considering other factors (hazard ratio (HR) 
for TMB-high = 0.79 with p-value = 0.067; hazard ratio (HR) for TMB-extreme = 0.41 with p-value = 0.033) 
(Supplementary Fig. 11). This observation was consistent with a previous study that revealed 8 major hypermu-
tation clusters using trinucleotide mutation signature7, which included POLE-driven and MSI-driven hypermu-
tation clusters. Our results illustrated that a simple log-transformation of TMB in colorectal, endometrial, and 
stomach cancers could also reveal POLE-driven and MSI-driven tumors.

With the discovery of biologically meaningful subtypes defined by the log-transformed TMB, we extended 
the capability of our method to classify TMB subtypes using GMM (Fig. 1). Using the subtypes determined by 
WES-based TMB as truth, we evaluated its classification accuracy in using ecTMB to predict panel-based TMB 
from the test set versus the counting method. When compared to the counting method, we found that classifica-
tion using ecTMB improved not only the overall accuracy and kappa concordance score, but also the F1 score for 
each subtype classification (Fig. 5f).

Discussion
We developed an explicit background mutation model for TMB prediction. To our knowledge, this is the first 
such approach for TMB prediction although BMR modeling has been widely used for driver mutation/gene/
pathway detections. We have shown that our three-step BMR model predicted background mutations more accu-
rately and highlighted well-known cancer-specific driver genes. Additionally, ecTMB has several advantages over 
existing counting method. First, ecTMB improves the consistency of TMB prediction among assays through 
systematic correction of panel design biases. Second, ecTMB takes synonymous mutations into account for TMB 
prediction, which improves the accuracy of panel-based TMB prediction. Last but not least, ecTMB predicts TMB 
by considering each gene as an independent negative binomial process, which provides a more robust prediction 
compared to predicting TMB based on a single counting value. Although there are other factors influencing the 
consistency of TMB among assays, such as sequencing depth and choice of somatic mutation caller, we have 
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panel TMB prediction (alternative method) and differences of two methods. Three methods were used for 
panel-based TMB predictions, including counting method (in cyan), counting with COSMIC filtering (in 
green) and ecTMB (in red). The purple dashed line shows the estimated bias (mean difference). The green and 
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(b) A concise way to show Bland Altman analysis for all panels using aggregated samples from 9 cancer types 
(with WES-based TMB range 0–40 mut/Mb). The middle circle indicates the bias (mean difference) and two 
solid lines around it are 95% confidence interval for the bias. The two dotted line on the top are 95% confidence 
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https://doi.org/10.1038/s41598-020-61575-1


6Scientific RepoRtS |         (2020) 10:4983  | https://doi.org/10.1038/s41598-020-61575-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

demonstrated that ecTMB can help to improve the stability of TMB measurement when those factors are fixed. 
It is possible that more factors can be added to our statistical framework to further improve the consistency of 
TMB measurements.

Although POLE-driven and MSI-driven hypermutation have been discovered by clustering mutations’ tri-
nucleotide context before7, our work showed that a simple log-transformation of TMB can also reveal simi-
lar subtypes, i.e. TMB-low, TMB-high, and TMB-extreme. Our results indicated that TMB-high suffered from 
MMR system defects and TMB-extreme was likely caused by dysfunctional POLE, illustrating that MSI-H is one 
subtype of hypermutated tumor. The two novel driver mutations for MMR defects merit further research and 
clinical follow-up. Although multiple studies have observed a better prognosis in MSI-H patients, we showed 
that TMB-extreme caused by dysfunctional POLE showed even better overall survival outcomes compared to 
TMB-high (MSI-H). Similar to our result, studies have reported that mutations in POLE proofreading domain 
are associated with improved prognosis in several cancer types, including high-grade glioma33, lung adenocar-
cinoma34, endometrial cancer, and colorectal cancer35. This suggests that TMB-extreme might be another prom-
ising biomarker to predict patient prognosis or guide cancer treatment. The TMB-extreme subtype can also be 
potentially detected with an assay targeting only mutations in the POLE’s proofreading domain.

ecTMB is a robust and flexible statistical framework for TMB prediction and classification, shedding light 
on clinically relevant TMB subtypes. We believe that our method can help facilitate the adoption of TMB as bio-
marker in clinical diagnostics.

Methods
Datasets. Somatic mutations reported by MuTect2 (using the human genome reference build hg38) and clin-
ical profiles of TCGA samples were downloaded from NCI Genomic Data Commons36 using TCGAbiolinks37. 
Formalin-fixed paraffin-embedded (FFPE) tissue samples were excluded from downstream analysis. The main 
cancer types included in our analyses were bladder urothelial carcinoma (BLCA), skin cutaneous melanoma 
(SKCM), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), colon adenocarcinoma 
(COAD), rectal adenocarcinoma (READ), stomach adenocarcinoma (STAD), uterine corpus endometrial carci-
noma (UCEC), and head and neck squamous cell carcinoma (HNSC). Similar to earlier work, the pair of READ 
and COAD and the pair of LUAD and LUSC were combined for analysis due to their similarity30,38. The availa-
bility of MSI status of these cancer types provided us an opportunity to investigate the association between TMB 
and MSI status.

Whole exome annotation. Ensembl build 81 (for the GRC38 human reference) was downloaded and pro-
cessed to generate all possible mutations and their functional impacts for the genome. First, we changed every 
genomic base in coding regions to the other three possible nucleotides and used Variant Effect Predictor (VEP) 
to annotate their functional impacts. Each variant’s functional impact was chosen based on the following criteria: 
biotype > consequence > transcript length. Each variant’s tri-nucleotide contexts, including before and after the 
mutated base, and corresponding amino acid positions relative to protein length were reported.

TMB prediction method. Our method adopted background mutation modeling and added a final step to 
predict TMB using maximum likelihood for a given new sample. A training cohort with whole-exome sequencing 
data can be used to estimate parameters of BMR model. The modeling steps of TMB prediction are detailed in the 
Supplementary Method.

Different proportions of non-synonymous mutations can be used for TMB prediction. In BLCA, SKCM, 
LUSC, and LUAD, which are known to harbor somatic mutations caused by environmental factors, the prediction 
accuracy increased as a higher proportion of non-synonymous mutations were included (Supplementary Fig. 4). 
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based TMB subtypes using panel-TMB prediction by three methods, including counting method (in cyan), 
counting with COSMIC filtering (in green) and ecTMB (in red). Classification accuracy from each panel-TMB 
was summarized in F1 score, TPR and PPV.
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However, the prediction accuracy in rest of the cancer types increased until 99.95% and then decreased when 
more non-synonymous mutations from genes with higher observed/expected ratio were added (Supplementary 
Fig. 4). Therefore, all non-synonymous mutations and synonymous mutations were used for TMB prediction in 
BLCA, SKCM, LUSC, and LUAD, whereas only non-synonymous mutations from the bottom 99.95% genes and 
all synonymous mutations were used for TMB prediction for the rest of the cancer types.

TMB prediction evaluation. Bland-Altman analysis is a widely used method to assess the agreement 
between two different assays, providing a bias measurement (mean difference), the limits of agreement and 95% 
confidence intervals for these measurements. Bland-Altman analysis was done using the R package blandr.

Linear regression analysis was conducted using lm function in R.
Only samples with WES-TMB < = 40 were used for evaluation.

TMB subtype classification using a series of threshold. For each threshold, WES-based TMB was 
used to define the true subtype of each sample. Then, we used the same threshold to determine the subtypes using 
predicted panel-based TMB. Classification accuracy measures were calculated by comparing the panel-predicted 
TMB subtype against the truth subtype defined by WES-based TMB.

Only samples with WES-TMB < = 40 were used for evaluation.

Figure 5. Three subtypes revealed by log-transformed TMB in colorectal, endometrial and stomach cancers. 
(a–c) Distribution plots of log-transformed TMB for (1) colorectal, (2) endometrial, (3) stomach cancers. Three 
subtypes were determined by Gaussian Mixture Model classification and labeled with black (TMB-low), orange 
(TMB-high) and blue (TMB-extreme) in bar named allClass. MSI status for each subject is shown with green 
(MSS) and red (MSI-H) in msi bar. Non-synonymous mutation existence (occurrence >1) in POLE or dMMR 
pathway genes, including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, and PMS2 are shown in blue and wild 
type is shown in yellow. (d) Boxplot shows INDEL mutation percentages for three subtypes. (e) Tables shows 
total number of samples in each subtype, number of samples with at least one non-synonymous mutation in 
dMMR/POLE genes and number of samples with MSI-H status. The percentages of mutated POLE/MMR or 
MSI-H samples in each subtype are labeled in parentheses. Two-sided fisher exact tests were conducted to 
generate the P-value for each mutation profile among the subtypes. (f) The plots show the comparison of overall 
accuracy (red), overall kappa score (orange) and F1 score for each subtype (TMB-low in cyan, TMB-high in 
green and TMB-extreme in blue) for TMB subtype classification using TMB predicted by ecTMB or counting 
method.
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TMB subtype classification using GMM. Log-transformed TMBs were modeled using Gaussian Mixture 
Model [1], in which components represent cancer subtypes. The Expectation-Maximization algorithm can be 
used to estimate each component’s parameters in the Gaussian mixture model with training data. The parameters 
for Kth component include weight (πk), mean ( kµ ), and variance ( kΣ ). These parameters were used in assignment 
score calculation.

∑ π µ Σ=
=

P y N( ) ( , )
(1)k

K

k k k
1

For a given new sample’s log-transformed TMB (yi), the assignment score for each component ( b C( )kγ | ) will 
be calculated as [2] using pre-defined parameters.

γ
π µ Σ

π µ Σ
| =

|

∑ |=

y C
N y

N y
( )

( , )
( , ) (2)i k

k i k k

k
K

k i k k1

The new sample would be classified into the component which has the highest assignment score. Currently, 
weight = 1 was assigned to each component due to under-representation of TMB high samples.

Cancer subtype classification and characterization. Within each cancer type (colorectal, endometrial, 
and stomach cancer), log-transformed TMBs, either defined by total number of mutations per Mb or number 
of non-synonymous mutation per Mb, were modeled using Gaussian Mixture Model as described above. Each 
sample was assigned to one of TMB-low, TMB-high and TMB-Extreme classes based on its assignment score. 
For each sample, INDEL incidence, estimated immune cell abundance and non-synonymous mutation existence 
(occurrence >1) in POLE and dMMR pathway genes including MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, and 
PMS2 were summarized. Mutations of POLE and MMR system genes were plotted using maftools39.

TMB prediction for panels. In order to evaluate ecTMB prediction for panels, we performed in silico anal-
yses for panels which we could get either target bed files or gene list from public domain. We downloaded panel 
coordinates bed files, including Illumina TruSight Tumor 170 from Illumina website, ClearSeq from Agilent web-
site, Oncomine Tumor Mutation Load Assay from Thermo Fisher, and the 341-gene Integrated Mutation Profiling 
of Actionable Cancer Targets (MSK-IMPACT 341 gene) from publication29. The gene lists of FoundationOne CDx 
and the 468-gene MSK-IMPACT were download from the Foundation Medicine website (https://www.founda-
tionmedicine.com/genomic-testing/foundation-one-cdx) and FDA (https://www.accessdata.fda.gov/cdrh_docs/
reviews/den170058.pdf), respectively. Corresponding panel coordinates bed files were generated based on gene 
lists for FoundationOne CDx and MSK-IMPACT. Due to the lack of exact panel coordinates of FoundationOne 
CDx and MSK-IMPACT, the sizes of the panels converted from gene lists were different from the real commercial 
panels.

Mutations located in a given panel were selected to represent the mutations which can be detected by targeted 
sequencing for that panel. Within each cancer type, WES data of training set were used to determine background 
mutation model parameters. In silico performance evaluations were done using the test data. Both ecTMB and 
counting methods were applied to test data.

code availability
ecTMB is available at https://github.com/bioinform/ecTMB under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license.

Data availability
Data for this study was generated by TCGA, downloaded from NCI Genomic Data Commons (https://gdc.
cancer.gov/). Replication timing, expression level, and open-chromatin state of all protein-coding genes were 
extracted from Lawrence et al.3 (https://media.nature.com/original/nature-assets/nature/journal/v499/n7457/
extref/nature12213-s2.xls). Illumina TruSight Tumor 170 panel coordinates bed file was downloaded from 
Illumina’s website (https://support.illumina.com/content/dam/illumina-support/documents/downloads/
productfiles/trusight/trusight-tumor-170/tst170-dna-targets.zip) and the gene lists for FoundationOne CDx 
and MSK-IMPACT were downloaded from Foundation Medicine’s website (https://www.foundationmedicine.
com/genomic-testing/foundation-one-cdx) and the FDA’s website (https://www.accessdata.fda.gov/cdrh_docs/
reviews/den170058.pdf), respectively.
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