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Damage-free Metal Electrode 
Transfer to Monolayer Organic 
Single Crystalline Thin Films
Tatsuyuki Makita1,2, Akifumi Yamamura1,2, Junto Tsurumi3, Shohei Kumagai1, 
Tadanori Kurosawa1, Toshihiro Okamoto1,2,4, Mari Sasaki1, Shun Watanabe1,2* & 
Jun Takeya1,2,3*

Solution-processed organic thin film transistors (OTFTs) are an essential building block for next-
generation printed electronic devices. Organic semiconductors (OSCs) that can spontaneously form a 
molecular assembly play a vital role in the fabrication of OTFTs. OTFT fabrication processes consist of 
sequential deposition of functional layers, which inherently brings significant difficulties in realizing 
ideal properties because underlayers are likely to be damaged by application of subsequent layers. 
These difficulties are particularly prominent when forming metal contact electrodes directly on an 
OSC surface, due to thermal damage during vacuum evaporation and the effect of solvents during 
subsequent photolithography. In this work, we demonstrate a simple and facile technique to transfer 
contact electrodes to ultrathin OSC films and form an ideal metal/OSC interface. Photolithographically 
defined metal electrodes are transferred and laminated using a polymeric bilayer thin film. One layer 
is a thick sacrificial polymer film that makes the overall film easier to handle and is water-soluble 
for dissolution later. The other is a thin buffer film that helps the template adhere to a substrate 
electrostatically. The present technique does not induce any fatal damage in the substrate OSC layers, 
which leads to successful fabrication of OTFTs composed of monolayer OSC films with a mobility of 
higher than 10 cm2 V−1 s−1, a subthreshold swing of less than 100 mV decade−1, and a low contact 
resistance of 175 Ω⋅cm. The reproducibility of efficient contact fabrication was confirmed by the 
operation of a 10 × 10 array of monolayer OTFTs. The technique developed here constitutes a key step 
forward not only for practical OTFT fabrication but also potentially for all existing vertically stacked 
organic devices, such as light-emitting diodes and solar cells.

Organic semiconductors (OSCs) can spontaneously form a molecular assembly from a solution processed near 
room temperature, which makes them a promising material for next-generation electronic devices such as flexible 
displays1–3, low-cost radio-frequency identification tags4,5, and wearable sensing devices6–9. Recent intensive stud-
ies on synthetic chemistry and device engineering have led to the development of OSC compounds with a high 
carrier mobility of >10 cm2 V−1 s−1 combined with sufficient environmental stability10–13 and improved fabrica-
tion techniques that can produce large crystalline thin films of OSCs with areal coverages up to 100 cm2 10,14–19. 
The unique functionalities and excellent processability of OSCs allow the ideal production of highly integrated 
electronic circuits based on organic thin-film transistors (OTFTs).

Generally, OTFT processes require sequential deposition of functional components, such as gate electrodes, 
gate dielectrics, active OSCs, and contact electrodes. This approach inevitably faces the serious issue that under-
layers are affected by subsequent processes, and it is considerably problematic when fabricating top-contact 
OTFTs because OSC layers are susceptible to thermal damage during vacuum evaporation of metal elec-
trodes20–23, as well as during the following photolithography processes24,25.
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A photolithography process is well-established method to obtain precisely patterned electrodes. However, to 
employ photolithography process to form contact electrodes on the surface of OSC films, extra cares should be 
taken because of their poor durability against photoresist, and developer. Regarding this issue, a lift-off process 
which utilizes a protective layer has been proposed to avoid the damage from photoresist and developer on OSC 
layers25. This process allows a precise patterning of electrodes on versatile OSC materials, however, there still 
remains the problem of damages on OSC layers originated from the vacuum evaporation of metallic contacts. 
The quality of the metal/OSC interface is known to deteriorate significantly due to uncontrollable thermal diffu-
sion of metal nanoparticles into the OSC layer20,21 and due to simple radiation damage22,23. Because this interface 
dominates carrier injection properties as well as interfacial contact resistance, an abrupt, heterogeneous interface 
needs to be established.

Forming an electrode on the surface of an OSC layer becomes more challenging when ultra-thin molecular 
layers are used as an active semiconductor. Much research has been conducted on making highly ordered crys-
talline films with a thickness of only a few molecular layers14,26,27. These ultrathin films can be expected to have 
low contact resistance owing to the reduction of access resistance. As an extreme case, the lowest possible contact 
resistance that can be theoretically conceived is achievable in monolayer OTFTs28,29. Although this approach is 
promising, the metallization process in conjunction with subsequent patterning processes hampers the practical 
fabrication of monolayer OTFTs. It has been reported that the mobility of OTFT fabricated with vacuum evapo-
rated gold contacts on a monolayer OSC film was two orders of magnitude lower than those of OTFTs fabricated 
with 2- or 3- molecular layers of OSC. To overcome this issue, development of a transfer or lamination process for 
contact electrodes, in which OSC layers are not exposed to the damage during vacuum evaporation, is a key chal-
lenge30–34. In the previous work32, the lamination technique has been demonstrated, where pre-patterned elec-
trodes embedded into an elastic and flexible film, polydimethylsiloxane (PDMS), were employed. This method 
features scalability, compatibility with the photolithography process and excellent adhesion property onto various 
curved surfaces. However, in terms of environmental stability, PDMS, which has high thermal expansion coeffi-
cient, may cause some negative effects on monolayer OSC crystals because carrier transport layer is in proximity 
to PDMS.

Here, we demonstrate a simple and facile transfer method to deposit contact electrodes directly on the surface 
of OSC thin films. Use of a water-soluble polymer, polyvinyl alcohol (PVA), in conjunction with a thin buffer 
polymer, poly(methyl methacrylate) (PMMA), allows reliable, reproducible electrode transfer to any given des-
tination substrate. OTFTs composed of monolayer single crystalline films fabricated with the present method 
exhibited a high mobility of >10 cm2 V−1 s−1 and a relatively low contact resistance of 175 Ω⋅cm.

Results
Transferring precisely patterned electrodes.  The key to the present electrode transfer method is 
the use of a polymeric bilayer film (PVA/PMMA) as a template. A 20– to 30–μm-thick PVA layer allows the 
whole template to be easily handled, and it was later dissolved in water easily (i.e., it is a sacrificial layer)35–37. 
A second polymer layer, a 100–nm-thick PMMA layer, helps the template adhere to a destination substrate. A 
schematic illustration of the present transfer method is shown in Fig. 1(a). First, a 40–nm-thick gold layer was 
deposited by vacuum evaporation on a glass substrate treated by a self-assembled monolayer (SAM) of trieth-
oxy-1H,1H,2H,2H-heptadecafluorodecylsilane (F-SAM). To form the patterns for source and drain electrodes, a 
standard photolithography/metal etching process was performed. Subsequently, PMMA with an average molecu-
lar weight of 120,000 was spin-coated from 3 wt% butyl acetate solution to form a protective layer with a thickness 
of ca. 100 nm. Note that this protective layer needs to be thin enough to adhere to the destination substrate by 
electrostatic force. A sacrificial layer of 5 wt% aqueous solution of PVA was applied on the PMMA layer followed 
by drying at 50 °C for 2 h. The resulting PVA/PMMA/Au hybrid film had a thickness of 20–30 μm and could be 
easily peeled off from the glass substrate by adhesive tape [Fig. 1(b)]. Then, the hybrid film was placed on the 
surface of an OSC layer (destination substrate). Moderate heating at 80 °C was found to induce a controllable 
melt of the PVA/PMMA film, resulting in adhesion of the hybrid film onto the OSC layer. Finally, application 
of water removed the PVA layer, and the remaining PMMA/Au layer could be laminated electrostatically on the 
surface of OSC layer. The substrates were then cooled down to 30 °C and stirred in water to completely remove 
the residual PVA. Preservation of the fabricated patterns was confirmed by a polarized optical microscopy image 
of the electrodes laminated on the destination substrate, as shown in Fig. 1(c).

Because the present technique is compatible with photolithography, the spatial resolution of patterned metal 
electrodes can be reduced down to photolithography resolution (almost equivalent to the used wavelength). 
Figure 2(a,b) shows scanning electron microscopy (SEM) images of the electrodes patterned on a glass substrate 
treated with F-SAM and electrodes laminated on the destination substrate. Electrodes with a channel length of 1 
μm were successfully transferred and laminated onto the destination substrate; neither expansion nor contraction 
of the gap was observed after the transfer was complete. Note that the spatial resolution of 1 μm is merely a limi-
tation defined by our photolithography apparatus. We presume that the spatial resolution of the present transfer 
method can be improved by optimizing photolithography conditions, which will be future work.

Fabrication and evaluation of monolayer OTFTs.  With the present method, contact electrodes 
are likely to be deposited directly on the OSC layer without any thermal damage or solvent damage. To ver-
ify this, we laminated Au electrodes on top of a monolayer OSC. A doped Si wafer with 100–nm-thick SiO2 
was treated with trimethoxy(2-phenylethyl)silane (β-PTS) by vapor deposition. A single crystalline film of 
3,11-dinonyldinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene [C9–DNBDT–NW, Fig. 3(a)], which is one 
of the DNBDT analogs12,38, was grown via a continuous edge-casting method19,39–41 [Fig. 3(b)]. By controlling the 
deposition conditions, such as the substrate temperature, solution supply rate, and substrate shearing, uniform 
thin films of C9–DNBDT–NW were deposited. Figure 3(c,d) shows cross-polarized optical microscopy images of 
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the fabricated films. The formation of a highly ordered crystalline thin film is demonstrated by the simultaneous 
extinction of the obtained image as the crystal growth direction is positioned parallel or perpendicular to the 
polarization angle. The film thickness was estimated to be approximately 3.8 nm from atomic force microscopy 
measurements [Fig. 3(e,f)], which is equivalent to the height of the C9–DNBDT–NW monolayer film. After the 
deposition of contacts onto the monolayer films by the present transfer process, the OSC layer was electrically 
isolated using an yttrium-aluminum-garnet laser to avoid fringe currents42. For comparison, monolayer OTFT 
with vacuum evaporated gold contacts was also fabricated. A schematic illustration of the monolayer OTFT con-
figuration is shown in Fig. 3(g).

The transistor characteristics of the monolayer OTFT are shown in Figs. 4(a–c). The mobilities extracted 
from the transfer characteristics were 12 cm2 V−1 s−1 and 10 cm2 V−1 s−1 in the saturation and linear regimes, 
respectively, while monolayer OTFT fabricated with vacuum evaporated gold contacts did not show transistor 
operation. Note that in the previous work14, OTFT with monolayer DNBDT analog did work even though the 
mobility was two orders of magnitude lower than those with multilayers. The difference can be attributed to 
the existence of thin carrier injection layer, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquionodimethane (F4-TCNQ), 
which may also serve as a buffer layer for the subsequent metal deposition. The value of the subthreshold swing 
(S) estimated from the transistor characteristics was less than 100 mV decade−1, which is much lower than that 
obtained for multilayers of DNBDT TFTs with the vacuum evaporated gold contacts43. Generally, S is associated 
with the density of deep traps located at the carrier transport interface or in the bulk of the semiconductor44. 
Because the combination of semiconductor/insulator is identical to that from the previous research, the low S 
is likely to be attributed to the damage-free interface between the metal and OSC layer achieved by the present 

Figure 1.  (a) Schematic illustration of the present transfer method. (b) Photograph of a PVA/PMMA/Au film 
exfoliated from the template substrate. (c) An optical microscopy image of the electrodes laminated on the 
destination substrate.

Figure 2.  SEM images of (a) Au electrodes with a channel length of 1 μm formed on the F-SAM-treated glass 
substrate and (b) electrodes laminated on the destination substrate with the PMMA protective layer.
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transfer technique. The overall results suggest that the present electrode transfer method gives an ideal metal/
OSC interface without any fatal damage, even to the monolayer film.

To assess the contact resistance (RC), several OTFTs with different channel lengths (L) of 10, 20, 40, 60, 80, and 
100 μm were fabricated for monolayer single crystalline films, and RC was estimated from the transmission line 
method (TLM) [Fig. 4(d)]. Prominent points observed in Fig. 4(d) come from the residue of the PMMA film after 
laser etching process. Fig. 4(e) shows the width-normalized total resistance (Rtotal ⋅ W) as a function of L with var-
ious VG − Vth values (where VG and Vth are the gate and threshold voltages, respectively). RC can be extrapolated 
with high accuracy as the square of a regression coefficient (R2) higher than 0.99. The values of RC ⋅ W for various 
VG values are presented in Fig. 4(f). The monolayer OTFTs fabricated with the present method exhibited a rela-
tively low RC of 175 Ω⋅cm. Although RC is higher than that reported for the previous work14, it can be improved by 
an introduction of molecular dopant layer, such as F4-TCNQ45. It should be noted that a wide variety of electrode 
materials other than evaporated gold can be employed for the present method.

We now turn to a discussion of why the metal lamination on the surface of an OSC provides an ideal interface 
for carrier injection. In general, it is difficult to control the quality of a heterointerface, particularly in covalent 
semiconductors like Si. This is because the Fermi level at the surface can be pinned by a large number of surface 
states that originate from surface dangling bonds (Bardeen limit). The Fermi level pinning effect can be a frus-
trating issue for designing semiconductor devices to some extent46. Unlike covalent semiconductors, there are 
essentially no active dangling bonds at the surface of organic semiconductor crystals because covalent bonds are 
in principle completed within each molecule. As evidence, ideal carrier injection has been realized by laminating 
molecular crystals having a molecularly flat surface, such as rubrene and tetracene, onto metal electrodes47–49.

Disorder-induced gap states can be another issue that needs to be optimized, because whether Schottky 
barrier heights at metal/semiconductor heterostructures are restricted by a Schottky limit or a Bardeen limit 
is thought to be dominated by the trap states at the interface. This is particularly problematic when fabricating 
top-contact OTFTs because OSC layers are susceptible to thermal damage during vacuum evaporation of metal 
electrodes. The present electrode transfer method can be an ideal approach to minimizing disorder-induced gap 
states. Concomitantly with the non-dangling bond nature of the C9–DNBDT–NW single crystalline monolayer 
film, Schottky-limited contact was realized in the present OTFT devices.

Reproducibility of the transfer technique.  To assess reliability and reproducibility on the damage-free 
fabrication of monolayer OTFTs, a TFT array with monolayer C9–DNBDT–NW was fabricated and character-
ized. Figure 5(a) shows a laser confocal microscopy image of the C9–DNBDT–NW monolayer film fabricated 
on a SiO2/Si substrate treated with β-PTS. The differences in color contrast indicate differences in the thickness 
of films. A 10 × 10 OTFT array was fabricated within the area marked by the dashed square in Fig. 5(a), where 
the C9–DNBDT–NW monolayer film was formed [Fig. 5(b)]. All the 10 × 10 arrayed OTFTs showed transistor 
operation with an average linear mobility of 9.5 ± 1.5 cm2 V−1 s−1, which manifests the excellent reproducibility 
of the present transfer method [Fig. 5(c)]. The values of the mobility, Vth, S and Ion/Ioff in the linear regime are 
summarized in Fig. 5(d–k). Note that some devices showed degraded performance. It is due to air bubbles which 

Figure 3.  (a) Molecular structure of C9–DNBDT–NW. (b) Schematic illustration of the continuous edge-
casting method. (c,d) Cross-polarized optical microscopy images of the fabricated monolayer single-crystalline 
film. (Scale bars: 250 μm.) The white arrow denotes the direction of crystal growth. (e) Atomic force microscopy 
image and (f) cross-sectional profile at the white line of the monolayer film. (g) Schematic illustration of the 
device configuration.
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were generated when the PVA/PMMA/Au film were laminated on the OSC film. Although further investigation 
is needed, the process can be improved by optimizing the process conditions during lamination of electrode 
films onto the destination substrate with a suitable apparatus, and then it can be extended to more sophisticated 
mass-production methods, such as a roll-to-roll manufacturing.

Discussion
In this study, we successfully developed a method to transfer contact electrodes onto ultrathin OSC films. The 
present method is compatible with photolithography, and allows precise deposition of electrodes with channel 
lengths as short as 1 μm without any expansion or contraction during the fabrication and transfer process. The 
key in this paper is to employ polymeric bilayer composed of thick PVA film and thin protective layer. Because 
the mechanism of the adhesion relies on the electrostatic force of the thin protective layer, the materials for this 
layer are limited not only to PMMA but also to other functional thin films such as encapsulation film or vertically 
stacked electrodes and insulating layer structures are also available. Contact electrodes can be deposited without 
any critical deterioration of the OSC layer. As a result, high-performance monolayer OTFTs can be successfully 
fabricated with a mobility higher than 10 cm2 V−1 s−1 and a relatively low RC of 175 Ω⋅cm. The operation of all 
100 OTFTs in a 10 × 10 array indicated that the present method can produce monolayer OTFTs reproducibly. 
The technique demonstrated here opens the door to a simple manufacturing approach, which is also useful for 

Figure 4.  Transfer characteristics of monolayer OTFTs for (a) the saturation regime and (b) the linear 
regime. Solid lines denote transfer characteristics of a device with transferred gold electrodes (via the present 
technique), and dashed lines denote those with vacuum evaporated gold electrodes. (c) Output curves for the 
OTFT. The channel length (L) and width (W) are 200 μm and 1000 μm, respectively. (d) Cross-polarized optical 
microscopy image of three OTFTs for TLM measurement with L = 10 μm, 20 μm, and 40 μm and W = 500 μm. 
(e) TLM plots for monolayer OTFTs at various gate voltages. (f) Changes in the contact resistance as a function 
of the gate voltage for monolayer OTFTs.
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manufacturing other vertically stacked devices, such as organic solar cells and organic light-emitting diodes, and 
it will be extendable to roll-to-roll manufacturing in the future.

Methods
Preparation of Au/PMMA/PVA films.  An EAGLE XG glass substrate (Corning Inc.) with a thickness of 
0.7 mm was treated with UV/O3 for 15 min before F-SAM was deposited onto the surface by vapor deposition 
at 150 °C for 3 h. Subsequently, a 40–nm-thick gold layer was deposited on the glass by vacuum evaporation. 
Photolithography was used to form the pattern of the source and drain electrodes. A positive photoresist, AZ 
5214 E (MicroChemicals), was spin-coated on top of the gold followed by baking on a hot plate at 105 °C for 1 
min. After the substrate was exposed to UV light (λ = 375 nm) using an MLA 150 Maskless Aligner (Heidelberg 
Instruments) at a power of 100 mJ cm−2, it was developed in NMD-3 2.38 % (Tokyo Ohka Kogyo Co., Ltd.). The 
gold layer was patterned via a wet etching process using a gold etchant, AURUM S-50790 (Kanto Chemical Co., 
Inc.), followed by rinsing of the residual etchant with deionized water for 15 min. To remove the photoresist, the 
substrate was immersed in acetone. Then, PMMA with an average molecular weight of 120,000 (Sigma-Aldrich 
Co., LLC) was spin-coated from 3 wt% butyl acetate solution (1 s for acceleration, 500 rpm for 5 s, and 2,000 rpm 
for 30 s) as a protective layer on top of the patterned electrodes and then annealed on a hot plate at 80 °C for 30 
min. An aqueous solution of 5 wt% PVA (average degree of polymerization of 1,500–1,800 with a saponification 
degree of 78–82 mol%, FUJIFILM Wako Pure Chemical Corp.) was applied on top of the PMMA layer and dried 
at 50 °C for 2 h. Finally, the resulting films were peeled off the glass substrate using adhesive tape.

Fabrication of OSC layers.  A doped Si wafer with thermally oxidized SiO2 (100 nm) was cleaned by son-
ication with acetone and 2-propanol for 10 min in each solvent. Subsequently, UV/O3 treatment was performed 
for 15 min before the SAM of β-PTS was deposited on the SiO2 surface by vapor deposition at 120 °C for 3 h. 
Then, the substrate was cleaned again with toluene and 2-propanol for 10 min in each solvent. Single-crystalline 
thin films of C9–DNBDT–NW were fabricated from 0.02 wt% 3-chlorothiophene solution via continuous edge 
casting39. To obtain large-area uniform thin films, the substrate was heated to around 84 °C and moved at a shear-
ing speed of 22 μm s−1. The resulting films were dried at 80 °C in a vacuum oven to remove the residual solvents.

Fabrication of OTFTs.  The PVA/PMMA/Au hybrid films were mounted on the surface of C9–DNBDT–NW 
films with heating at 80 °C which resulted in the adhesion of the hybrid film onto the C9–DNBDT–NW layer. 
Then, deionized water was applied to dissolve the PVA layer. To completely remove the residual PVA, the sub-
strates were cooled down to 30 °C and stirred in water. Finally, the PMMA/C9–DNBDT–NW films were patterned 
by a dry-etching process with a yttrium-aluminum-garnet laser (V-Technology Co., Ltd., Calisto, λ = 266 nm).

SEM measurements.  The SEM measurements were performed using a JSM-7800F Prime SEM (JEOL 
Ltd.) with an accelerating voltage of 1.5 kV at room temperature. The laminated electrodes were coated with 3–
nm-thick platinum to reduce electron beam damage.

Electrical measurements.  A semiconductor parameter analyzer (Keithley 4200-SCS) was used to measure 
the electrical properties. All measurements were conducted in the dark under ambient air and room temperature. 
The mobilities in the saturation (μsat) and linear (μlin) regimes were extracted from the transfer characteristics 
using the following equations: 

Figure 5.  (a) Laser confocal microscopy image of the C9–DNBDT–NW film fabricated via continuous edge-
casting method. The area within the dashed square was used for the investigation of device-to-device deviation. 
(b) Laser confocal microscopy image of a 10 × 10 OTFT array. (Scale bar: 3 mm). (c) Transfer characteristics of 
100 OTFTs. L and W are 200 μm and 500 μm, respectively. Mappings of (d) μlin, (e) Vth, (f) S, and (g) 

I Ilog ( / )10 on off . Histograms of (h) μlin, (i) Vth, (j) S, and (k) I Ilog ( / )10 on off .
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where ID, L, W, Ci, VG, Vth, and VD are the drain current, channel length, channel width, capacitance per unit 
area, gate voltage, threshold voltage, and drain voltage, respectively. A value of 34.5 nF cm−2 was used as Ci for 
all devices.
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