
1Scientific Reports |         (2020) 10:4760  | https://doi.org/10.1038/s41598-020-61508-y

www.nature.com/scientificreports

Hepamine - A Liver Disease 
Microarray Database, Visualization 
Platform and Data-Mining Resource
Timo Itzel1,2, Melanie Neubauer1, Matthias Ebert3, Matthias Evert4 & Andreas Teufel1,2*

Numerous gene expression profiling data on liver diseases were generated and stored in public 
databases. Only few were used for additional analyses by the hepatology research community. This may 
mostly be due to limited bioinformatics knowledge of most biomedical research personnel. In order to 
support an easy translation of bioinformatics data into translational hepatology research, we created 
Hepamine, a liver disease gene expression, visualization platform and data-mining resource. Microarray 
data were obtained from the NCBI GEO database. Pre-analysis of expression data was performed using 
R statistical software and the limma microarray analysis package from the Bioconductor repository. We 
generated Hepamine, a web-based repository of pre-analyzed microarray data for various liver diseases. 
At its initial release Hepamine contains 13 gene expression datasets, 20 microarray experiments and 
approximately 400 000 gene expression measurements. A self-explanatory website offers open and 
easy access to gene expression profiles. Results are furthermore visualized in simple three-color tables 
indicating differential expression. All data were linked to common functional and genetic databases 
particularly through the DAVID bioinformatics suite. Hepamine provides comprehensive data and easy 
access to hepatologic gene expression data even without in depth bioinformatics or microarray profiling 
experience. http://www.hepamine.de.

Chronic liver disease is a major health burden worldwide. In particular viral hepatitis B and C but also an increas-
ing number of patients with non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH)1,2 in 
developed countries result in a steadily increasing number of patients with liver fibrosis, cirrhosis or hepatocellu-
lar carcinoma (HCC) as the common end stage of chronic liver disease3.

Recent advances in drug development for viral hepatitis will certainly be beneficial for many patients4. 
However, for patients with fatty liver disease, liver fibrosis, cirrhosis or liver cancer still only limited therapeutic 
option are available5,6. Thus, investigating the molecular cause of many chronic liver diseases but also its common 
end stage fibrosis, cirrhosis and HCC are still urgently needed to provide better care for these patients3.

Over the past two decades, gene expression profiling of common liver diseases was extensively performed. 
Aim of this extensive survey of the liver transcriptome was the identification of “druggable” molecular targets and 
signaling networks to be targeted by specifically designed molecules. Even more, several groups aimed at using 
gene expression data particularly with respect to liver cancer in order to predict survival of patients or recurrence 
of this disease after resection. These efforts recently cumulated in the definition of consensus molecular subtypes 
(CMS) being helpful for prognosis prediction but also as an entry to precision medicine. As a result of these exten-
sive efforts a vast amount of transcriptomic data was deposited in public databases and made publicly available. 
These data provide a rich source for further, comparative and integrative OMICS analysis to better understand the 
molecular basis of chronic liver disease. However, in order to utilize this information, knowledge of the available 
database resources but also bioinformatics tools are indispensable being a major hurdle in re-utilizing these data. 
Biomedical researchers are generally not capable of analyzing these data themselves due to a lack of programming 
skills. However, bioinformaticians are rather focused on the development of novel analysis algorithms.

In order to overcome this significant gap in knowledge transfer from molecular biology and bioinformatics to 
translational medical and ultimately clinical research, we provide Hepamine, a liver disease microarray database, 
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visualization platform and data-mining resource, which provides easy but still detailed access to transcriptomic 
data on liver disease.

Material and Methods
Microarray data were obtained from the NCBI GEO Gene Expression Omnibus Archive of Functional Genomics 
Data (https://www.ncbi.nlm.nih.gov/geo)7. Pre-analysis of expression data was performed using R statistical soft-
ware and NCBI GEO´s geo2r scripts provided for each data set (https://www.ncbi.nlm.nih.gov/geo/geo2r)8. For 
reasons of comparing results between different experiments, all analysis scripts were adjusted to apply the newest 
array annotations using the hgu133plus2.db, hgu133a2.db, hgu133a.db, or hugene10sttranscriptcluster.db pack-
ages provided by the Bioconductor suite (https://www.bioconductor.org)9 (Table. 1). Next, all spots representing 
a specific gene were summarized by means of calculation an average expression in order to obtain a gene centered 
result. For further analysis, geo2r scripts were based on the Bioconductor limma package. Expression data were 
stored locally in a MySQL database. The business logic for visualization and filtering of the data was implemented 
on a python based Django 2.0 framework.

In order to support a functional characterization of the result tables, we provide predefined functionally 
related gene sets, e.g. signaling pathways (Supll. Table 1). Those (KEGG) pathways were obtained from MSigDB 
provided by Broad Institute10.

WikiPathways11 were obtained from the collaborative WikiPathways platform at https://www.wikipathways.
org/index.php/Download_Pathways.

Included data sets were selected as follows: Firstly, all data sets related to chronic liver disease were selected 
from the GEO public functional genomics data repository (https://www.ncbi.nlm.nih.gov/geo). Secondly, only 
data sets with GEO2R available scripts were selected for further processing. Thirdly, the analysis script utilized 
provided series matrix files. If data sets did not contain such a series matrix file, the respective data were not fur-
ther processed or integrated in our database. Finally, dual-channel arrays were also excluded from these analyses 
as their analysis algorithm does not fit the used analysis scripts.

Web interface.  After selecting the “Search Hepamine” option on the landing page, users will be guided to an 
initial data overview. This page contains all available data sets and lists all genes recognized in at least one of the 
available data sets. Primary data view displays gene expression as a three-way, traffic light visualization. Genes 
with a green arrow were upregulated, gene expression displayed as a yellow button was unchanged, and genes 

Dataset

Array Platform

Label Disease

Comparison

GEO Annotation Probe Control

GSE11190 GPL570 hgu133plus2.db E-GEOD-11190 HCV HCV Post-interferon liver biopsy Pre-interferon liver 
biopsy

GSE14323 GPL571 hgu133a2.db
E-GEOD-14323 HCC HCC HCC Normal

E-GEOD-14323 cirrhosis Fibrosis Cirrhosis cirrhosis Normal

GSE17548 GPL570 hgu133plus2.db

E-GEOD-17548 HCC HCC Ankara HCC tissue, Izmir 
HCC tissue

Ankara cirrhosis tissue, 
Izmir cirrhosis tissue

E-GEOD-17548 HCC subset 
Ankara HCC Ankara HCC tissue Ankara cirrhosis tissue

E-GEOD-17548 HCC subset 
Izmir HCC Izmir HCC tissue Izmir cirrhosis tissue

GSE17967 GPL571

hgu133a2.db

E-GEOD-17967 HCC HCC HCV + cirrhosis with HCC HCV + cirrhosis without 
HCC

GSE26566 GPL6104 E-GEOD-26566 CCC CCC Cholangiocarcinoma Normal intrahepatic 
bile duct

GSE32225 GPL8432 E-GEOD-32225 CCC CCC Human intrahepatic 
cholangiocarcinoma

Human normal biliary 
epithelial cells

GSE32958
GPL6244 hugene10sttranscriptcluster.db E-GEOD-32958 CCC CCC Intrahepatic 

Cholangiocarcinoma (ICC) Non-Tumor Tissue

GPL6244 hugene10sttranscriptcluster.db E-GEOD-32958 FNH FNH Focal Nodular Hyperplasia 
(FNH) Non-Tumor Tissue

GSE33814 GPL6884
E-GEOD-33814 NASH NAFLD NASH steatohepatitis normal

E-GEOD-33814 Steatosis NAFLD NASH steatosis normal

GSE38941 GPL570 hgu133plus2.db E-GEOD-38941 HBV HBV HBV-associated acute liver 
failure normal

GSE45001 GPL14550 E-GEOD-45001 CCC CCC Tumoral Non-Tumoral

GSE46960 GPL6244 hugene10sttranscriptcluster.db E-GEOD-46960 Biliary Biliary Atresia Biliary Atresia Normal control

GSE49541 GPL570 hgu133plus2.db E-GEOD-49541 Fibrosis Fibrosis Cirrhosis advanced (fibrosis stage 3–4) mild (fibrosis stage 0–1)

GSE56140 GPL18461

E-GEOD-56140 HCC HCC hepatocellular carcinoma cirrhosis

E-GEOD-56140 HCC central HCC tumor central cirrhosis

E-GEOD-56140 HCC 
peripheral HCC tumor peripherial cirrhosis

Table 1.  Currently available pre-analyzed data sets.
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with a red arrow down were down regulated. This display offers an easy digestible overview of the excessive data 
accumulated (Fig. 1A).

However, as advanced users may be interested in more details about the differential gene expression in terms 
of fold-change, p-value, or adjusted p-value, Hepamine offers an alternative data view incorporating all this infor-
mation for each gene in every data set. This alternative view may be selected by pressing the “Configure” button 
and selecting the respective features from the data filter panel on top of the page. Users may then select which 
features should be displayed selecting from fold change, p-value, and adjusted p-value. (Fig. 1B).

Data selection options.  As users may be interested in a particular set of genes, we offer diverse options to 
limit Hepamine searches to genes, gene sets, or diseases of interest. Selecting the “Search” button, users may insert 
a list of genes in which they are interested in and have the output results limited to only these genes. Given a total 
of up to 25 185 genes per analysis results pages (searching the full genome annotated genes), this option performs 
focused searches of our liver disease specific data. If the user is interested in the data of only one of the displayed 
datasets, there is a link to the analysis view. There the data are shown as table or volcano plot (Fig. 2).

Alternatively users may upload a gene list of interest via the same site. Data need to be formatted as a.txt 
file and contain official gene symbol abbreviations as defined by the HUGO Gene Nomenclature Committee 
(HGNC)12. Besides, we provide predefines gene sets (e.g. signaling pathways, gene ontologies) from the Kyoto 

Figure 1.  Hepamine visualization options of gene expression. (A) Simplified three-colour traffic light scheme: 
 up-regulated,  unchanged,  down-regulated (B) Custom view by selection from fold change, p-value and 

adjusted p-value.
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Encyclopedia of Genes and Genomes (KEGG)13 or WikiPathways11 to specifically view functional related genes 
of interest.

Finally, selecting the “Visualize Context” option, users may limit their searches to any disease of interest: HCC, 
CCA, NAFLD/NASH, viral hepatitis, fibrosis/cirrhosis, or other.

Data filtering options.  Advanced users may change the selection criteria of significance within the data 
evaluation process. Again, the data filter bar on top of the page offers detailed selection options for fold change 
and adjusted p value of any preferred values.

Figure 2.  Additional data visualization options (analysis mode): (A) Result table, differential gene expression 
(B) Volcano plot.
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Also, as some users may find it useful to perform more focused data searches, the top data filtering bar offers 
the option to select specific data sets such as HCC, CCA, viral hepatitis, NAFLD/NASH, fibrosis/cirrhosis, or 
other liver diseases such as biliary atresia.

Functional data analysis.  Having retrieved a list of genes and their differential expression in one or even more 
liver disease, a user may likely be interested in further characterizing their selected group of genes, e.g. by means of 
pathway analysis or gene set enrichment. Enabling such access to deeper transcriptional information was achieved 
by linking Hepamine to the DAVID (database for annotation, visualization and integrated discovery) bioinformatics 
analysis platform14,15. DAVID allows for detail information retrieval of gene annotation, visualization of results and 
integrated functional analysis. Upon selection of the “DAVID transfer” button, the gene list of interest/results are auto-
matically transferred and DAVID results presented in a separate browser tab. Since the DAVID API only allows a fully 
automatic transfer of up to 400 genes, larger gene lists must be transferred in a semi-automated fashion. By activating 
the “DAVID transfer” button, users will have their gene list saved to the “clipboard”, obtain a detailed instruction on how 
to transfer their data, and be able to simply paste their selected gene list/content to the DAVID website. From thereon, 
users may continue using the DAVID website just as if they had used an automatic data transfer.

Use case.  As a potential use case for Hepamine we compared differential gene expression among different 
data sets of liver cancer (HCC) development in order to identify potential drivers of hepatocarcinogenesis being 
showing robust differential expression among all data sets.

Initial step was selection of all HCC related data sets from the “Diseases” panel. This selection resulted in a 
subset table of 4 available HCC datasets with a total of 8 subsets (Fig. 3A). As a default setting, gene expression 
profiles were depicted color coded: green arrow up meaning up regulation, red arrow down meaning down regu-
lation, yellow circles signaling no changes in differential gene expression (Fig. 3B). The available GSE numbers of 
the available datasets were then used to confirm the corresponding experimental description. Switching back to 
the results table significance level for differential gene expression were set to 4-fold regulation (log2-fold 2) and a 
p-value of 0,05 (Fig. 3C). This search returned 223 genes being selected by these criteria.

For an even more stringed evaluation statistics adjusting for multiple testing was turned on selecting adjusted 
p-values “On”, at the right of the p-value field. Applying these parameters, we identified 175 genes being differ-
entially expressed in at least one data set. By pressing the “Configure” button the visualization options become 
available. Selecting “logFC”, “p-values”, and “adjusted p-values” to be turned “On” resulted in a very detailed data 
table showing all important parameters fold-change, p-value, and adjusted p-value (Fig. 3D).

In order to get a functional assessment of these genes we automatically transferred these genes to DAVID via 
direct data transfer provided by Hepamine. Subsequently, these data were immediately available for further func-
tional analysis to be selected from the DAVID Annotation summary results.

Discussion and Conclusions
As outlined above, gene expression profiling of common liver diseases was extensively performed over the past 
two decades. Aim of most studies on the liver transcriptome were the identification of “druggable” molecular 
targets, identification of prognostic subgroups, or predictive markers to accompany the entry into an era of preci-
sion medicine. Furthermore, multiple studies for liver cancer aimed at using gene expression data particularly to 
predict survival of patients or recurrence of the disease after resection16.

However, the analysis of the large amount of publicly available data on gene expression in various liver 
diseases seems not feasible for biologists or physicians not familiar with bioinformatics or at least microarray 
analysis. Even with profound experience in microarray experiments, analysis of such data is a complex and 
time-consuming task. We therefore implemented a novel database resource, Hepamine, to aid fast access to key 
hepatological expression data sets for a broader community.

We expect the Hepamine database to be highly useful in correlating in vitro/ex vivo models of disease to in 
vivo patient data. Furthermore, comparison of gene expression in diverse liver diseases and progressive liver 
disease, e.g. hepatitis, liver fibrosis, and liver cirrhosis will be possible with Hepamine. Finally, as demonstrated 
in the supplied use case, robustness of gene expression data may be increased by comparing several data sets with 
the same disease. If being up- or downregulated in several data sets the genes can be much more trusted to be a 
true driver of disease development rather than being just a biologically not meaningful by-stander17

Since our database is the first of its kind and a novel tool in hepatological research, we set high value on a user 
friendly but also high performance usability for advanced bioinformatics analyses. To guarantee easy data access 
and connectivity we transformed this data base into a powerful web application. However, since requirements on 
such a web application may vary significantly depending on user’s needs, we offer two different data views. Traffic 
light visualization gives a fast and easy to digest overview on large gene expression data. It furthermore gives a 
quick impression on the consistency of expression data from different data sets reflecting gene expression changes 
of the same disease. In contrast, for users in need of a more detailed summary on the observed differential gene 
expressions, our data view displays all important numeric information for each gene and in every data set. This 
may be of interest in selecting genes with a high fold change or a strong p-value as it may be argued that expres-
sion changes of those genes have a higher probability of being robust in additional experiments to be potentially 
performed by the user. Those selections may furthermore be supported by means of selecting a higher stringency 
from the filter selection, increasing fold-change and/or p-value.

As advanced users may also want to further investigate a gene list consisting of genes being differentially 
expressed in a subset of liver diseases of interest we chose to automatically link our website to the DAVID bioin-
formatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically 
extracting biological meaning from large gene/protein lists14,15. The DAVID web resource is also publicly available 
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and contains approximately 68 bioinformatics enrichment tools. Among those functions are gene functional clas-
sification tools, functional annotation charts or clustering and functional annotation tables14,15.

DAVID supports automatic transfer of genes lists only up 400 genes. In order to at least ease transfer of larger 
genes lists our website supports a semi-automated fashion selecting a DAVID transfer button and subsequently 
copied into the working storage. Thus, users may easily paste their list into DAVID and continue using the website.

However, our web tool also has some short comings. Thus, it is obvious that microarray data are limited to 
genes known and annotated at the time of data production. In contrast, RNA sequencing data include additional 
unknown transcripts that could be later characterized and annotated. In order to ensure highest possible coop-
erativity among the diverse experiments performed under most likely highly different conditions, we chose at 
this stage only to incorporate data sets that could be evaluated using a Geo2R script provided by the GEO data 
repository8 and thus limited our selection to microarray data.

The fact that the selected experiments and respective data sets were not hybridized under the same or at least 
comparable conditions is also a major drawback of our data collection. However, at this point there is no large 
data set on liver diseases available (except for liver cancer, TCGA data) and our assembled gene expression array 

Figure 3.  Screenshots of main analysis steps of the described use case HCC analysis. (A–D) Analysis in 
Hepamine.
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provides the most comprehensive overview. Given the diverse experimental modalities, users must be aware of 
the limited comparability of the selected data sets. Given these limitations our database is well suited for hypoth-
esis generation – as demonstrated in the supplementary use case - but definitely not for validation of otherwise 
obtained hypotheses.

In summary, we implemented the Hepamine gene expression web-resource, which is easy to use but yet con-
tains comprehensive data to close the knowledge gap from molecular biology and bioinformatics to translational 
medical and ultimately clinical research on liver diseases.
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