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Bridging substrate intake kinetics 
and bacterial growth phenotypes 
with flux balance analysis 
incorporating proteome allocation
Hong Zeng & Aidong Yang*

Empirical kinetic models such as the Monod equation have been widely applied to relate the cell 
growth with substrate availability. The Monod equation shares a similar form with the mechanistically-
based Michaelis-Menten kinetics for enzymatic processes, which has provoked long-standing and 
un-concluded conjectures on their relationship. In this work, we integrated proteome allocation 
principles into a Flux Balance Analysis (FBA) model of Escherichia coli, which quantitatively revealed 
potential mechanisms that underpin the phenomenological Monod parameters: the maximum specific 
growth rate could be dictated by the abundance of growth-controlling proteome and growth-pertinent 
proteome cost; more importantly, the Monod constant (Ks) was shown to relate to the Michaelis 
constant for substrate transport (Km,g), with the link being dependent on the cell’s metabolic strategy. 
Besides, the proposed model was able to predict glucose uptake rate at given external glucose 
concentration through the size of available proteome resource for substrate transport and its enzymatic 
cost, while growth rate and acetate overflow were accurately simulated for two E. coli strains. 
Bridging the enzymatic kinetics of substrate intake and overall growth phenotypes, this work offers 
a mechanistic interpretation to the empirical Monod law, and demonstrates the potential of coupling 
local and global cellular constrains in predictive modelling.

Understanding the growth of microbial cultures occupies a central place in the study of microorganisms. How 
growth rate varies with internal traits or external conditions greatly affects the choice of process-level parameters 
such as temperature, medium composition in cell cultures for a specific purpose and the strategy for the modula-
tion of delicate cellular attributes such as enzyme activity, pathway diversity and regulatory systems.

Ever since Jacques Monod correlated the specific growth rate (λ) with extracellular substrate concentration 
([g]) via two kinetic parameters, the maximum specific growth rate λmax and the Monod constant Ks, the Monod 
equation max

g
g K
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[ ] s

λ λ=
+

1 becomes the best-known microbial growth kinetics for describing various biopro-
cesses. Other growth models (reviewed in2) are less prevalent due to more sophisticated formulation and insuffi-
cient experimental validation. Despite its unstructured and empirical nature3, the Monod equation generally 
renders satisfactory results in terms of fitting substrate consumption and growth rate profile for a wide range of 
microorganisms and culture conditions. More recent studies have shown that growth kinetic constants (in Monod 
terms, λmax and Ks) are actually a function of the culture history (e.g. sludge ages) and community composition4,5. 
In fact, twenty-years ago Kovarova-Kovar and Egli explicitly pointed out that cells could change their growth 
kinetics via adaptation, therefore a single set of kinetic parameters is not able to represent such variable proper-
ties2. The notion of variable growth kinetics is further supported by experimental evidence showing the evolution 
of Ks

6,7, ‘intrinsic’ and ‘extant’ λmax
8 and the λ − Kmax s relationship9.

In addition to the Monod-type empirical models, the development of metabolic network reconstructions and 
the associated analytical approach, namely Flux Balance Analysis (FBA) facilitates the study of growth phenotypes 
at the metabolic flux level10. A FBA model is established based on the known metabolic reaction stoichiometry 
and gene-enzyme relationship. It is inherently mechanistic and provides more insight of cellular physiological 
properties compared to an empirical growth model. More importantly, the general objective of FBA is to predict 
the maximum growth rate at given culture conditions and possibly genetic modifications11. If the prediction of 
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growth rate and intracellular metabolic fluxes were sufficiently accurate, FBA would become a very useful tool 
for engineering efficient microbial systems. Essentially, the accuracy of the flux prediction in FBA is governed by 
constraints. One typical example is setting uptake limits for oxygen and glucose exchange fluxes to predict aerobic 
acetate formation (namely the overflow metabolism) in Escherichia coli12, where acetate was predicted to excrete 
when the system was limited by oxygen uptake rate. However, it has been proposed and validated that the aerobic 
acetogensis in E. coli is the result of an efficient proteome allocation strategy for rapid growth13,14. This example 
suggests that setting hard limitations on uptake fluxes could be a rather arbitrary and problematic treatment when 
there is a lack of theoretical basis, not to mention that the boundaries of myriad intracellular fluxes are often diffi-
cult to determine reliably. In principle, using experimentally determined flux values as lower and/or upper bounds 
could help FBA to compute more realistic flux distributions. This leads a dilemma between the overall accuracy of 
the simulation and the predictive power of the model (e.g. fluxes with hard-set boundaries are in a sense “weakly” 
predicted). Progress in incorporating macromolecular expressions15 and intracellular resource allocation16–19 
with the classic FBA effectively alleviates the need for setting subtle uptake boundaries and improves the accuracy 
and scope of the predicted growth phenotypes. For instance, Resource Balance Analysis (RBA)18 eliminates the 
need of defining uptake bounds of substrates by relating the enzyme efficiency with the concentration of extra-
cellular nutrients. Multi-scale models of Metabolism and macromolecular Expression (ME-models)20–22 enable 
the prediction of substrate uptake rates by incorporating growth rate-dependent demand functions and limited 
macromolecular synthesis machineries, e.g. limited ribosomal translation rate, limited mRNA catalytic rate and 
limited RNA polymerase transcription rate. Despite these successes, the prediction of substrate uptake rate in 
general highly relies on the accuracy of the enzyme kinetic parameters adopted in the model, most of which are 
not readily available at the genome scale23.

In this work, we explore the potential links between the empirical Monod growth kinetics and the FBA-based 
metabolic modelling, with the latter to reveal the underlying biological mechanisms governing the phenomeno-
logical parameters of the former. Using two E. coli strains (NCM3722 and ML308) as case studies, we investigate 
how the integration of the proteome allocation principles into FBA would help depict the intriguing multi-scale 
mechanisms that govern the various growth phenotypes under a wide range of growth conditions. We firstly 
divided the overall proteome into coarse-grained functional sectors, i.e. carbon scavenging (C), energy genera-
tion (E), biomass synthesis (BM) and growth-independent offset (Q) sectors19,24. The size of each sector is dic-
tated by the magnitude of the metabolic flux the sector processes and the corresponding proteome cost per unit 
flux. All individual proteome sectors were assembled together into a global proteome allocation constraint24–26. 
Furthermore, we parameterized a correlation between the enzyme cost for carbon transport and the abundance 
of carbon source. Applying these modelling concepts and parameterisation in FBA simulations, we were able to 
predict the glucose uptake rate, growth rate and the acetate overflow upon varying extracellular glucose level. Our 
theoretical model also predicted a step change in Ks after the onset of the acetate excretion. Further analysis of the 
model suggests that this variation originates from the change in cell’s metabolic strategy, which coincides with the 
previous notion that cells possess variable growth kinetics due to adaptation to the environment2. Besides, λmax is 
shown to be controlled by the abundance of growth-controlling proteome and the proteome cost per unit increase 
of growth rate. Finally, we propose that a proper connection of local and global physiological constraints may be 
essential for improving the predictive power of FBA models.

Results
Proteomic fraction occupied by the carbon-scavenging sector.  Following the treatment in several 
recent studies on proteome allocation14,19,25–27, we divide the overall cell proteome into four coarse-grained func-
tional sectors: carbon-scavenging sector C that comprises enzymes for importing extracellular carbohydrate, 
energy biogenesis sector E that consists of enzymes used for respiration and (aerobic) fermentation, biomass 
synthesis sector BM that accounts for ribosomal proteins and enzymes carrying anabolic fluxes, and an offset 
sector Q that contains other proteins whose abundance do not vary with the fluxes in the above three sectors 
(Fig. 1a). The summation of the fractions of all sectors (i.e. , , ,C E BM Qφ φ φ φ ) equals to one

1 (1)C E BM Qφ φ φ φ+ + + =

Let the maximum amount of proteome attainable to C, E and BM sectors be φmax
g , which corresponds to the 

minimum size of the Q sector, Qminφ . For cells striving for maximum growth,

φ φ φ φ φ+ + = − =1 (2)C E BM Qmin max
g

This global constraint is coupled to another proteome constraint that was established previously as a key 
mechanism governing the overflow metabolism in E. coli14,28

φ φ φ+ ≤ (3)E BM max
o

max
oφ  denotes the maximum amount of proteome attainable to energy production and biomass synthesis. 

Equations (2 and 3) were used to derive two concise proteome allocation constraints (Eqs. (16 and 17), Methods), 
which were integrated into the E. coli metabolic network as additional rows. The resulted proteome 
allocation-constrained FBA model forms a mixed integer liner programing (MILP) problem (Supplementary 
Text). Determination of model parameters is detailed in Supplementary Text. FBA simulations were performed 
using the integrated model with extracellular glucose concentration as input and maximising cell growth as the 
objective function. Simulated optimal growth rate (μ), carbon uptake rate (vc), acetate production rate (vf) and 
tricarboxylic acid cycle flux (vr) at μ, along with proteome cost parameters (defined in Eqs. (14–16)) were used to 
calculate the distribution of proteome sectors (defined in Eq. (2)) at different growth rates (Fig. 2a,b). Simulation 
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results show that Cφ  gradually decreases as growth rate increases until it reaches a minimum level φ( )Cmin , which 
is equal to the gap between φmax

g  and max
oφ :

when, (4a)C Cmin acφ φ λ λ> <

φ φ φ φ λ λ= = − ≥when, (4b)C Cmin max
g

max
o

ac

The growth rate at which φC reaches its lower bound is corresponding to the threshold growth rate λac, above 
which acetate overflow occurs (Fig. 2a,b). When growth rate exceeds λac the composition of Eφ  changes from the 
enzymes for pure respiration to those for a combination of fermentation and respiration (Fig. 1a). The predicted 
decline of φC is supported by the observed upregulation of catabolic genes under carbon limitation25. We did not 
find experimental evidence for a non-zero φCmin. However combining Eqs. (2 and 3) gives C max

g
max
oφ φ φ≥ − , 

which in theory implies a positive value of φCmin given φ φ>max
g

max
o .

Predictions of glucose uptake rate and the acetate overflow.  It has been shown that the incorpora-
tion of Eq. (3) into a metabolic model of E. coli enables the prediction of the acetate overflow at λ λ≥ ac

28. 
Assuming a linear relationship between a proteome fraction and the metabolic flux it processes25, the C sector 
could be modelled as

φ = wv (5)C c c

where vc is the carbon uptake flux. The linear coefficient wc denotes the enzyme cost per unit carbon influx, which 
has been proposed to be a function of the environmental substrate levels, derived from the Michaelis-Menten 
equation19

Figure 1.  Schematic diagram of the proteome allocation model. (a) The overall proteome comprises four 
sectors, including carbon-scavenging φC, energy biogenesis φE, biomass synthesis φBM and growth-independent 
offset φQ. The enzymatic cost per unit flux of each sector is calculated by the ratio between proteome abundance 
and the corresponding flux. (b) The evolution of proteome component at increased growth rate. Before acetate 
overflow, BM and E sectors increase with growth rate while the C sector continuously declines; The E sector 
comprises only respiration (marked in yellow). At λ λ= ac, φ φ=E r reaches the highest value. At higher growth 
rates, the E sector starts to decline to save space for the increase of the BM sector and becomes a mixture of 
fermentation and respiration (marked with a mixture of yellow and green); the C sector reaches its lower bound 
and stays constant.
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The constant wc,0 represents the minimum enzyme cost per unit carbon influx; [g] is the glucose concentration, 
where glucose is taken as a representative substrate; Km,g is the Michaelis constant. We determined the value of wc,0 
using strain-specific cell culture data (Supplementary Text); with reported values of Km,g we were subsequently 
able to compute wc as a function of [g] (Supplementary Eqs. (S36 and S37)). Coupling Eq. (6) with the proteome 
allocation constraints (Eqs. (16 and 17)), the glucose uptake rate, acetate production rate and optimal growth 
rate of two E. coli strains were predicted by specifying [g] (as opposed to setting glucose influx as pre-determined 
input12) and maximizing the growth rate. Simulation results agree well with the experimental data (Fig. 3a–d).

λmax is a function of proteome resource and proteome cost.  Combining the proteome allocation 
constraints and the established w g[ ]c −  correlation (Eq. (6)) with additional linear assumptions for the vc λ−  
pair (Supplementary Text), we have derived

λ φ= p/ (7)max growth growth

growthφ  represents the maximal fraction of the growth-controlling proteome, and pgrowth is the proteome cost per 
unit increase of growth rate. Equation (7) is in line with the previous proposal that λmax is closely related to the 
protein synthesis mechanism4. During non-overflow growth λ λ<( )ac , we show that (Supplementary Eqs. 
(S16–S21))

∑φ φ φ= −
(8)growth max

g

i
i atpm,

p p
(9)growth

i
i∑=

Figure 2.  Simulated distribution of proteome sectors φC, rφ , fφ  and BMφ  against different growth rates for E. coli 
NCM3722 (a) and ML308 (b); and simulated change of the E sector ( )Eφ  and summation of E and BM sectors 
φ φ+( )E BM  for NCM3722 (c) and ML308 (d). φr and φf  are E sector components. The dashed line indicates the 

onset of acetate overflow. λac is the threshold growth rate, above which acetate overflow occurs.
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φi atpm,  is the proteome fraction of sector i occupied by non-growth-associated maintenance; pi is the proteome 
cost of sector i per unit increase of growth rate; i represents C, E, or BM sector. During overflow growth λ λ≥( )ac , 
we show that (Supplementary Eqs. (S22–S24))

φ φ= ′ (10)growth c

=p p (11)growth c

φ′c denotes the fraction of the proteome allocable to the carbon-scavenging sector (adjusted with an off-set to 
Cminφ , see Supplementary Eq. (S22)). Equations (10 and 11) imply that in the overflow region λmax can be dictated 

solely by the characteristics of the C sector.
The above results suggest two ways to improve cell growth: increase growthφ  or decrease pi. φgrowth could be ele-

vated by reducing maintenance or eliminating the expression of useless proteins. However, it might be difficult to 
directly modify φgrowth as it is more or less an intrinsic feature of a cell. Reducing pi could be more realistic in 
synthetic biology. In this work pc could gradually reduce upon the decline of wc at increased growth rate 
(Supplementary Eqs. (S19 and S23) and Supplementary Fig. S1). pE was shown to change from positive to negative 
due to varied φE against growth rate correlation before and after λac (Fig. 2c,d). The variability of pi could result 
from two mechanisms: the cell upregulates catabolic genes under carbon limitation (leads to variable pc) and 

Figure 3.  Comparison between the model simulation and experimental data of the growth of E. coli in glucose-
limited cultures. (a) Comparison between predicted and measured acetate excretion rate. Experimental data for 
NCM3722 were obtained from Fig. 1 of ref. 14; experimental data for ML308 were obtained from Table 7 of ref. 52.  
(b) Comparison between predicted and measured glucose uptake rate. Experimental data for NCM3722 were 
obtained from Fig. 3B of ref. 19; experimental data for ML308 were obtained from Table 7 of ref. 52 and Fig. 3b of 
ref. 53. (c) Comparison between predicted and measured specific growth rate against glucose concentration profile 
for NCM3722. Experimental data were obtained from SI Fig. 1 of ref. 51. (d) Comparison between predicted and 
measured specific growth rate against glucose concentration profile for ML308. Experimental data were obtained 
from Fig. 1 of ref. 34. Solid lines in (c,d) are actual model predictions; dashed lines are presented to show the model 
prediction in the region where the model is not applicable. Simulation results of optimal growth rate, glucose uptake 
rate and acetate production rate were obtained in FBA simulations of the proteome allocation-integrated metabolic 
model. In all simulations, the extracellular glucose concentration was specified as input and the growth rate was 
maximised.
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changes its metabolic strategies under different culture conditions (leads to variable pE). The latter is governed by 
the presence of alternative pathways. We could infer that if a cell carries multiple pathways of a similar biological 
function (e.g. energy biogenesis) but with distinct enzyme (or protein) costs, the cell might be able to improve its 
growth via directing more metabolic flux to the enzymatically low-cost pathways. This could help design syn-
thetic microorganisms with potentially higher robustness and fitness to the growth environment. A recent study 
also predicted that improved enzyme activity of energy pathways leads to a higher growth rate29, which supports 
the above suggestions.

Ks depends on the interplay between fractions of proteome sectors and affinity of transport 
enzymes.  While λmax unambiguously refers to the highest specific growth rate a cell can achieve, the biolog-
ical meaning of Ks is less clear. Often taken as a mathematical analogy to the Michaelis-Menten enzyme kinet-
ics, the Monod constant Ks seems to share some link with the Michaelis constant for substrate transport Km,g. 
This might explain why the Monod growth kinetics is sometimes mistermed as “Michaelis-Menten kinetics” for 
describing growth-associated bioprocesses2. While the derivation of the Monod equation is strictly empirical30, 
Monod himself raised interesting comments between Ks and Km,g: (i) ‘the value of Ks should be expected to bear 
some more or less distant relation to the apparent dissociation constant of the enzyme involved in the first step 
of breakdown of a given compound’; (ii) ‘since a change of conditions affecting primarily the velocity of only 
one rate-determining step will, in general (but not necessarily), be only partially reflected in the overall rate, one 
might expect Ks values to be lower than the corresponding values of the Michaelis constant of the enzyme catalyz-
ing the reaction’1. Essentially Monod suggested that Ks could be a function of Km,g and that Ks should be generally 
smaller than Km,g. In the past twenty years several attempts have been made to explore the physical meaning of 
Ks. One interpretation is that 1/Ks relects the overall affinity of a cell to a substrate2. A later study suggests that Ks 
is a function of the overall change of free energy of the microbial growth process31. More recently, Ks was related 
to Km,g via investigating the control of the transport step on the specific growth rate30. In this work, we explicitly 
derived that Ks relates to Km,g via a proportional factor δ (Supplementary Eqs. (S15) and (S26–S29))

δ=K K (12)s m g,

δ
λ λ

λ λ
=








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∑
< <
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p

when

when
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The discrete feature of δ leads to a (upward) step change of Ks at the acetate switch ( μ=K M5s NCM, 3722  and 
K M12s ML, 308 μ=  for λ λ< ac; K M15s NCM, 3722 μ=  and μ=K M20s ML, 308  for acλ λ≥ ), which perfectly vali-
dates Monod’s proposition that =K f K( )s m g,  and ≤K Ks m g, . In fact, it has been noted that Ks values for E. coli 
grown with glucose vary significantly in different studies or different growth conditions, and there has been a lack 
of a satisfactory explanation of why the presumably constant Ks spans across such a wide range32. The discrete 
variable δ provides a simple explanation to this long-lasting problem: under strong carbon limitation, the cell 
benefits from the metabolic strategy where all carbon consumed for energy production is metabolized through 
respiration; p p p p/( ) 1c c E BMδ = + + <  (Supplementary Eq. (S28)) suggests the relative importance of C, E and 
BM sectors in dictating the cell’s overall affinity to the growth-controlling substrate. When substrate becomes 
sufficient which potentially allows the cell to grow at a rate beyond a threshold, it becomes more advantageous for 
a cell to switch to a metabolic strategy where a significant portion of carbon consumed for energy production is 
processed through the proteome-efficient acetate pathway. In this case, the C sector touches its lower bound and 
decouples from E and BM sectors, δ = =p p/ 1c c  (Supplementary Eq. (S29)). Essentially, δ reflects the metabolic 
state of a cell. In principle, if a cell possesses a number of metabolic strategies, δ would hold the same number of 
discrete values, each leading to a distinct value of the apparent affinity constant Ks. This mechanism could be the 
underlying reason of the observed large variation in Ks under different culture conditions. Overall, our theoretical 
model indicates that Ks reflects the combined effect of the local characteristics of the carbon transport system and 
the overarching interplay between carbon-scavenging and other growth-related functions.

Discussion
In this work, we modified the classic FBA model (constrained primarily by the mass and energy balance) via 
embedding the coarse-grained proteome allocation constraints with an intention to reveal the potential mecha-
nistic nature of the empirical growth kinetics proposed by Monod seventy years ago. By doing so, we showed 
theoretically a non-zero lower bound of the carbon-scavenging sector, which differs from the previous notion that 
φC could continuously decrease towards zero as growth rate increases19. Under carbon limitation, it seems to be 
agreeable that φ φ+E BM increases with growth rate26,27 and reaches a plateau (defined by max

oφ ) where the acetate 
overflow occurs so that more proteome could be allocated to biomass synthesis as required for rapid growth14. 
Consequently, the rest of the proteome ( )C Qφ φ+  has to decrease and then levels33. If φQ remains constant, taking 
for example its minimum value ( )Qminφ  as considered in this work for cells striving for maximum growth, the size 
of the level end of the φ φ+( )C Q  profile will be φ φ+( )Cmin Qmin . We argue that in this level sum, the contribution 
of φCmin is unlikely to be zero, given the significant carbon influx to sustain the high rate of biomass synthesis and 
energy production under overflow conditions. On the maximum value of φC ( )Cmaxφ , our parameter estimation 
based on data assembled from literature (Supplementary Table S1) determined φ = .0 37Cmax  for NCM3722 and 
φ = .0 77Cmax  for ML308 (φ φ≈Cmax max

g , determined by extrapolating to zero growth rate, also see Eq. (2) and 
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Fig. 2a,b). These specific values are affected by a number of factors, including particularly (i) the assumed value 
for φmax

o  (0.19, previously suggested for E. coli NCM372214) and (ii) the value of Ks estimated from cell culture data 
(Supplementary Text and Supplementary Eqs. (S30) and (S34 and S35)). In reality, the former could be 
strain-dependent, while the latter is known to be sensitive to growth conditions and culture history4,32,34. 
Therefore, the specific results of parameterization from this work were to support the illustration of the overall 
modelling approach; their biological significance needs to be interpreted with caution.

In dynamic FBA (DFBA), vc (uptake rate of growth-limiting carbon source) is generally determined by applying 
the Michaelis-Menten kinetics for substrate transport35–39. An inherent issue with this approach is that the kinetic 
parameters are normally valid only for a specific substrate uptake pattern, which however may vary depending on 
the variety of fermentative by-products (e.g. acetate, formate, ethanol or a mixture of them)10 or more generally on 
the physiological state. Therefore, using Michaelis-Menten kinetics alone (with a single set of kinetic parameters) 
to predict the carbon intake suffers from a very limited scope of applicability – it cannot depict a physiological state 
that deviates from the state that it was originally fitted to. In this work, this drawback is rectified by introducing the 
proteome allocation principle, which couples carbon transport with other growth-associated metabolism. Through 
a fully parameterized −w g[ ]c  correlation, we compute the variable wc given the environmental glucose concentra-
tion (as opposed to directly manipulating wc

19). The computable wc is involved in the proteome allocation con-
straints, which allows us to simultaneously predict the glucose uptake rate, specific growth rate and acetate 
overflow upon varying the environmental glucose level. The coupling of the local metabolic capacity (for carbon 
transport) and the global regulatory mechanism (on proteomic resource allocation) was shown to be essential in 
improving the predictive power of FBA models. It should be noted that, while in this work we have adopted a single 
Km,g for the carbon transport system, it is known that in E. coli, Km,g differs from different transporters which could 
be active either exclusively or in parallel40,41. When using a single (aggregated) Km,g becomes inadequate, a more 
accurate representation of the carbon transport could be achieved by explicitly modelling individual transporters 
(see below for further discussion). Besides, the proteome allocation principle could also be revised to investigate 
proteomic burdens imposed by the expression of heterologous genes42.

In this work, we used the core metabolic model of E. coli to demonstrate the effectiveness of proteome alloca-
tion constraints (Eqs. (16 and 17)) in dictating bacterial growth strategies. However, the proposed modelling 
framework can be implemented with more detailed genome-scale metabolic models (GEMs)43–45 to explore bio-
logical insights for E. coli and other microorganisms with similar putative mechanisms. The key advance of the 
GEM over the core model is the extensive information of metabolic reactions originating from genome annota-
tion46. Pathways such as alternate carbon metabolism, amino acid metabolism, nucleotide metabolism, cofactor 
biosynthesis and fatty acid biosynthesis are exclusively modelled in GEMs. To fuse the proteome allocation con-
straints into a GEM, particular attention is needed for the choice of fluxes underlying vc, vf and vr, as well as the 
determination of proteome cost parameters ∗wc , ∗wf  and ∗wr .

We first focus on ∗wc  and vc. In the core model, glucose is the sole carbon source to support growth and is 
imported via phosphoenolpyruvate(PEP):pyruvate (PYR) phosphotransferase system (PTS). In this case vc is 
related to a one-step transport flux (GLCpts). However in E. coli GEM iAF1260, glucose can be transported not 
only via glucose-specific PTS components, but also via alternative routes such as glucose-specific ABC system, 
glucose:proton symporter or simply via diffusion43. In iAF1260, glucose import (from extracellular glucose to 
cytosolic glucose-6-phosphate) is carried out by multiple enzymatic steps, e.g. first via the glucose:proton sym-
porter then through hexokinase, instead of a simplified one-step process. Furthermore, 174 carbon sources were 
predicted to potentially support growth in iAF1260, meaning that growth simulation is not limited to glucose 
minimal media. The improved details of the metabolic network imply that (a) when modelling cells grown on 
glucose, vc may need to be coupled to multiple glucose transporters and (b) when modelling cells grown on alter-
native or mixed carbon sources, vc needs to correspond to various carbohydrate transport pathways. Accompanying 
a more detailed account of substrate transport fluxes, the (normalised) proteome cost parameter for carbon trans-
port wc

∗ has to be revised. We have shown in this work that ∗wc  is a function of max
oφ , wc ,0 and Km,g (Eqs. 6 and 16) and 

that wc,0 is a function of φmax
o  and Km,g (Supplementary Eq. (S34)); combining the two makes ∗wc  a function of Km,g 

(the Michaelis constant for glucose transport). When multiple transporters exist, as in GEMs, a set of Km,g (for 
glucose) or multiple sets of Km,s (for non-glucose carbon sources) would be required for active transporters in the 
specific growth conditions. Correspondingly, ∗wc  will be calculated from the combination of Km,g for cells grown on 
a glucose minimal medium. For cells grown on a complex carbon medium, multiple wc

∗ will be needed (to match 
distinct transport fluxes) and should be determined by multiple sets of Km,s. In short, integrating the proteome cost 
constraints into GEM asks for more information of kinetic parameters of carbon transport.

Furthermore, the increased flux variability and potential reactions running in parallel in GEMs may alter the 
choice of representative fluxes of fermentation and respiration pathways. For example, vf and vr in iAF1260 can 
become enolase (ENO) and citrate synthase (CS)42. Changed vf and vr will subsequently affect the estimation of 
proteome cost parameters wf

∗ and wr
∗ (Supplementary Text).

In conclusion, our model offers a latest mechanistic interpretation of the seventy-year old Monod growth 
kinetics: the maximum specific growth rate of a microorganism could be governed by the abundance of 
growth-controlling proteome and the associated proteome cost per unit increase of growth rate. The Monod con-
stant Ks was shown to be quantitatively related to not only the enzymatic affinity for substrate transport Km,g but 
also the metabolic state of a cell, which might explain the large variations in reported Ks values. Our analysis also 
suggests that a microorganism with a lower maintenance cost, higher fraction of growth-controlling proteome 
and alternative pathways with different enzyme costs likely competes successfully in a changing environment. 
Finally, the proposed modelling concept eliminates the need for treating substrate intake as an input in FBA 
simulation, which demonstrates the potential of coupling local and global physiological constrains in predictive 
modelling for systems biology and synthetic biology.
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Methods
Modelling proteome allocation in E. coli.  Following the assumption that the fraction of a proteome 
sector is proportional to the metabolic flux it processes26, Eq. (2) can be rewritten as

λ φ+ + + =wv w v w v b (14)c c f f r r max
g

wi is the enzyme cost per unit flux processed by sector i (i = C, f or r). b is the proteome cost per unit biomass 
synthesis flux. vc is the carbon transport flux. For E. coli grown with glucose as the single growth-controlling sub-
strate, vc is the glucose uptake flux which is normally processed by the phosphoenolpyruvate:sugar phosphotrans-
ferase system (PTS)40,47. vf (vr) is the fermentation (respiration) flux; λ is the biomass synthesis flux, which in this 
work is equal to the specific growth rate. From ref. 28, the fraction of proteome attainable to energy biogenesis and 
biomass synthesis is constrained by an upper bound φmax

o

λ+ + ≤∗ ∗ ∗w v w v b 1 (15)f f r r

where ≡ =
φ

∗w i f or r( )i
wi

max
o  and b b

max
o≡

φ
∗  are the (normalised) proteome cost per unit flux. Dividing both sides 

of Eq. (14) by φmax
o

λ
φ
φ

+ + + =∗ ∗ ∗ ∗w v w v w v b
(16)c c f f r r

max
g

max
o

Substituting Eq. (15) into Eq. (16), under acetate overflow (hence equal sign applied to Eq. (15)

φ
φ

= −∗w v 1
(17)c c

max
g

max
o

It follows that

φ φ φ= − (18)Cmin max
g

max
o

φCmin is the minimum proteome fraction allocated to the carbon-scavenging sector (occurring during acetate 
overflow). max

g
max
oφ φ>  (due to the inclusion of the C sector). Equations (16 and 17) are the proteome allocation 

constraints adopted in model simulations (see below).

Deriving the hyperbolic λ g− [ ] correlation.  Starting from the Michaelis-Menten kinetics together with 
the proteome allocation embedded FBA model presented in this work, we have derived a hyperbolic g[ ]λ −  
correlation that is comparable to the Monod equation and reveals the potential biological mechanisms that 
underpin the phenomenological Monod parameters. Detailed mathematical derivation is provided in the 
Supplementary Text.

Determination of GAM and ATPM.  In FBA models, the energy consumption is dictated primarily via 
growth-associated maintenance (GAM) and non-growth associated maintenance (ATPM), both of which are 
difficult to quantify accurately43. GAM and ATPM could also vary between different species and strains (BiGG 
database, http://bigg.ucsd.edu/). Therefore we modified the default values of GAM and ATPM according to 
strain-specific energetic data (Supplementary Table S2). To do so we associated GAM with the molar growth 
yield (namely the true growth yield YG

48). ATPM is linked to the maintenance coefficient (m), which corresponds 
to the rate of substrate uptake extrapolated to zero growth rate.

Model simulation.  The following linear programing problem was solved in FBA simulations of the growth 
of E. coli under different extracellular glucose concentrations. FBA was performed based on the core E. coli met-
abolic model49.

λ

λ

λ φ φ

φ φ λ λ

=
≤ ≤

+ + ≤

+ + + =

= − ≥

∗ ∗ ∗

∗ ∗ ∗ ∗

∗
( )

maximise
subject to Sv

lb v ub
w v w v b

w v w v w v b

w v if

0

1

/

/ 1 ( ) (19)

i

f f r r

c c f f r r max
g

max
o

c c max
g

max
o

ac

vc is represented by the first enzymatic step of glycolysis, GLCpts, vf is the acetate synthesis reaction ACKr, vr 
adopts the first reaction after biomass withdrawal in TCA cycle, AKGDH. λ is growth rate and refers to the bio-
mass reaction. λac is the threshold growth rate, above which acetate overflow occurs. The determination of model 
parameters ( ∗wc , wf

∗, ∗wr , ∗b , φmax
o  and φmax

g ) is detailed in the Supplementary Text. The lower bound of glucose and 
oxygen exchange fluxes were set to −1000 to avoid artificial control and to allow prediction of their uptake flux. 
Enzymatic reactions ICL, MALS, FRD7 were switched off under aerobic-glucose conditions according to43. 
Irrelevant exchange fluxes around the pyruvate node (EX_pyr(e), EX_lac(e), EX_acald(e), EX_etoh(e)) and the 
α-ketoglutarate node (EX_glu_L(e) and EX_akg(e)) were closed. Maximum carbon flow to the PP pathway was 
limited to 67% and 42% of the overall carbon intake for ML308 and NCM3722, respectively according to ref. 28. 
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Extracellular glucose concentration was adopted as sole model input (varies from 0.1–75 μM for NCM3722 and 
0.1–26 μM for ML308). The optimisation model was converted to an MILP problem and solved using the Gurobi 
optimizer (see Supplementary Text for details). FBA was solved via COBRA Toolbox50. All simulations were per-
formed in MATLAB R2016a. Experimental data used to compare with the simulation results were obtained from 
Fig. 1 of ref. 14, Fig. 3B of ref. 19 and SI Fig. 1 of ref. 51 for NCM3722 and from Table 7 of ref. 52, Fig. 3b of ref. 53 and 
Fig. 1 of ref. 34 for ML308.

Data availability
All model equations and parameter values are included in the main text or in the Supplementary Information. 
The MATLAB code for running simulations and the generated datasets in this study are available upon request 
from the corresponding author.

Received: 20 October 2019; Accepted: 24 February 2020;
Published: xx xx xxxx

References
	 1.	 Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).
	 2.	 Kovárová-Kovar, K. & Egli, T. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-

substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998).
	 3.	 Tsipa, A., Koutinas, M., Usaku, C. & Mantalaris, A. Optimal bioprocess design through a gene regulatory network – Growth kinetic 

hybrid model: Towards replacing Monod kinetics. Metab. Eng. 48, 129–137 (2018).
	 4.	 Orhon, D., Cokgor, E. U., Insel, G., Karahan, O. & Katipoglu, T. Validity of Monod kinetics at different sludge ages – Peptone 

biodegradation under aerobic conditions. Bioresour. Technol. 100, 5678–5686 (2009).
	 5.	 Pala-Ozkok, I. et al. Characteristics of mixed microbial culture at different sludge ages: Effect on variable kinetics for substrate 

utilization. Bioresour. Technol. 126, 274–282 (2012).
	 6.	 Wick, L. M., Weilenmann, H. & Egli, T. The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is 

reproducible at large but not at small population sizes and can be explained with Monod kinetics. Microbiology 148, 2889–2902 
(2002).

	 7.	 Franchini, A. G. & Egli, T. Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-
limited continuous culture conditions. Microbiology 152, 2111–2127 (2006).

	 8.	 Füchslin, H. P., Schneider, C. & Egli, T. In glucose-limited continuous culture the minimum substrate concentration for growth, s 
min, is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally 
abundant bacterium. ISME J. 6, 777 (2012).

	 9.	 Insel, G. et al. Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic 
cultivation conditions. Biotechnol. Bioeng. 96, 94–105 (2007).

	10.	 Varma, A., Boesch, B. W. & Palsson, B. Ø. Stoichiometric interpretation of Escherichia coli glucose catabolism under various 
oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473 (1993).

	11.	 Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).
	12.	 Varma, A. & Palsson, B. Ø. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in 

wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).
	13.	 Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst 

Biol 5 (2009).
	14.	 Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).
	15.	 Thiele, I., Jamshidi, N., Fleming, R. M. T. & Palsson, B. O. Genome-scale reconstruction of escherichia coli’s transcriptional and 

translational machinery: A knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol. 5 
(2009).

	16.	 Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its 
metabolic activity. P. Natl. Acad. Sci. USA. 104 (2007).

	17.	 Zhuang, K., Vemuri, G. N. & Mahadevan, R. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol. 7 (2011).
	18.	 Goelzer, A. & Fromion, V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim. Biophys. Acta (BBA)-General 

Subj. 1810, 978–988 (2011).
	19.	 Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E. Constrained Allocation Flux Balance Analysis. PLoS Comput. Biol. 

12 (2016).
	20.	 Thiele, I. et al. Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of 

Codon Usage. PLoS One 7, e45635 (2012).
	21.	 Lerman, J. A. et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat. Commun. 3, 929 

(2012).
	22.	 O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R. & Palsson, B. O. Genome-scale models of metabolism and gene expression 

extend and refine growth phenotype prediction. Mol. Syst. Biol. 9, 693–693 (2013).
	23.	 Nilsson, A., Nielsen, J. & Palsson, B. O. Metabolic models of protein allocation call for the kinetome. Cell Syst. 5, 538–541 (2017).
	24.	 Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of Cell Growth and Gene Expression: Origins 

and Consequences. Science 330, 1099–1102 (2010).
	25.	 You, C. et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500, 301–306 (2013).
	26.	 Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 

(2015).
	27.	 Peebo, K. et al. Proteome reallocation in Escherichia coli with increasing specific growth rate. Mol. BioSyst. 11, 1184–1193 (2015).
	28.	 Zeng, H. & Yang, A. Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential 

proteomic efficiencies of energy pathways. BMC Syst. Biol. 13, 3 (2019).
	29.	 Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc. Natl. Acad. Sci. 116, 

17592–17597 (2019).
	30.	 Snoep, J. L., Mrwebi, M., Schuurmans, J. M., Rohwer, J. M. & de Mattos, M. J. Control of specific growth rate in Saccharomyces 

cerevisiae. Microbiology 155, 1699–1707 (2009).
	31.	 Liu, Y. A simple thermodynamic approach for derivation of a general Monod equation for microbial growth. Biochem. Eng. J. 31, 

102–105 (2006).
	32.	 Liu, Y. Overview of some theoretical approaches for derivation of the Monod equation. Appl. Microbiol. Biotechnol. 73, 1241–1250 

(2007).
	33.	 Vazquez, A. & Oltvai, Z. N. Macromolecular crowding explains overflow metabolism in cells. Sci. Rep. 6, 31007 (2016).

https://doi.org/10.1038/s41598-020-61174-0


1 0Scientific Reports |         (2020) 10:4283  | https://doi.org/10.1038/s41598-020-61174-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

	34.	 Koch, A. L. & Houston Wang, C. How close to the theoretical diffusion limit do bacterial uptake systems function? Arch. Microbiol. 
131, 36–42 (1982).

	35.	 Hanly, T. J. & Henson, M. A. Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol 
production from glucose/xylose mixtures. Biotechnol. Biofuels 6, 44 (2013).

	36.	 Henson, M. A. & Hanly, T. J. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 8, 214–229 (2014).
	37.	 Hjersted, J. L. & Henson, M. A. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance 

models. Biotechnol. Prog. 22, 1239–1248 (2006).
	38.	 Hjersted, J. L., Henson, M. A. & Mahadevan, R. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol 

production in fed-batch culture. Biotechnol. Bioeng. 97, 1190–1204 (2007).
	39.	 Hanly, T. J. & Henson, M. A. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch cultures 

of S. cerevisiae and S. stipitis. Biotechnol. Bioeng. 111, 272–284 (2014).
	40.	 Gosset, G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar 

phosphotransferase system. Microb. Cell Fact. 4, 14 (2005).
	41.	 Stock, J. B., Waygood, E. B., Meadow, N. D., Postma, P. W. & Roseman, S. Sugar transport by the bacterial phosphotransferase 

system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J. Biol. Chem. 257, 14543–14552 (1982).
	42.	 Zeng, H. & Yang, A. Quantification of proteomic and metabolic burdens predicts growth retardation and overflow metabolism in 

recombinant Escherichia coli. Biotechnol. Bioeng. (2019).
	43.	 Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and 

thermodynamic information. Mol. Syst. Biol. 3 (2007).
	44.	 Orth, J. D. et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol. 7, 535 (2011).
	45.	 Mo, M. L., Palsson, B. Ø. & Herrgård, M. J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. 

BMC Syst. Biol. 3, 37 (2009).
	46.	 Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 

(2010).
	47.	 Steinsiek, S. & Bettenbrock, K. Glucose Transport in Escherichia coli Mutant Strains with Defects in Sugar Transport Systems. J. 

Bacteriol. 194, 5897–5908 (2012).
	48.	 Pirt, S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. B 163, 224–231 (1965).
	49.	 Orth, J. D., Palsson, B. Ø. & Fleming, R. M. T. Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli 

Metabolic Model as an Educational Guide. EcoSal Plus 4 (2010).
	50.	 Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat. 

Protoc. 6, 1290 (2011).
	51.	 Bren, A., Hart, Y., Dekel, E., Koster, D. & Alon, U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol. 7, 27 

(2013).
	52.	 Holms, H. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19, 85–116 (1996).
	53.	 Noel, J. T., Cox, B. & Narang, A. Identification of the growth-limiting step in continuous cultures from initial rates measured in 

response to substrate-excess conditions. arXiv Prepr. q-bio/0509013 (2005).

Acknowledgements
H.Z. is sponsored by the China Scholarship Council (CSC) through a Ph.D. scholarship.

Author contributions
H.Z. and A.Y. designed the research; H.Z. performed simulation and data analysis; H.Z. and A.Y. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-61174-0.
Correspondence and requests for materials should be addressed to A.Y.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-61174-0
https://doi.org/10.1038/s41598-020-61174-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Bridging substrate intake kinetics and bacterial growth phenotypes with flux balance analysis incorporating proteome alloca ...
	Results

	Proteomic fraction occupied by the carbon-scavenging sector. 
	Predictions of glucose uptake rate and the acetate overflow. 
	λmax is a function of proteome resource and proteome cost. 
	Ks depends on the interplay between fractions of proteome sectors and affinity of transport enzymes. 

	Discussion

	Methods

	Modelling proteome allocation in E. coli. 
	Deriving the hyperbolic correlation. 
	Determination of GAM and ATPM. 
	Model simulation. 

	Acknowledgements

	Figure 1 Schematic diagram of the proteome allocation model.
	﻿Figure 2 Simulated distribution of proteome sectors , , and against different growth rates for E.
	Figure 3 Comparison between the model simulation and experimental data of the growth of E.




