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Identification of the key genes 
and pathways involved in the 
tumorigenesis and prognosis of 
kidney renal clear cell carcinoma
Hao cui1,2,7, Hongjian Shan3,7, Michael Zhe Miao4, Zhiguo Jiang1, Yuanyuan Meng1, 
Ran chen5, Longzhen Zhang1,2* & Yong Liu1,6*

Kidney renal clear cell carcinoma (KIRC) is the most common renal cell carcinoma (RCC). However, 
patients with KIRC usually have poor prognosis due to limited biomarkers for early detection and 
prognosis prediction. In this study, we analysed key genes and pathways involved in KIRC from 
an array dataset including 26 tumour and 26 adjacent normal tissue samples. Weighted gene co-
expression network analysis (WGCNA) was performed with the WGCNA package, and 20 modules 
were characterized as having the highest correlation with KIRC. The upregulated genes in the tumour 
samples are involved in the innate immune response, whereas the downregulated genes contribute 
to the cellular catabolism of glucose, amino acids and fatty acids. Furthermore, the key genes were 
evaluated through a protein-protein interaction (PPI) network combined with a co-expression network. 
The comparatively lower expression of AGXT, PTGER3 and SLC12A3 in tumours correlates with worse 
prognosis in KIRC patients, while higher expression of ALOX5 predicts reduced survival. Our integrated 
analysis illustrated the hub genes involved in KIRC tumorigenesis, shedding light on the development 
of prognostic markers. Further understanding of the function of the identified KIRC hub genes could 
provide deep insights into the molecular mechanisms of KIRC.

The latest edition of the World Cancer Report shows that kidney cancer is the ninth most common cancer in men 
and the fourteenth most common cancer in women1. In 2018, there were more than 400,000 (2.2%) new cases 
and approximately 175,000 deaths from kidney cancer. There is also a clear trend that the rate of new kidney can-
cer diagnoses is increasing. KIRC is the most common renal carcinoma2. Moreover, more than 30% of patients 
diagnosed with KIRC experience metastasis. Among the deadliest cancer types, the five-year survival rate for 
metastatic KIRC is no more than 10%, with a median survival of only 13 months3. It has been widely acknowl-
edged that the prognosis of patients with metastatic KIRC is extremely poor mainly because of the failure of early 
diagnosis and resistance to chemoradiotherapy4.

The pathogenesis of kidney cancer involves VHL, c-Met, BAP1, PBRM1 and other genes. Multiple targeted 
therapies have been implemented based on different molecular signatures, including agents against PDGF, VEGF, 
MET and immune checkpoint5. However, as KIRC exhibits heterogeneity, the efficacy of targeted therapies greatly 
varies among patients. Accordingly, the selection of individual therapeutic agents is a great challenge in clinical 
practice, so identifying novel biomarkers and predictive models for KIRC treatment is high on the agenda.

Systematic analysis of the KIRC gene signature to identify novel biomarkers of KIRC is necessary. It not 
only benefits KIRC diagnosis but also provides novel drug targets for KIRC treatment in the future. Gene 
co-expression network analysis has recently been employed to identify candidate genes associated with tum-
origenesis6. The connectivity among different candidate genes can also be evaluated by using weighted gene 
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co-expression network analysis (WGCNA). Based on a microarray dataset (GSE66272) extracted from the Gene 
Expression Omnibus database, we constructed a gene co-expression network as well as a protein-protein inter-
action (PPI) network to screen candidate genes involved in KIRC tumorigenesis. Four genes, including AGXT, 
PTGER3, SLC12A3 and ALOX5, revealed a strong correlation with KIRC development, as supported by survival 
analysis of the TCGA kidney cancer dataset and validated by RT-qPCR in an independent cohort of patients 
with primary KIRC.

Results
Identification of differentially expressed genes between KIRC patients and normal controls.  
The workflow of our study is shown in Fig. 1A. After data preprocessing and quality assessment by the WGCNA 
R package, no sample was removed from subsequent analysis in the training set (GSE66272), in which the 
expression matrices were obtained from 26 tumour and 26 adjacent normal tissue samples (Fig. 1B). Under the 
threshold of FDR < 0.05 and adjusted p value < 0.0001, a total of 8763 differentially expressed genes (DEGs) were 
screened out for subsequent analysis, with the the minimum log |FC| is 0.349. Among these DEGs, 4287 genes 
were upregulated and 4476 genes were downregulated in tumours (Supplementary Table S4).

GO and KEGG pathway analysis of DEGs. We classified all DEGs into clusters with the same GO terms 
and KEGG pathway functions through the DAVID website. As indicated by the GO term analysis results in 
Supplementary Table S2, the upregulated genes in tumours were mainly enriched in signal transduction, immune 
response, apoptotic process, innate immune response, and inflammatory response assembly, while the downreg-
ulated genes were enriched in the oxidation-reduction process, transport, transmembrane transport, intracellular 
signal transduction and metabolic process.

As shown in Supplementary Table S3, the upregulated DEGs were enriched in pathways in cancer, PI3K-Akt 
signalling pathway, HTLV-I infection, viral carcinogenesis, cytokine-cytokine receptor interaction, phagosome, 
tuberculosis, herpes simplex infection, systemic lupus erythematosus and influenza A, whereas the downregu-
lated DEGs were enriched in metabolic pathways, biosynthesis of antibiotics, carbon metabolism, valine, leucine 
and isoleucine degradation, glycine, serine and threonine metabolism, peroxisome, fatty acid degradation, pro-
tein digestion and absorption, PPAR signalling pathway and tight junction. Collectively, both KEGG and GO 
analyses strongly indicate that the expression of genes involved in immune responses was substantially increased, 
whereas the expression of genes associated with cellular catabolism was significantly reduced.

Figure 1. Study design and clustering dendrogram of the patient samples and clinical traits. (A) Flow diagram 
of the analysis procedure: data collection, preprocessing, analysis and validation. (B) Clustering was based on 
the expression data of the differentially expressed genes between KIRC (n = 26) and adjacent normal (n = 26) 
tissues. The red colour represents the tumour, metastasis and male. Colour intensity is proportional to tumour 
staging, grading, and age.
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Construction of weighted co-expression network to identify key modules. Fifty-two sam-
ples with clinical data were included in co-expression analysis without significant abnormal values (Fig. 1B). 
Before the construction of the weighted co-expression network, a weighted parameter of the adjacency function 
(soft-threshold β = 20) was selected to ensure a scale-free network (Fig. 2). A total of 8763 DEGs were used 
to construct weighted gene co-expression networks. Twenty co-expressed gene modules were detected by the 
method of dynamic tree cutting and merging similar modules (Fig. 3A), as can be visualized by a clustering den-
drogram. We found that all 20 modules showed a significant correlation with sample type (Fig. 3B) and exhibited 
high gene significance (Fig. 3C).

Functional enrichment analysis of the hub genes in WGCNA. Twenty modules were identified to 
be significantly associated with the clinical type of the samples. To obtain further insight into the function of 
the DEGs in KIRC, we performed GO and KEGG pathway enrichment analysis for the identified DEGs in the 
20 modules. The results of functional enrichment analysis in each module are depicted in Figs. 4 and 5 by using 
Gene Ontology and KEGG pathway enrichment analysis. Within the 20 modules, several BPs and pathways that 
are closely related to the occurrence of KIRC were enriched, including the mitotic cell cycle in the black mod-
ule (Fig. 4A); monovalent inorganic cation homeostasis (Fig. 4B) and response to hypoxia in the cyan module 
(Fig. 4C); and immune effector process (Fig. 4D), oxidation-reduction process (Fig. 4E) and circulatory system 
development (Fig. 4F). The genes were enriched in several signalling pathways, including the cell cycle in the 
black module (Fig. 5A), central carbon metabolism in cancer in the brown module (Fig. 5B), cytokine-cytokine 
receptor interaction in the green module (Fig. 5D), Ras signalling pathway in the pink module (Fig. 5E), etc. The 
HIF-1 signalling pathway was enriched in several modules, including the cyan, pink and lightyellow modules 
(Fig. 5C,E,F). These significantly enriched GO and KEGG pathway terms enable us to better understand the role 
of the DEGs in the tumorigenesis and prognosis of KIRC.

Hub gene identification through WGCNA and PPI. To identify hub genes, we first constructed a PPI 
network of the DEGs based on the STRING profile obtained from the STRING analysis tool. A total of 408 genes 
that reached the cutoff criterion (degree ≥ 10) were regarded as hub genes out of the DEGs. In this study, 20 
modules were significantly related to the types of samples. Defined by module connectivity, 282 hub genes in 
the co-expression network were identified in the 20 modules. As shown in Fig. 6, a total of 30 genes, including 
PTGER3, IDO1, GDA, ALOX5, SLC12A3, RUNX3, GPC5, SAMHD1, UPB1, CALML3, SELPLG, PKLR, PAG1, 
GNB4, INPP5D, TLR4, VCAN, SLC22A11, LOX, CCND2, AGXT, KCNJ10, GBP5, BCAT1, TGFB1, NEK2, 
PRODH2, HCLS1, ANGPT2 and BIRC3, were identified by both WGCNA and PPI network analysis and were 
then screened out for further validation.

Hub gene validation. Among the 30 candidate hub genes, we then screened out the expression of hub 
genes that were significantly increased or decreased compared to that in normal tissue in the training dataset by 
using GEPIA based on the TCGA database. Only four hub gene expression levels were proportional to the overall 
survival percentage, with p values less than 0.05. As shown in Fig. 7, we identified three genes (AGXT, PTGER3 
and SLC12A3) with lower mRNA levels in tumour samples (Fig. 7A–C), and patients with a high expression of 
these three genes exhibited prolonged survival (Fig. 7E–G). In contrast, ALOX5 demonstrated higher mRNA 
expression levels in tumours (Fig. 7D), and patients with high levels of ALOX5 expression had a low survival 
rate (Fig. 7H). We then collected 12 KIRC samples along with adjacent normal tissue samples to validate the 

Figure 2. Determination of the soft-thresholding power (β) in weighted gene co-expression network analysis 
(WGCNA). (A) Analysis of the scale-free topology model fitting index (R2, y-axis). (B) Mean connectivity for 
various soft-thresholding powers. The red Arabic numbers in the panels denote different soft thresholds. There 
is a trade-off between maximizing R2 and maintaining a high mean number of connections. Thus, we set β = 20.
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expression of the key hub genes in KIRC patients. Consistently, we found that ALOX5 was upregulated in the 
tumour samples, while AGXT, PTGER3, and SLC12A3 were downregulated in the tumour samples (Fig. 8A–D).

Discussion
Kidney cancers are a common group of chemotherapy-resistant diseases featured by various genetic changes. 
There are no obvious symptoms in the early stage of kidney cancer, and approximately 30% of patients have met-
astatic kidney cancer at the time of diagnosis. To discover new biomarkers and predictive models applicable for 
the early identification of patients who may respond to specific treatments, we integrated data from genome‐wide 
gene expression datasets to explore the molecular mechanism of KIRC at the systemic level. Through the analysis, 
we surprisingly found that the expression of innate immune response-associated genes is increased in KIRC, 
while the expression of genes involved in cellular catabolism is reduced. Further analysis pinpoints 4 key hub 
genes, AGXT, PTGER3, SLC12A3 and ALOX5, which are closely associated with the progression and prognosis 
of KIRC. Of importance, some identified DEGs are novel KIRC gene signatures, and their molecular functions in 
KIRC pathogenesis remain largely unknown.

By functional analysis, we found that a large number of upregulated genes were significantly enriched in the 
immune response and innate immune response (Supplementary Table S2), while the downregulated genes were 
enriched in the cellular catabolism of carbon sources (Supplementary Table S3). Of note, the glucose catabolic 
process and glucose catabolic process to pyruvate were concurrently enriched in two modules (Fig. 4B,C), indi-
cating that glucose metabolism is one of the major targets for KIRC-associated metabolic reprogramming. In 
addition, the PI3K-Akt signalling pathway, which promotes anabolism and inhibits catabolism7, was also mark-
edly enriched in KIRC (Supplementary Table S3). This finding is consistent with the overwhelming demands of 
cancer cells for biosynthesis and therefore facilitates cell proliferation. Thus, targeting basic metabolic abnormal-
ities in kidney cancer provides a unique opportunity to develop more effective treatments.

In the hub modules, we found that the genes were also enriched in the immune effector process, regulation 
of immune response, positive regulation of immune system process and innate immune response (Fig. 4D). 
RCC has been characterized as an immunogenic tumour8. Although it is strongly infiltrated by macrophages, 
T cells, dendritic cells (DCs) and natural killer (NK) cells, RCC generally fails to be eliminated due to the 
functional impairment of innate immune cells and adaptive immune cells9. Although many therapeutic strat-
egies focus on stimulating adaptive immunity, an increasing number of studies have discovered the potential 
anti-tumour role of innate immunity10. Several combination treatments have now been found to have important 
innate immune stimulatory features that contribute in important ways alongside adaptive immune effectors to 
controlling tumour progression. New immune checkpoints are emerging with key roles in regulating both the 
T cell response and innate immune response11,12. Combined treatment with the immune checkpoint inhibitors 
nivolumab plus ipilimumab has a significant effect on the overall survival rate of patients with intermediate- and 

Figure 3. Identification of modules associated with the tumorigenesis of KIRC. (A) Dendrogram of all 
differentially expressed genes clustered based on a dissimilarity measure (1-TOM). (B) Heatmap of the 
correlations between the module eigengenes and clinical traits of KIRC. (C) Distribution of average gene 
significance and errors in the modules associated with the occurrence of KIRC.
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high-risk advanced renal cancer, with an overall survival rate of 75% at 18 months13. However, the use of strat-
egies activating different components of the innate immune system is still in its infancy but might find a place 
in clinical oncology.

Among these real hub genes, AGXT was mainly enriched in the biosynthesis of antibiotics, carbon metabo-
lism, glycine, serine and threonine metabolism and peroxisomes in the KEGG pathway analysis (Supplementary 
Table S3). In particular, AGXT-encoded proteins are mainly located in peroxisomes and participate in 
β-oxidation14. Downregulated peroxisome pathways may result in oxidation-reduction processes and accumu-
lated fatty acids (Fig. 4E and Supplementary Table S2). Prostaglandin E2 (PGE2) can trigger mast cell activation, 
which can inhibit tumours by releasing IL-6 and TNF-α15 in a mechanism involving PTGER3, which plays an 
important role in suppression of cell growth, and its downregulation enhances colon carcinogenesis at a later 
stage and may oppose the pro-tumorigenic effects of PGE2 elevation and COX-2 overexpression in breast can-
cer16,17. SLC12A3 is significantly enriched in the transport term in GO biological processes (Supplementary 
Table S2). Activating SLC to increase the transport of chemotherapeutic drugs may become a new strategy for 
cancer treatment18. ALOX5 plays a crucial role in regulating the interaction between innate and adaptive immu-
nity19,20. M. Faronato’s study showed that ALOX5 protein levels were significantly increased in the majority of 
KIRCs (p < 0.001)21. In addition, their results suggest that ALOX5 pathway contributes to constitutive VEGF gene 
expression in KIRCs that have lost VHL function.

In conclusion, with the application of high-throughput sequencing, we now have a better understanding of 
the molecular hallmarks of cancer. Our study classifies the importance of some pathways related to KIRC, such as 
oncogenic metabolism and immune response. In addition, we used different strategies to identify new candidate 
genes, which may become a new target for cancer therapy in the future. However, this study still has some limi-
tations. The mechanisms underlying how these genes promote or inhibit cancer development remain unclear. In 
addition, the relationship between these four genes and tumour metastasis is also worth studying. Further molec-
ular biological experiments are needed to determine the mechanism of how these genes work.

Figure 4. GO enrichment analysis of the genes in modules significantly related to tumorigenesis. GO analysis  
was carried out on 20 identified modules, among which 6 modules with the highest correlation with tumorigenesis 
included (A) black module, (B) brown module, (C) cyan module, (D) green module, (E) lightyellow module, 
and (F) pink module. The size of the bubble indicates the enrichment score, while the colours represent 
enrichment significance.
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Methods
Data collection. The mRNA expression profile and related clinical data of human KIRC were downloaded 
from the Gene Expression Omnibus database. The dataset GSE66272, performed on an Affymetrix Human 
Genome U133 Plus 2.0 Array was used to construct co-expression networks and identify hub genes in our study. 
This dataset included 26 primary KIRC and 26 adjacent normal tissue samples, and each pair was from the same 
patient. According to the description, sample ID GSM1618417 represents a patient with sarcoma instead of KIRC. 
That sample does not fit the scope of our investigation on KIRC. Consequently, we removed this sample and 
its adjacent normal tissue sample (GSM1618418) while we performed the subsequent analysis with data from 
GSE66272. The gene expression data were based on RNA-sequencing technology.

Figure 5. KEGG pathway analysis of the genes in modules significantly related to tumorigenesis. KEGG 
analysis was carried out on 20 identified modules, among which 6 modules with the highest correlation 
with tumorigenesis included (A) black module, (B) brown module, (C) cyan module, (D) green module, (E) 
lightyellow module, and (F) pink module. The length of the column indicates the enrichment score, while the 
colours represent enrichment significance.

Figure 6. Common hub genes in the co-expression network and PPI network. A Venn diagram was utilized 
to screen the hub genes between the DEGs and WGCNA. Thirty common network genes were screened as 
candidates for further analysis and validation.
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Identification of differentially expressed genes (DEGs). We downloaded raw mRNA expression data 
from KIRC patients from the Gene Expression Omnibus database. Genes differentially expressed between pri-
mary KIRC and adjacent normal tissues were identified through the “limma” R package22. Here, the Benjamin 
and Hochberg method was used to perform multiple testing corrections of the raw p values to achieve the false 
discovery rate (FDR)23. We set DEG thresholds with FDR less than 0.05 and |log FC| greater than 0.349. The DEGs 
between KIRC samples and adjacent normal tissue samples were all screened.

Constructing the gene co-expression network. Co-expression measurements with WGCNA were con-
verted into connection weights or topology overlap measurements to explore the interactions between the identi-
fied DEGs24. Co-expression methodology is typically conducted to explore correlations between gene expression 
levels. Genes involved in the same functional compound tend to exhibit similar expression patterns25. In this 
study, we inputted all identified DEGs to construct weighted co-expression modules by using the WGCNA pack-
age in R26. The co-expression module threshold was set as p < 0.05.

Identification of clinically significant modules. Two approaches were used to identify modules related 
to the clinical traits of KIRC. First, we defined gene significance (GS) as the log10 transformation of the p value 
(GS = lgP) in a linear regression between the gene expression and clinical traits. Then, we defined module signifi-
cance (MS) as the average GS for all genes in a module27. In general, the module with the absolute MS ranked first 
or second among all the selected modules was considered the one related to a clinical trait. MEs were considered 
the major component in principal component analysis for each gene module, and the expression patterns of all 
genes were summarized into a single characteristic expression profile. In addition, we calculated the correlation 
between the MEs and clinical traits to identify relevant modules. The module with the maximal absolute MS 
among all selected modules was usually considered related to a clinical trait. Finally, modules highly correlated 
with certain clinical traits were selected for further analysis.

Identification of hub genes. The hub genes of the modules have more biological significance in disease 
association than the hub genes of global networks28. In this study, we considered a gene as a hub gene if it has a 
unique characteristic, e.g., high module membership (MM), high gene significance (GS), or high intramodular 
connectivity (IC) in the network6. GS shows different ICs, which represent the connectivity within the genes of 

Figure 7. Hub gene validation based on TCGA data in GEPIA. (A–D) Gene expression levels between 
tumours and normal tissues. (A) AGXT, (B) PTGER3, (C) SLC12A3, (D) ALOX5. (E–H) Survival analysis of 
the relevance between the overall survival time and the relative expression levels of the hub genes in KIRC. (E) 
AGXT, (F) PTGER3, (G) SLC12A3, (H) ALOX5. The red line represents the samples with high gene expression, 
and the blue line indicates the samples with low gene expression.
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the network. MM indicates the significance of genes in various networks. We therefore identified the hub genes 
in the modules through MM, GS and IC.

Protein-protein interaction (PPI). We uploaded all identified DEGs to the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) database to construct a PPI network29. The degree of each gene was 
calculated by Network Analyzer (a tool in Cytoscape software 3.6.0 (https://cytoscape.org/)). Then, genes with a 
degree greater than or equal to 10 were defined as hub genes30.

Function enrichment analyses. DAVID31 (https://david.ncifcrf.gov/), a common functional annotation 
tool for bioinformatics resources, was utilized to distinguish the biological attributes. A p value of less than 0.05 
was used as the cutoff criterion. For the identified DEGs in the 20 modules, we performed GO and KEGG path-
way enrichment analysis by using the R package “cluster Profiler”32. Gene sets with a p value of less than 0.05 were 
considered significantly enriched.

Patients and samples. The institutional review board approved the study. All methods were performed in 
accordance with the relevant guidelines and regulations. Written informed consent was obtained before clinical 
sample collection. KIRC and adjacent normal tissues were collected from 12 patients. The histology of all tumour 
samples was centrally reviewed by a pathologist. At the time point of sample collection, none of the patients had 
received therapeutic medications or previous surgical interventions.

Real-time quantitative PCR. Total RNA from the frozen tumour samples of the KIRC patients was 
extracted by using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) according to the manual instructions. We 
performed RT-qPCR by using SYBR Green reaction mixture in a 7900HT Fast Real-Time PCR System (Applied 
Biosystems, Foster City, CA, USA). The primer sequences used for amplification are detailed in Supplementary 
Table S1.

Statistical analysis. In this study, we used a paired t test to examine the differences in gene expression 
between tumour and normal tissues. A p value of less than 0.05 was considered statistically significant (*, ** 
and **** are used to indicate statistical significance corresponding to a P-value < 0.05, P-value < 0.01 and 

Figure 8. Validation of the hub genes by using RT-qPCR analysis. (A) AGXT, (B) PTGER3, (C) SLC12A3,  
(D) ALOX5. Tumour tissue and paired normal tissue were collected from 12 KIRC patients, and a paired t test 
was used to evaluate the statistical significance of differences.
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P-value < 0.0001, respectively). Error bars denote the S.E.M. We used R and GraphPad Prism version 7.0 
(GraphPad Software, San Diego, CA, USA) to perform statistical analysis.

Ethics approval. This study was approved by Ethics Committee of Xuzhou Medical College Affiliated 
Hospital.

Received: 12 October 2019; Accepted: 17 February 2020;
Published: xx xx xxxx
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