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Interface treatment using 
amorphous-carbon and its 
applications
Myung Sik Choi1,5, Han Gil Na1,5, Jae Hoon Bang1, Sun-Woo Choi2, Sang Sub Kim3, 
Kyu Hyoung Lee4, Hyoun Woo Kim1* & Changhyun Jin   4*

Breakthrough process technologies have been introduced that can increase the chemical sensitivity 
of an interface at which reactions occur without significantly altering the physico-chemical properties 
of the material. Such an interfacial treatment method is based on amorphous-carbon as a base so 
that fluids can be deposited, and the desired thickness and quality of the deposition can be ensured 
irrespective of the interface state of the material. In addition, side effects such as diffusion and 
decreasing strength at the interface can be avoided. This is simpler than existing vacuum-based 
deposition technology and it has an unmatched industrial advantage in terms of economics, speed, 
accuracy, reliability, accessibility, and convenience. In particular, this amorphous-carbon interface 
treatment technology has been demonstrated to improve gas-sensing characteristics of NO2 at room 
temperature.

Techniques such as electroplating1, electroless plating2, anodisation3, chemical treatment4, plasma surface treat-
ment5, and dry coating6, in which one or more thin layers are overlayed on a material, protect the surface of the 
material7, increase its strength8, and add functionality9. And most of these technologies are limited to bulk mate-
rials, rather than nanomaterials, such as automotive-, machine-, tool-, and mold-materials10–13, based on progress 
in science/engineering. Also, as the manufacture of thin films14 and core-shell structures15 by vacuum deposi-
tion16 and vacuum coating17 is gaining momentum, particularly for home appliances, electronic components, 
optical components, and biomaterials18–20, sub-factors such as clean technology, evaporation source selectivity, 
product-specific process technologies, and functional deposition materials, became one of the main technolo-
gies. However, in order to realise the manufacture of complete thin films/coatings such as natural simulation21,22, 
engineered structure implementation using hybrid processes23,24, high-speed deposition25, and cost-saving tech-
nology26, many problems have to be overcome, as follows.

	(1)	 The state of the surface of a material may significantly influence the adhesion of the thin film/coating and 
the characteristics and life of the product; hence, an extra process must be performed to remove the impu-
rities and the oxide film27.

	(2)	 Although the process itself is simple, the evaporation technique is unidirectional. Therefore, step coverage 
cannot be avoided28.

	(3)	 Deposition via metal-organic chemical vapour deposition (MOCVD) has the disadvantage that growth 
rate and impurity doping are possible only with substrate temperature and gas flow rate, but using hazard-
ous materials and high equipment/source cost29.

	(4)	 Deposition via atomic layer deposition (ALD) has the advantages of thin film deposition and low impurity 
content on an atomic level, but the deposition rate is limited by the ALD mechanism30.

	(5)	 Sputtering can be used to control certain aspects of thin films of difficult materials, such as high melting 
points, but it requires large amounts of gas for ionisation and its efficiency is poor31.
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As described above, an advantage in one process can be a disadvantage in the other; hence, based on many 
considerations, the best process can be determined depending on which factors one focuses on. Processes or 
deposition/coating techniques with many advantages at the same time have not yet been introduced or tested. In 
addition, when a heterogeneous material is deposited on an existing product or substrate to form a new double 
layer, the properties of the individual materials may be lost owing to interdiffusion32 between the two materials. 
Even if the interdiffusion is controlled, because the arrangement of irregular atoms at the bonding interface can-
not be avoided, the strength of the irregular atoms must be lower than that of the matrix. As such, the bonding 
interface of the heterogeneous materials cannot but react sensitively, unlike the inner parts of the material. If 
so, is there no means of enhancing the properties of existing materials while increasing the adsorption strength 
during adsorption to other materials? If one considers several prerequisites to take only the selfish advantage, 
the following conditions must be met. First, in order to increase the adsorption strength regardless of the state 
of the other interfaces of all products, the deposition material must have characteristics that enable it to cover 
the substrate like a fluid. Second, in order to increase the characteristics of the coated material, it is necessary 
to reduce the characteristics of the deposited material to a minimum. In order to satisfy these two conditions, 
during the deposition of the heterogeneous material (heterojunction), the properties of the surface (interface) of 
the coated material, must be prominently highlighted. Hence, we propose a simple interface treatment technique 
using amorphous-carbon (a-C), which is advantageous in terms of economics, speed, accuracy, and reliability, as 
described above. This technique can be used to realise powerful synthesis, deposition, and coating.

Result and Discussion
Morphologies and microstructures of a-C.  The conditions and preparation of a-C as a coating are 
described in the methods section and Fig. 1. Supplementary information (SI), Fig. S1 shows SEM images of 
cases where a-C is applied in the form of a thin film and a core-shell to an alumina substrate and SnO2 nanowires 
(NWs), respectively. In the case of the alumina substrate, it was observed that nanoparticles aggregated when 
a-C was deposited on the alumina surface. These a-C particles could be determined by adjusting the synthesis 
temperature or process time (the corresponding images are not shown). Then, the a-C particles can be consid-
ered as heterogeneous nucleation mechanisms rather than homogeneous nucleation mechanisms based on the 
grain boundaries of existing alumina substrates. In the case of the SnO2 NWs, the results show that this synthesis 
technique was applied successfully. SI, Figs. S1g,h indicate that an a-C structure can be formed in spaces between 
SnO2 NWs as well as on the surface of SnO2 NWs. The crystallisation characteristics of a-C microstructures that 
can be simultaneously applied to thin films and NWs of SnO2 (Fig. 2a) were confirmed by transmission electron 
microscopy (TEM; Fig. 2d,g,k,l), high-resolution TEM (HRTEM; Fig. 2b,e), selected-area electron diffraction 
(SAED; Fig. 2c,f) patterns, mapping (Figs. 2h–j), and point energy dispersive X-ray spectroscopy (EDX, Fig. 2m–
o). HRTEM and SAED patterns were observed for each part (SnO2 core and a-C shell) of the SnO2 NWs to inves-
tigate the crystallinity of SnO2 NWs covered by a-C. It was found that single crystals of SnO2 were represented by 
spotty patterns and a-C was represented by hazy circles. In particular, as seen in Fig. 2f, the presence of blurred 
circles in the spotty pattern of SnO2 implies the possibility of the transfer of properties different from those of 
the existing materials without significantly affecting the original characteristics of the existing materials. The 
mapping results confirm that the a-C (Fig. 2h) uniformly covers the preformed SnO2 NWs (Fig. 2I,j). With regard 
to the distribution of carbon, the concentration at the surface of the SnO2 NWs is the greatest, which indicates 
the nature of the surface of the SnO2 NWs (or the nature of the interface between SnO2 and a-C) (Fig. 2h). The 
composition and properties of carbon were reaffirmed using point EDX (Fig. 2m–o). That is, the deposition layer, 
which can cover the surface of the material easily, similar to a fluid, is almost entirely carbon (Fig. 2m,o), most 
of which is present at the interface of the existing materials. This means that there is hardly any interdiffusion of 
atoms in the existing heterogeneous junctions. In summary, only the energy characteristics of the SnO2 interface 
at which all reactions occur are changed while the inherent characteristics of the SnO2 are maintained.

Properties of SnO2/a-C core-shell interface.  Figure 3 presents evidence index results that show the 
coating properties of the SnO2 cores and a-C shell structures. The XRD results (Fig. 3a) indicate that a-C does 
not exhibit its own crystalline properties and can affect only by bonding with other materials (SnO2). The XRD 
patterns for the deposition on the existing substrate (pink) and the coating on the SnO2 NWs (red) do not exhibit 
their own unique peaks. This tendency is also prominent in the results of the Raman (Fig. 3b) and PL (Fig. 3c) 
measurements. However, even if its own characteristics are not apparent, the effects of a-C cannot be ignored, as 
the existing peaks vary in intensity. This difference can clearly be observed in the XPS results of the a-C binding 
energies in the a-C thin film and SnO2/a-C shown in Fig. 3d,e, respectively. The binding originally exhibited 
by a-C is dominated by sp3 binding rather than sp2 binding (Fig. 3d). However, when a-C binds with SnO2, 
sp2 binding becomes more significant than sp3 binding, and the remaining C-O-C binding peak is significantly 
reduced (Fig. 3e). In other words, a-C does not have any effect on its own, but its combination with other materi-
als can result in the creation of new properties at the interface.

Energy exchange between materials.  As described above, although the physical and chemical proper-
ties of base materials can be changed or highlighted via deposition of a-C, there is still insufficient evidence to 
assert this conclusion. Therefore, ultraviolet photoelectron spectroscopy (UPS), which can be used to infer the 
mutual energy band by combining with the a-C, is used to clarify the differences in the valence band maximum 
and the work function of the preformed SnO2. Figure 4a presents the energy bands of a-C, SnO2, and SnO2/a-C. 
From the results of the incident energy and Fig. 4d,f,h, the work functions of a-C, SnO2, and SnO2/a-C are 0.5 eV, 
4.4 eV, and 4.7, respectively, as shown in Fig. 4b. The difference between 4.4 eV and 4.7 eV can be assumed to be 
related to energy exchange before and after the deposition of a-C on SnO2. The changes in the valence band max-
imum of a-C, SnO2, and SnO2/a-C were 13 eV (12.5 eV V10.5 eV, Figs. 4b,c, and 5a), 8.15 eV (3.75 eV V34.4 eV, 
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Figs. 4b,e and 5a), and 5.2 eV (0.5 eV V04.7 eV, Figs. 4b,g and 5a), respectively, on the basis of the vacuum level. 
This means that there is some energy interchange between SnO2 and a-C, which is a result of a completely new 
property based on the combination of SnO2 and a-C. To understand why this difference occurs and the exact role 
of a-C in it, let us consider all the possible predictions presented above by applying them directly to applications 
under different conditions with sensitive surface gas sensing. We must also understand how a-C works in combi-
nation with the existing materials. Therefore, in order to investigate the above predictions, we studied gas-sensing 
applications under different conditions because it is most sensitive to the surface. Based on this, the mechanism 
through which a-C combines with the existing material was deduced.

Mechanism behind change in SnO2/a-C interface and gas sensing.  Based on the UPS results (Fig. 4), 
the energy states for each material were deduced, as shown in Fig. 5a. The core-shell structure of SnO2/a-C had 
a valence band maximum of 5.2 eV and a Fermi level of 4.7 eV from the vacuum level. This energy structure 
exhibits superior gas-sensing characteristics with regard to process temperatures, responses, response times, and 
recovery times, compared to conventional gas sensing with bare SnO2 NWs33–35. This can be attributed to the 
a-C mechanism, which is optimised for the most prominent gas sensing, where the interfacial characteristics 

Figure 1.  Synthesis of SnO2/a-C core-shell structure. SnO2 was formed via thermal evaporation of Sn powder 
using a Au catalyst on an alumina substrate, and the a-C thin film was obtained by applying a spark to water, 
which was drained and deposited on the SnO2 NWs.
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of the sample are more important than other factors during the gas measurement. In general, gas sensors are 
driven by activated carriers at the sample surface. However, the deposition of a-C on the SnO2 surface results in a 
lower energy barrier that can respond to gas sensing on the surface. Therefore, even if the bare SnO2 NWs do not 

Figure 2.  Morphology, crystallinity, and elemental composition of SnO2/a-C. (a) SEM image of SnO2 coated 
with a-C; (b) HRTEM image of a-C as the coating layer; (c) SAED pattern of a-C; (d) single SnO2/a-C core-shell 
structure; (e) HRTEM image of SnO2/a-C interface; (f) SAED pattern of mixture of monocrystalline SnO2 and 
a-C; (g) TEM image of SnO2/a-C before mapping; distribution of (h) C, (i) Sn, and (j) O in SnO2/a-C; (k) TEM 
image of SnO2/a-C interface; (l) TEM image of a-C; point EDX results of (m) a-C shell, (n) SnO2 core, and (o) 
a–C.
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exhibit gas-sensing characteristics due to the small number of activated carriers at room temperature, the NO2 
gas-sensing ability can be improved six-fold by combining a-C with SnO2 (Fig. 5b). This is proof of the interfacial 
characteristics, where the energy equilibrium is changed due to the heterojunction. This tendency can further 
improve the sensing characteristics at 100 °C, 200 °C, and 300 °C, where there is a high carrier concentration at 
the interface. However, there are limits to increasing the interfacial reactivity to NO2 gas unlike in the case of con-
ventional SnO2 surfaces (SI, Fig. S2a). In other words, the gas characteristics are not necessarily improved even 
with constantly high temperatures. As seen in Fig. 5b, if the temperature reaches a critical point between 200 °C 
and 300 °C, the a-C no longer increases the surface properties of SnO2, but can have other mechanisms. Therefore, 
the interfacial change according to the temperature dependence of a-C needs to be studied more accurately in the 
future. However, there is a difference between the SnO2/a-C characteristics that must be considered. In the anal-
ysis method of Fig. 3, the incident energy from the analytical tool passes through the interface between the a-C 
and the SnO2, whereas the gas-sensing reaction mechanism shown in Fig. 5b almost stops at the SnO2 interface. 
In other words, the role of a-C, which results in changes or improvements in the properties of the existing SnO2 
materials, is the same, but the gas-sensing reaction mechanism is the most sensitive to surface reactions compared 
to other analytical methods. SI, Fig. S2b–e show the NO2 gas-sensing response and the response and recovery 
times at various temperatures for the SnO2/a-C sample. Compared with those of bare SnO2, the surface response 

Figure 3.  Analysis of chemical bonding of a-C, SnO2, and SnO2/a-C. (a) XRD results, (b) Raman spectra, and 
(c) PL of each sample; XPS results after deposition of a-C on (d) alumina substrate and (e) SnO2 NWs.
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sensitivities of SnO2/a-C are far superior, as expected, demonstrating excellent response time and recovery time 
in all temperature ranges. These representative gas-sensing indices before and after the a-C process is applied are 
presented in Supplementary Table 1.

Figure 4.  UPS results of a-C, SnO2, and SnO2/a-C. (a) UPS of a-C, crystalline SnO2, and SnO2/a-C core-shell; 
(b) work functions of a-C, SnO2, and SnO2/a-C; (c) valence band maximum of 12.5 eV and (d) energy(cut-off) 
of 20.8 eV for work function of 0.5 eV in a-C (i.e., 21.2 eV(incident energy) − 0.1 eV(correction value)); (e) valence band 
maximum of 3.75 eV and (f) energy(cut-off) of 16.9 eV for work function of 4.4 eV in monocrystalline SnO2 (i.e., 
21.2 eV(incident energy) − 16.9 eV + 0.1 eV(correction value)).

https://doi.org/10.1038/s41598-020-61141-9


7Scientific Reports |         (2020) 10:4093  | https://doi.org/10.1038/s41598-020-61141-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

As seen, instead of a crystalline shell, a-C can be deposited on a material to enhance its surface properties or 
to convert it into a new material. This can result in new functions in a short time, and it is expected to be widely 
used for industrial applications in the future because of its superior convenience and accessibility compared to 
other processes.

Figure 5.  Comparison of energy states and 10 ppm NO2 gas-sensing performance for a-C, SnO2, SnO2/a-C. 
(a) Energy relationship between Fermi level, valence band maximum, and work function; (b) response at 30 °C, 
100 °C, 200 °C, and 300 °C for SnO2 and SnO2/a-C core-shell structures.
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Discussion
A coating method using a-C that can be easily and variously applied is suggested as a method of deposition 
on a base material. This method can improve the surface reactivity of existing materials while showing little of 
their physicochemical properties unlike existing heterogeneous junctions. Especially in the case of a-C, regard-
less of the surface state of the material, it is strongly adsorbed on the preformed material by controlling the 
process temperature or the process time. Only surface (or interface) characteristics of the existing material can 
be significantly enhanced. These surface sensitivities were measured using SEM, TEM, XRD, Raman, PL, XPS, 
and gas-sensing mechanisms. In particular, the NO2 gas-sensing ability of SnO2/a-C was almost six times better 
than that of bare-SnO2 even at room temperature. Therefore, if the a-C process parameters are controlled and 
the changes in each process condition are easily grasped at a glance, this advanced engineering technology can 
be applied to various industrial fields. This approach is also significant because it is a breakthrough that can be 
studied, without regard to materials and environment and without the need for expensive vacuum technology.

Methods
As shown in Fig. 1, a home-made pyrotechnic device with a temperature range of 500–1200 °C was prepared for 
depositing a-C on a material. a-C was deposited onto thin films of an alumina substrate and as a shell coating 
of core SnO2 NWs. For the thin film, a spark was applied directly on the water, and a-C deposited on the water 
was drained and deposited on the alumina substrate. For the coating of the SnO2 NWs, the alumina substrate on 
which the SnO2 NWs were grown was used instead of a bare alumina substrate, while maintaining process meth-
ods such as thin film formation methods. The SnO2 NWs were produced using a thermal evaporation method 
with a Au catalyst at 900 °C for 1 h using 97% Ar and 3% O2 gases.

The morphologies of the SnO2/a-C core-shell structures were analysed using SEM (Hitachi S-4200) and TEM 
(200 kV, JEOL JEM-2010, Japan). HRTEM and SAED equipped with TEM and XRD (Philips X-pert MRD X-ray 
diffractometer) were used for microstructure analysis. The SnO2 and SnO2/a-C structures were analysed qual-
itatively and quantitatively via mapping and EDX with a TEM, and the chemical bonds on the surface were 
compared using Raman spectroscopy (LabRAM HR800, Jobin Yvon, France), PL (LabRAM HR800, Jobin Yvon, 
France), and XPS (K-Alpha plus, Thermo Fisher Scientific Inc., USA) analyses. In addition, the energy relation-
ships of each component, such as the valence band maximum, work function, and Fermi level, were determined 
using UPS (Theta probe base system, Thermo Fisher Scientific Inc., USA). Gas sensing was performed with NO2, 
an oxidising gas. A semiconductor-based method in which the resistance changes depending on the degree of 
adsorption of gas was used for the gas-sensing experiment. The concentration of NO2 was fixed at 10 ppm, and 
the temperature range for sensing was from room temperature to 300 °C with 100 °C intervals.

Data availability
All the data are available from the corresponding author on reasonable request.
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