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Skeletal pathologies track body 
plan evolution in ichthyosaurs
Judith M. pardo-pérez  1,2,3*, Benjamin P. Kear  4 & erin e. Maxwell  1

changing predator-prey interactions during the Mesozoic Marine Revolution (MMR) profoundly altered 
the trajectory of marine tetrapod evolution. Here, we assess potential signatures of this landmark 
transition through the fossil record of skeletal pathologies in ichthyosaurs — iconic marine reptiles that 
developed increasingly ‘fish-like’ body plans over time. We surveyed a stratigraphically constrained 
sample of 200 Middle Triassic ichthyosaur specimens and compared the type, distribution and 
prevalence of pathologies with an approximately equivalent assemblage of Early Jurassic age. Overall, 
skeletal pathologies were equally prevalent in these groups, and most often manifested in species >4 m 
long. However, pathological bones were found to be concentrated in the hind limbs and tail of Triassic 
ichthyosaurs, whereas the jaws, forelimbs, and ribcage were preferentially affected in Jurassic taxa. We 
posit that the occurrence of ankylosed zygapophyses in the caudal peak of triassic ichthyosaurs could 
represent a functional by-product of their primitive ‘eel-like’ swimming. Conversely, increased instances 
of broken ribs in Jurassic ichthyosaurs may infer ramming or tail strike behaviours that characterise 
morphologically ‘fish-like’ marine tetrapods, such as modern toothed whales. Different categories of 
skeletal pathologies thus evidently reflect structural modifications in the ichthyosaur body plan, and 
indirectly coincide with ecological turnover during the MMR.

The Mesozoic Marine Revolution (MMR) was coined to describe the reorganization of benthic ecosystems in 
response to escalating predation pressure and the rise of modern marine faunas1,2. A key aspect of this biotic 
watershed was the increase in diversity and abundance of pelagic marine reptiles3, whose rich fossil record evinces 
corresponding changes in ecology and evolution. Ichthyosaurs were one of the most successful of these groups, 
and constituted globally distributed pelagic predators that occupied mid- to high trophic levels from the Early 
Triassic to the Late Cretaceous4. Direct evidence of predator-prey, and intraspecific interactions involving ichthy-
osaurs can be assessed using preserved examples of skeletal pathologies. These traces reveal not only instances of 
injury and disease, but can be used to infer feeding and intraspecific behaviours, as well as locomotory functions 
and life history5–7.

Skeletal pathologies have been well-documented in ichthyosaurs of Jurassic and Cretaceous age8–11, but 
to date, relatively few cases have been reported from Triassic ichthyosaur specimens8. This phenomenon has 
been attributed to escalating predation pressures, and the subsequent reshaping of marine vertebrate ecosys-
tems during the MMR11. Incongruously, however, recent surveys have shown that the frequency of diagnosable 
ichthyosaur bone pathologies is dramatically under-evaluated10. Consequently, to test whether palaeoecological 
changes during the MMR actually exerted a measurable impact on the occurrence of skeletal pathologies in 
extinct marine tetrapods, we quantified a stratigraphically constrained sample of ichthyosaur fossils from the 
Middle Triassic Besano Formation of the Swiss-Italian Alps, and compared the type, distribution and prevalence 
of recognisable bone traumas and disease with an ecologically analogous assemblage recovered from the Lower 
Jurassic Posidonienschiefer Formation of southwestern Germany10. We treated all non-congenital skeletal dam-
age incurred during the lifetime of the animal as pathological, including traumatic injuries, infection, post-natal 
articular ankyloses, and articular disease; this follows the classification scheme of Pardo-Pérez et al.9. These 
approaches hypothesize that the ubiquitous constraints of an aquatic lifestyle will leave commensurate character-
istics of pathological bone modification in fossil marine tetrapod assemblages given proportionate preservation, 
stratigraphical constraints and geographical representation. Ultimately, we aim to determine whether an analysis 
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of skeletal pathologies in representative samples of Triassic versus Jurassic ichthyosaur skeletons can meaningfully 
track the large-scale changes in marine reptile ecosystems that occurred in conjunction with the MMR11.

Materials and Methods
institutional abbreviations. BES SC: Museo Civico di Storia Naturale di Milano, Italy. SMNS: Staatliches 
Museum für Naturkunde Stuttgart, Germany. GPIT: Palaeontological Collection of Tübingen University, 
Germany. PIMUZ: Paläontologisches Institute und Museum Universität Zürich, Switzerland.

Experimental assemblage characterisation. The Besano Formation crops out along the Swiss-Italian 
border and preserves a diverse marine vertebrate fauna. Ichthyosaurs constitute some of the most common 
reptile fossils, and derive primarily from the upper Anisian (lower Middle Triassic) section of the unit12. We 
surveyed examples of skeletal pathologies in 200 Besano Formation ichthyosaur specimens housed in museum 
collections across Europe (Supplementary Table S3). Taxonomically, the remains are referred to the cymbospon-
dylid Cymbospondylus (n = 3), the shastasaurids Besanosaurus, Wimanius and Mikadocephalus (n = 7), and the 
mixosaurids Mixosaurus and Phalarodon (n = 190). These taxa also correspond to discrete body size categories: 
Cymbospondylus is estimated at 6–10 m in maximum length13; Besanosaurus, Wimanius and Mikadocephalus 
range from 4–8 m in maximum length14; and Mixosaurus and Phalarodon both are <2 m long. Reconstructed 
trophic relationships suggest that Cymbospondylus was an apex predator15, whereas the smaller-bodied ichthyo-
saurs were all likely middle trophic-level feeders.

We categorised all non-congenital damage observed on the Besano Formation ichthyosaur specimens as 
pathological, and included healed traumatic injuries, infection, post-natal articular ankyloses and articular dis-
ease (see examples in Fig. 1). These categories were then grouped according to the affected skeletal region8,16: (1) 
skull; (2) ribs and gastralia; (3) vertebral column; (4) pectoral girdle and forelimb; and (5) pelvic girdle and hind 
limb.

Ontogenetic effects were assessed in only the most abundant and skeletally complete clade — Mixosauridae 
(Mixosaurus and Phalarodon). All specimens for which size could be estimated (n = 104) were grouped into two 
size classes: ‘small’, interpreted as ‘juveniles’ and represented by individuals with mandibular lengths <200 mm, 
humeral lengths <24 mm, and femoral lengths <14 mm; and ‘large’, defined as ‘adult’ individuals with mandibular 
lengths between 210–420 mm, humeral lengths from 25–50 mm, and femoral lengths of 15–30 mm. Anatomical 
region was included as a covariate to control for potential differences in completeness between these size classes. 
We analysed our resulting dataset using binomial logistic regressions (BLRs) performed with the software plat-
form R17. This allowed for selection of multiple categorical predictor variables (e.g. taxon + anatomical region), as 
well as a binary response variable (pathology: present/absent).

To test for differences in the type and prevalence of skeletal pathologies between Triassic and Jurassic ichthy-
osaur assemblages, we compared the Besano Formation dataset (Supplementary Table S3) to a Lower Jurassic 
dataset of ichthyosaurs from Posidonienschiefer Formation of southwestern Germany10. We first qualitatively 
compared examples of pathological bone modifications across all taxa in both these experimental assemblages, 
and then quantitatively focused on Mixosauridae versus the parvipelvian Stenopterygius as the most abundant 
genus-level representatives. We decided to apply the broad clade designation Mixosauridae for this analysis 
because Mixosaurus and Phalarodon cannot be taxonomically differentiated without representative cranial 
material.

Both Stenopterygius and mixosaurids are amongst the smallest-bodied ichthyosaurs in their respective eco-
systems, and are known to have primarily preyed upon cephalopods as adults18,19. Because pathologies were not 
observed on the ribs and gastralia of our mixosaurid specimens, we were unable to perform our BLRs with ‘0’ 
values. Consequently, we added a single simulated observation for this category to be able to proceed with our 
analysis.

Results
types of skeletal pathologies. We found that traumatic injuries and articular ankyloses were equally 
prevalent in all taxa, size, and trophic-levels classes within our Besano Formation ichthyosaur assemblage (3%; 
6/200; see Fig. 1, Supplementary Table S1). Traumatic injuries were recognized in the jaws (premaxilla and den-
tary) of both small and large-bodied taxa, and in the femur of one individual of Mixosaurus (PIMUZ T 2420, 
Mixosaurus cornalianus). A post-traumatic infection was detected in the pectoral girdle (left clavicle, scapula 
and coracoid) of the holotype of Cymbospondylus buchseri (PIMUZ T 4351). We further observed that ankyloses 
tended to occur in the distal zeugopodial elements of the fore- and hind limbs in Mixosaurus (PIMUZ T 2417, 
PIMUZ T 2412 and PIMUZ T 2408). Articular disease was the least often identified pathological condition (1%; 
2/200), and was observed on the neural spine bases of the caudal peak region of Mixosaurus remains from the BES 
SC collection (BES SC 1000 and BES SC unregistered specimen) (sensu20).

Distribution of skeletal pathologies. The most frequently injured and/or diseased skeletal regions 
encountered in the Besano Formation ichthyosaur fossils were the pelvic girdle and hind limb (7%; 4/57), fol-
lowed by the skull (3%; 4/145), pectoral girdle and forelimb (2%; 2/102), and the vertebral column (2%; 3/133). 
No pathologies were observed on the ribs or gastralia, and no substantial differences were detected between dif-
ferent skeletal regions in our mixosaurid sample (see Supplementary Table S2).

Taxonomic, size and trophic-level variation. The highest prevalence of skeletal pathologies in the 
Besano Formation ichthyosaurs occurred in the apex predator taxon Cymbospondylus (67%; 2/3), followed by the 
middle trophic-level shastasaurids Besanosaurus, Wimanius and Mikadocephalus (29%; 2/7), and the mixosaurids 
Mixosaurus and Phalarodon, which exhibited the least number of identifiable pathologies (5%; 9/190).
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ontogenetic variation. Based on our ontogenetic proxy for mixosaurids, we found no substantial differ-
ence in the prevalence of skeletal pathologies between ‘adult’ (7%; 3/42) and ‘juvenile’ size classes (6%; 4/62).

Variation between chronostratigraphically constrained assemblages. Qualitative comparison of 
skeletal pathologies across all of the identified taxa in the Besano and Posidonienschiefer Formation ichthyosaur 

Figure 1. Examples of pathological bone modifications detected in ichthyosaur skeletons from the Middle 
Triassic Besano Formation of the Swiss-Italian Alps. (a,b) Anatomical representation of a shastasaurid (a) and a 
mixosaurid ichthyosaur (b) showing the affected areas. (c–e). Healed trauma in the dentary of an indeterminate 
shastasaurid (PIMUZ T 39). (f) Articular disease affecting the zygopophyseal region in the apical region of the 
tail of Mixosaurus (BES SC, unregistered specimen). (g,h) Ankylosis in the hind limb metapodial elements of 
Besanosaurus (BES SC 999). (i) Ankylosis of the proximal tarsals in the hind limb of Mixosaurus (PIMUZ T 
2417). (j) Healed trauma with evidence of bone remodeling in the premaxilla of Mixosaurus (PIMUZ T 2140).
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assemblages indicated that those representative genera with maximum estimated body lengths exceeding 4 m 
(Cymbospondylus, Besanosaurus, Wimanius and Mikadocephalus versus Temnodontosaurus and Eurhinosaurus, 
respectively) were more likely to exhibit evidence of injuries and disease than the smaller-bodied coeval forms 
(Mixosaurus and Phalarodon versus Stenopterygius and Hauffiopteryx, respectively). Furthermore, we detected 
no substantial difference in the overall prevalence of skeletal pathologies between the most abundant taxa 
(Mixosauridae versus Stenopterygius; Fig. 2; Supplementary Table S2); however, the distribution of pathologies 
varied considerably between these taxa. Mixosaurus showed the highest prevalence of pathologies in the pelvic 
girdle and hind limb (6%; 3/54), as opposed to the vertebral column (2%; 3/128), pectoral girdle and forelimb 
(1%; 1/124), and skull (1%; 2/137). No damage was observed on the ribs and gastralia, which differs markedly 
from the recorded specimens of Stenopterygius where this region was most often injured (6%; 8/140)10. Likewise, 
the skulls (4%; 6/152) of Stenopterygius more commonly suffered pathological damage, whereas the pectoral 
girdle and forelimbs (2%; 3/145), vertebral column (1%; 2/150) and pelvic girdle and hind limbs (1%; 1/126) 
manifested fewer pathological skeletal modifications.

Discussion
Our comprehensive survey of ichthyosaur skeletons from the Middle Triassic Besano Formation reveals a range 
and prevalence of diagnosable pathologies that is approximately equivalent to those reported from stratigraphi-
cally younger deposits10. This result concurs with other recent studies, which assert that pathological bone mod-
ifications are, in general, under-reported9,10. We also counter suggestions that instances of injury and disease 
are rare in Triassic ichthyosaur remains8,21, and that this indicates a shift towards increased predation pressure 
influencing pelagic marine reptile communities across the Triassic–Jurassic interval11.

As an alternative, we demonstrate that the dominant ichthyosaur taxa bracketing this transition exhibit dis-
parity in their skeletal regions being affected by pathological damage. For example, traumatic injuries to the 
ribs and gastralia are conspicuously absent in the Besano Formation specimens, whereas they occur much more 
frequently in post-Triassic ichthyosaur assemblages22–28. Such healed rib fractures are often interpreted as prod-
ucts of intraspecific aggression9,10,29, and like bite traces found on the jaws of Cymbospondylus, shastasaurids, 
and mixosaurids, probably resulted from aggressive encounters with conspecifics, as has been hypothesized for 
other ichthyosaurs9,30. Extant odontocete cetaceans also employ biting, as well as body slamming, high-velocity 
ramming, and tail strikes during aggressive interactions22–28. These behaviours can result in broken ribs or even 
death, and are enabled by the powerful tail fin, which concentrates axial displacement in the caudal peduncle and 
is characteristic of a fusiform (=axially tapered, or spindle-shaped) body plan. In contrast, Triassic ichthyosaurs 

Figure 2. Graphic illustrating the comparative prevalence and distribution of bone pathologies in the most 
abundant and skeletally complete Besano Formation (Mixosauridae) versus Posidonienschiefer Formation 
(Stenopterygius) ichthyosaur taxa.
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typically relied on ‘eel-like’ (=anguilliform) locomotion, in which the torso and caudal region both needed to be 
flexible for undulatory propulsion. Moreover, broken ribs would have been especially debilitating for an anguill-
iform swimmer, which presumably integrated substantial torso flexion to generate thrust. We therefore propose 
that the increased instances of rib injuries throughout the ichthyosaur fossil record may reflect progressive adap-
tation towards more fusiform body shapes, and the corresponding radiation of advanced parvipelvian, or classi-
cally ‘fish-like’ ichthyosaurs during the latest Triassic.

We additionally show that the prevalence of vertebral ankyloses is approximately equivalent between 
our Triassic and Jurassic ichthyosaur assemblages (Supplementary Table S2). However, the distribution of 
these pathological modifications differs substantially along the column, manifesting in the caudal peak zyga-
pophyses of Triassic taxa (e.g., mixosaurids), as opposed to the presacral neural spines in Jurassic taxa (e.g., 
Stenopterygius)10. This pattern is strikingly similar to that observed amongst Cretaceous mosasaurine marine 
lizards, in which ankyloses in the caudal peak region seemingly formed as a result of mechanical stresses from 
undulatory swimming31,32. Other conditions, including infectious spondylitis and ligamentous ossifications, also 
cause ankylosis of the caudal vertebrae in many aquatic tetrapods33–39. Pointedly, though, we detected no traces 
of avascular necrosis in any of our Besano Formation ichthyosaurs, which is consistent with previous reports on 
other Triassic taxa21, and could indicate a preference for shallower water habitats and/or limited diving capabili-
ties in the species that we examined.

Recent studies have shown that ichthyosaur skeletal pathologies can be intraspecifically correlated with body 
size as a measure sexual maturity: larger ‘adults’ displaying more numerous injuries and age-related conditions, 
including ankyloses and articular disease10 (conditions that typically coincide with osteological maturity in ver-
tebrates40,41). Conversely, our data from the small-bodied mixosaurid ichthyosaurs indicated proportionate num-
bers of diagnosable pathological cases in both ‘adult’ and ‘juvenile’ size classes, with ‘juveniles’ exhibiting higher 
incidence of bone traumas and ankyloses. Unlike Stenopterygius, for which body size range at osteological and 
sexual maturity is known42,43, this information is not readily available for Mixosaurus or Phalarodon. The only 
Mixosaurus specimen in our sample incorporating directly associated embryonic remains44 has a mandibular 
length of 220 mm, and thus marginally exceeded our designated <200 mm ‘juvenile’ size class cut-off, implying 
that miss-identification of smaller ‘adults’ might be artificially normalising our results.

The distribution of limb bone ankyloses in our surveyed assemblage of mixosaurids was likewise atypical 
in being localized to the mesopodia, whereas both congenital and pathological ankyloses are usually dispersed 
throughout the distal limb elements in advanced parvipelvians, such as Stenopterygius10,45. Pathological limb 
bone ankyloses affect the joint surfaces, and are linked to locomotion6,33,46–49. However, in Mixosaurus and other 
primitive ichthyosaurs, articular contacts are restricted to the distal ends of the phalanges, with the leading and 
trailing edges instead retaining dense cortical bone. In contrast, the limb elements of parvipelvians are arranged 
in a tightly interlocking ‘pavement’ that maintains multiple articulations between adjacent digits, and thus could 
explain our observed increase in the prevalence of distal joint ankyloses. Notably, we detected an isolated case of 
joint ankylosis in the metatarsals of Besanosaurus; however, this fusion did not involve a region typically covered 
with cortical bone (Fig. 1d,e).

In conclusion, our study finds that skeletal pathologies are widespread throughout the ichthyosaur fossil 
record. However, their type, prevalence and distribution reveals the changing locomotory and behavioural con-
straints affecting different taxa through time. Skeletal pathologies can thus demonstrably track aspects of the 
adaptive transition to increasingly pelagic lifestyles, and provide valuable information about the biology of ich-
thyosaurs as extinct animals. On the other hand, our data do not obviously reflect any large-scale trophic rear-
rangements11. Consequently, successive changes in the body plan of Triassic versus Jurassic ichthyosaurs would 
appear to have exerted a more immediately measurable effect on the documented record of palaeopathologies 
than any more broadly impacting ecosystem-level perturbations (e.g., an increasing rate of predation over time). 
We therefore caution against drawing direct causal links with the MMR, which although undoubtedly influential 
in shaping modern oceanic biotas, at present, only constitutes a coincidental backdrop for the history of injury 
and disease in ancient marine reptiles.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information Files).
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