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An empirical comparison of neural 
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previous studies of Brain computer interfaces (Bci) based on scalp electroencephalography (eeG) have 
demonstrated the feasibility of decoding kinematics for lower limb movements during walking. in this 
computational study, we investigated offline decoding analysis with different models and conditions 
to assess how they influence the performance and stability of the decoder. Specifically, we conducted 
three computational decoding experiments that investigated decoding accuracy: (1) based on delta 
band time-domain features, (2) when downsampling data, (3) of different frequency band features. 
In each experiment, eight different decoder algorithms were compared including the current state-
of-the-art. Different tap sizes (sample window sizes) were also evaluated for a real-time applicability 
assessment. A feature of importance analysis was conducted to ascertain which features were most 
relevant for decoding; moreover, the stability to perturbations was assessed to quantify the robustness 
of the methods. Results indicated that generally the Gated Recurrent Unit (GRU) and Quasi Recurrent 
neural network (QRnn) outperformed other methods in terms of decoding accuracy and stability. 
previous state-of-the-art Unscented Kalman filter (UKf) still outperformed other decoders when using 
smaller tap sizes, with fast convergence in performance, but occurred at a cost to noise vulnerability. 
Downsampling and the inclusion of other frequency band features yielded overall improvement in 
performance. the results suggest that neural network-based decoders with downsampling or a wide 
range of frequency band features could not only improve decoder performance but also robustness with 
applications for stable use of Bcis.

Brain Computer Interfaces (BCI) record, infer and translate different parameters associated with movement from 
different types of brain signals to provide volitional control to prosthetic limbs, exoskeletons, computers, and 
even digital avatars. The part of the BCI which deciphers the user’s motor intent from recorded brain activity is 
typically referred to as a neural decoder. Building high-performance neural decoders is important in four differ-
ent aspects: (1) usability, (2) salient feature identification and quantification, (3) understanding of the underlying 
neural representations1, and as (4) a potential metric of neural function. First, BCI neural decoders based on scalp 
electroencephalography (EEG) are being designed for assistive and therapeutical applications for patients with 
motor disabilities in order to promote plasticity and facilitate rehabilitation2,3. Thus, higher accuracy in decoding 
performance determines the usability of the system4. Second, many neural features (e.g., time and frequency 
domain features, channel locations, channel and source domain features, to name a few5,6) are likely to contain 
varying information about motor intent and thus are candidates for decoding human movement. However, it is 
often difficult to identify and quantify important features given the complexities of performing lower limb exper-
iments in people with gait disabilities limiting the amount of high-quality data. Third, decoder calibration is often 
focused on maximizing decoding accuracy while neglecting the explanatory power of the decoder itself. Thus, it 
has been difficult to advance understanding of the representation and underlying neural mechanisms of the brain 
and recent advances in artificial intelligence could cast insight into this respect7. Studies suggest that building a 
neural decoder using deep learning could cast insights into this aspect by deciphering its neuron layers1,4. This 
approach may enable us to study and quantify features that are relevant to the decoding task that could also help 
us understand the underlying mechanisms of the brain. At last, the accuracy of neural decoding could also reveal 
the amount of information explained by the model. It is a well-known fact that not only the cerebral cortex but 
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also the cerebellum and spinal cord all play a crucial role in ambulatory movements. It is of interest to understand 
how much information we could extract from the cerebral cortex using non-invasive technology.

Restoration of gait function has been a long-standing focus of rehabilitation research and it is still an active 
research area to be explored8,9. Although there are various approaches in this domain, one of the promising 
approaches is to use a neural decoder to build BCI applications and understand the underlying mechanisms of 
the brain associated with walking10–12 However, the number of studies using a decoder to understand the cortical 
networks during gait is still very limited. Therefore, it is important to build a decoding framework that could 
be open-sourced and be easily deployed into such applications that could be beneficial for studying the brain of 
patients with disabilities.

Another application of BCIs in this context is to incorporate the interface into real-time control of assistive 
devices that could help people with lower limb disabilities walk again. In this case, the accuracy of the decoding 
performance is crucial as it determines the usability of the system. The robustness of the algorithms is also impor-
tant since the likelihood of decoding errors increases when the system is used in a real-world setting.

Neural signals are nonlinear and nonstationary13. However, many decoding algorithms used today are based 
on linear models, and the features used for lower limb decoding remain at the early stage where simple filtered 
frequency bands are used for decoding14–17. Recent studies in our lab showed an implementation of non-linear 
real-time decoding using an unscented Kalman filter (UKF) with delta-band EEG as a feature of neural activity12,18. 
Although this improved decoding performance, it raised several questions to be explored as described below.

Previous research has shown the feasibility of using EEG to decode joint angle kinematics16,19,20. Presacco et 
al.16 demonstrated that the decoding performance of joint angles from EEG was comparable to those using mul-
tiple single-unit activities recorded in nonhuman primates. They identified the optimal number of electrodes for 
the decoder and observed that the fronto-posterior cortical networks were heavily involved in gait. Luu et al.20 
showed the feasibility of using a closed-loop BCI to control a walking avatar under both normal and altered walk-
ing conditions while participants were introduced to visuomotor perturbations involving cortical adaptations. 
Luu et al. also demonstrated the use of a non-linear neural decoder using an unscented Kalman filter to decode 
joint angles during human treadmill walking using delta-band EEG as the predictor19. The decoder they devel-
oped was robust to ocular artifacts and allowed for real-time implementation. Similarly, Hikaru et al. developed 
a decoder to estimate muscle synergies and individual muscle activation from delta-band EEG as well, revealing 
the cortical correlates of muscle synergy activation associated with location21,22.

However, these studies have certain limitations that we intend to address in this paper. Most of the prior studies have 
used specific tap sizes for estimating the instantaneous joint angles without comparison. Additionally, none of the stud-
ies explored the ideal tap size for continuous decoding within the real-time implementation. Even though most of these 
studies claim high decoding performance based on r-value, a higher r-value does not always imply perfect tracking. 
Especially since a prediction which follows the general trend, but is way off from the actual values would still contain a 
high r-value. Also, no studies have compared the performance of using different models and/or filters for continuous 
decoding, and all the above cited studies made use of only delta-band power for joint angle prediction. Therefore in this 
study, we also explore the role that other frequency band bands may have on decoding performance.

We performed the experiments to prove the above mentioned points using online equivalent preprocessing 
and offline decoding combinations. It is true that online preprocessing and online decoding combinations are 
more idealistic, but to rigorously test a wide variety of combinations of parameters and decoders to compare 
against each other, we chose this approach. To make our approach feasible, we included the same preprocessing 
and decoder combination we have previously used in a real-time closed-loop experiment18,19 and treated the data 
in a similar manner.

The overall goal of this paper is to investigate what kind of machine learning algorithms, under what con-
dition, perform best for EEG-based gait decoding. Although online and offline decoding is different schemes, 
we believe one of the advantages of offline decoding analysis is to rigorously test different conditions in order to 
provide feasible options in the later design of an online decoder. In this context, we investigated how the follow-
ing factors affect decoding performance: (1) algorithms, including the number of hidden units, (2) tap sizes, (3) 
downsampling effects, and (4) frequency band features. To address the above issues, we designed and conducted 
offline experiments rigorously comparing performance against each other to validate the aforementioned factors.

Methods
Data. The data set consisted of EEG and kinematics data from 8 healthy subjects with each subject undergo-
ing three trials that were spread across two days. Each subject walked on a treadmill for a total of 20 minutes per 
trial. Each trial consisted of three different tasks: resting, (based on kinematic measurement using goniometers, 
“Gonio”) Gonio control, and closed-loop BCI control (hereafter BCI control). Two minutes of baseline period 
where subjects were instructed to stand still on a treadmill was collected in each trial before and after the tread-
mill walking. In the beginning part of the experiment where subjects finished baseline period, subjects were 
instructed to walk on a treadmill at a fixed slow speed of 1 mile per hour (mph) and staring at the screen in front 
of them at the same time where real-time feedback of a virtual reality avatar was provided. The virtual reality 
avatar’s lower limb movements were synced with the goniometers attached to the hip, knee, and ankle of the par-
ticipants. During the task, subjects were instructed to walk steadily for 15 mins where the decoder is calibrated 
for the next BCI control. Following the Gonio control, the experiment switches to a BCI control where the right 
leg of the virtual reality avatar is now controlled using EEG to give real-time feedback to the subject. This phase 
of the trial continued for five mins. A 64-channel active EEG electrode system from BrainVision was used out 
of which 4 channels were used as electrooculogram (EOG) sensors to capture and remove eye related artifacts 
using adaptive filtering algorithms23. The sampling frequency was set to 100 Hz. The data set was collected in our 
previous experiments and is publicly available with a full description24.
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Train, validation, test split. The data set was split into “train”, “validation”, and “test” sets in a sequential manner 
to simulate the online decoding scheme. For real-time decoding, each trial consisted of two modalities: Gonio 
control and BCI-control18 (As described in the above Data section). Similarly, in our offline experiments, we 
utilized Gonio control to be the “train” and “validation” sets, where the first 80% was used as the “train” set and 
the last 20% was used as the “validation” set. The Gonio control section had 60 channels by 15 mins x 60 seconds 
x 100 Hz = 90,000 time samples. The BCI control phase followed the Gonio control section. This section utilized 
the decoder trained during the Gonio control phase and used the model to decode the right leg in real-time using 
the EEG signals. This section had 5 mins of data and we used this entire section as the “test” set. The BCI control 
had 60 channels by 5 mins x 60 seconds x 100 Hz = 30,000 time samples. In our offline experiments, the “train” 
data set was used to train the model with certain hyperparameters, the “validation” set was used to assess the 
hyperparameter combinations used in the “train” data set. Finally, the “test” data set was used to assess the best 
hyperparameter combinations determined by the “validation” set.

code. The code is available on github: https://github.com/shonaka/EEG-neural-decoding. To replicate the 
environment, the Anaconda virtual environment and the docker image are also available for replicating the build-
ing environment: https://hub.docker.com/r/snakagome/research_gpu.

Metrics. To quantify the decoding performance, two metrics were used: (1) Pearson’s correlation coefficient 
(r-value) and (2) Coefficient of determination (R2 score). In the following equations, y is the actual joint angle and 
ŷ is the predicted joint angle.

Pearson’s correlation coefficient (r-value) was used in our previous studies to measure performance18,25.
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where cov(X, Y) is the covariance between the two variables and σ(X) is the standard deviation.
The Coefficient of determination (R2 score) is another statistical metric used to measure the degree of varia-

tion of one data series that can be predicted from another. The formulation for R2 score is not to be confused with 
the squared Pearson’s correlation coefficient. The value can be negative if the model overfits the training set and 
accounts for the variance accounted for by the model. Generally, r-value (Pearson’s correlation value) would be 
a useful metric if the overall trends of the prediction with respect to the ground truth are of interest. However, if 
you want to quantify more precise errors between the two variables (prediction vs ground truth), the R2 score is 
a more suitable measurement. The R2 score was also used to evaluate similar decoding tasks using invasive data 
in previous studies4,26.

ŷ
R

y
y E

1 ( )
( 9)
i i i

i i

2
2

2
∑
∑

≡ −
−

−

where E9 is the mean of the actual joint angle and yi is the actual joint angle at time sample i.

pre-processing and experimental designs. Pre-processing pipelines for different offline experiments 
are represented in Fig. 1. The base pipeline is selected such that they can easily be used in an online real-time 
decoding scheme18. An H-infinity algorithm was used to specifically remove eye blinks, eye motions, amplitude 
drifts and recording biases simultaneously23. The parameters of the H-infinity algorithms were kept the same as 
the real-time decoding. Peripheral channels were removed as they typically contain many artifactual components. 
The signals were then bandpass filtered using a 4th order butterworth filter. Although the frequency range was the 
same, this is one of the differences compared to the real-time decoding as the real-time implementation utilized 
finite impulse filter and the phase shift was expected. To this point, all processing was done through a MATLAB 
script, which is also provided in the open-sourced repository. Additionally, before each experiment, the signals 
were z-scored for each channel.

Experiment 1: Decoding based on delta band features. The protocol for Experiment 1 is equivalent to the 
real-time decoding pipeline used in the previous studies18,25. This is the baseline data processing pipeline, which 
will be used as a comparison for the following two experiments. We first calculated the performance metrics for 
each trial. We then calculated the median value for each tap size for each algorithm to draw a marker for visuali-
zation on figures. The error bars were also calculated and plotted using 25th to 75th percentile range.

Experiment 2: Downsampling effect. The primary goal of Experiment 2 was to investigate the effect of down-
sampling on delta band band-passed time samples. EEG data were resampled from 100 Hz to 20 Hz. Similar to 
Experiment 1, the median performance was calculated across all trials. To see the difference in performance 
as compared to Experiment 1, the performance of Experiment 1 was subtracted from the performance of 
Experiment 2. The black line for zero was added to see which Experiment performed better at certain tap sizes.

Experiment 3: Other frequency bands. The primary goal of the final experiment 3 was to investigate the effect of 
using all the frequency bands as opposed to just using the delta band features. We utilized the same bandpass fil-
tering parameters except with a modified frequency range (0.1–49.9 Hz). As with Experiment 2, a similar analysis 
was performed to assess the effect of automatic feature learning from different frequency bands.
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Tap sizes. Tap size refers to the number of samples in history used to train the model. A decoding schematic 
explaining the concept of decoding using a sliding window is presented in Fig. 2. The figure shows an example 
where the tap size is five. The tap size of five was also the tap size we used in real-time decoding to collect the 
data18. In this paper, to thoroughly test the effect of tap sizes, we tested the model with different tap sizes: 1, 2, 5, 
10, 20, 30, 40, 50. Given that our sampling frequency was 100 Hz, this is equivalent to using a tap size of 10, 20, 
50, 100, 200, 300, 400, 500 ms of past data to predict the 10 ms future. This was common in both Experiments 
1 and 3. On the other hand, in Experiment 2, we only utilized tap sizes until 20. Considering the fact that the 
downsampled frequency is now 20 Hz, the tap sizes in the downsampled scenario correspond to 50, 100, 250, 
500, 1000 ms for 1, 2, 5, 10, 20 tap sizes, respectively.

Algorithms. The following eight algorithms were compared against each other: Linear regression (LR), Ridge 
regression (RR), Unscented Kalman Filter (UKF), CatBoost (CB), Temporal Convolutional Network (TCN), Long 
Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Quasi Recurrent Neural Network (QRNN). 

Figure 1. A preprocessing pipeline for two experiments. Experiment 1 in the first column is equivalent to 
the real-time decoding preprocessing pipeline used in the earlier study. Experiment 2 in the second column is 
similar to the Experiment 1, but the last preprocess bandpassed to contain all the available frequency range.

Figure 2. Example decoding schematic for tap size = 5. When running multiple experiments, the tap sizes 
ranged from 1, 2, 5, 10, 20, 30, 40, 50. Given the sampling frequency of 100 Hz, this corresponds to 10, 20, 50, 
100, 200, 300, 400, 500ms, respectively.

https://doi.org/10.1038/s41598-020-60932-4


5Scientific RepoRtS |         (2020) 10:4372  | https://doi.org/10.1038/s41598-020-60932-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Within each architecture, the hyperparameters were listed below in each algorithm section. The hyperparameters 
were optimized using Bayesian optimization, which will be described in detail in the next subsection.

Linear Regression (LR). Linear Regression is one of the most basic machine learning methods typically used to 
model the predictive relationship between the dependent target variable to multiple explanatory variables27. Note 
that in this context, Wiener Filter is equivalent to LR because of the way we feed in the input as a time sequence 
manner. However, in the machine learning context, we are denoting this as LR.

Ridge Regression (RR). Ridge Regression is a linear regression with L2 regularization28. RR is equivalent to 
WienerRR in this context. The parameter optimized during the training was α, which determines the strength of 
the regularization. It performs regularization so that the features that influence the target-dependent variable the 
least get penalized the most.

Unscented Kalman Filter (UKF). Unscented Kalman Filter is an improved version of the Kalman Filter29. It 
utilized an unscented transform to incorporate non-linearity within the model. In this specific context, we are 
following the implementation from Li et al. where UKF was first used to decode the kinematic movements inva-
sively with monkeys30. The parameters optimized here are λF, λB, and κ.

CatBoost (CB). Catboost is one of the most recent gradient boosting algorithms over decision trees31. The 
parameters optimized here are the learning rate, depth, and L2 regularization term. This was initially employed 
to compare against other gradient boosting algorithms, so we only picked the parameters common to these algo-
rithms. Also, even with GPU capability, gradient boosting optimizations take a long time. There is still room for 
optimizing this algorithm given other parameters that we did not optimize.

Although we also implemented XGBoost32 and LightGBM33, we did not observe much of the performance 
difference between the gradient boosting algorithms. Since catboost was the fastest when computing using a 
GPU, we decided to remove both XGBoost and LightGBM from further analysis. However, the implementation 
is readily available on the Github link.

Temporal convolutional network (TCN). Temporal Convolutional Network (TCN) is a specific type of convolu-
tional neural network (CNN) architecture where a dilated causal convolution is wrapped with a residual block34. 
The authors compared the performance against other well known RNN architectures such as ordinally RNN, 
LSTM, and GRU and showed superior performance across all tasks34.

For all the neural network types of architectures from here below, there were common parameters that were 
optimized. First, the optimizer was optimized among ADAM, Stochastic Gradient Descent (SGD) with momen-
tum, and AdaBound35. The learning rate and weight decay were also optimized. In addition, the number of epochs 
was also optimized as this is subject to change with the other parameters such as learning rate and weight decay. 
Specifically for TCN, the number of filters, layers, and kernel size were also optimized.

Long short term memory (LSTM). Long Short Term Memory is a sophisticated version of recurrent neural net-
works (RNN) where three gates are added to control the information to retain and pass36, while avoiding the 
problem of vanishing gradient typically associated with training of a regular RNN.

In addition to the common parameters in the TCN, recurrent neural networks (LSTM, GRU, QRNN) had a 
number of hidden units, layers, standard deviation for layer initialization, and clipping strength (which helps to 
prevent the gradient from exploding) were optimized. We did not observe the gradient exploding in TCN so this 
was omitted from the TCN optimization.

Gated recurrent unit (GRU). Gated Recurrent Unit is another improvement to the RNN where it has two gates to 
control how to retain and pass information between the nodes. The same parameters were optimized as LSTM37.
Even though previous empirical evaluations38 have not shown a clear winner between GRU and LSTM, it is spec-
ulated that GRU could be a better model when dealing with a lower number of data to generalize upon, consider-
ing the fewer number of parameters in comparison to LSTM.

Quasi recurrent neural network (QRNN). Quasi Recurrent Neural Networks (QRNN) is another alternative 
to a normal RNN where computations can be performed in parallel rather than sequential using convolutional 
layers39. The sequential dependencies in QRNN are handled using pooling, which makes the algorithm efficient 
to compute. The original paper that proposed the method showed its superior performance when compared 
against LSTM in a language modeling task. As for the actual implementation of the QRNN, we utilized QRNN 
implementation in fastai library40. The same parameters were optimized as with the LSTM.

Hyperparameter optimizations. A Bayesian optimization library called Optuna41 was used in this study. 
A number of trials was set to the default of 100 except for RR, where only one parameter had to be tuned (trials 
= 50). Optuna also provides an automatic early stopping for unpromising trials to save time, which is called 
pruning. For pruning, an asynchronous successive halving algorithm was used with default parameters. In all the 
optimizations, the mean squared error was chosen as the metric to be minimized.

post-analysis. After testing the model with test data, the following post-analysis was performed to investigate 
the patterns of preference of the two best decoding algorithms and the feature of importance in all the algorithms.
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Determination of the optimal number of layers and hidden units. To investigate the patterns of performance for 
the two best algorithms (GRU and QRNN), we conducted a grid search fixed number of layers and hidden units 
analysis for a tap size equal to five (equivalent to the real-time implementation). We optimized for the other 
parameters with the fixed number of layers and hidden units using optuna with 100 trials. 100 combinations were 
created where the number of layers differed from one to ten layers and the number of hidden units ranged from 
8 to 80 with an incrementation of 8 for each step (8, 16, 24, 32, 40, 48, 56, 64, 72, 80). This way, each combination 
is optimized for the highest performance for the specific combination of the number of layers and hidden units. 
This is to make sure to exclude the possibility that certain combinations of the number of layers and hidden units 
favor certain hyperparameters.

After computing the 100 combinations of the number of layers and hidden units with 100 trials of hyperpa-
rameter optimizations for each combination, we plotted the average performance for each combination in a grid 
heatmap for each metric to study the pattern or the tendency of GRU and QRNN.

Feature of importance. To fairly compare the decoding models with a single feature of importance model, we 
utilized channel-by-channel input perturbation on a trained model. For this, we utilized the model with the tap 
size = 5 because (1) this was the particular tap size we used in real-time decoding, (2) to shorten the time (the 
analysis takes a long time even for this single tap size as it has to perform one testing per channel and there were 
46 channels). We fed the data with a single channel randomly permutated in the time samples. The random seeds 
were fixed throughout the experiments for replicability. The performance was assessed after testing (making pre-
dictions) with the single-channel perturbation and the same process was repeated for all the channels one-by-one. 
By subtracting the ground truth where all the channels were not perturbed as we performed for the assessment 
of Experiment 1, we could evaluate the feature of importance in channels where the performance significantly 
drops. We also sorted the channels in order so as to pick the top five channels where the performance decreased 
the most, which indicates the importance of the channel.

Results
Experiment 1: A comparison of different algorithms. To assess how different algorithms perform with 
the same pre-processing pipeline as the real-time EEG decoding, we performed a rigorous comparison based on 
variable tap sizes and quantified the performance based on r-values and R2 scores. Fig. 3 shows an example of 
the decoding results of the best subject for each algorithm with different tap sizes. Each row represents different 
decoding algorithms in different colors. Each column represents different tap sizes. The predicted joint angles 
using different algorithms tend to become more smooth and close to the actual joint angles in the black line. 
When focused on each algorithm, we observed that the linear decoders (LR and RR) tend to be noisy when com-
pared to other algorithms. UKF has the smoothest curve compared to all the other algorithms but tends to be off 
from the ground truth. GRU, the best algorithm among the compared algorithms, aligns well with the ground 
truth after the tap size of 30.

Evaluating from r-value perspective.  Figure 4 shows a comparison of performances among each algorithm 
measured by r-value. Each row represents different joint angles and each column represents different experiments 
as described in Fig. 1. In this section, we are specifically focusing on the first column. Each marker represents 
a median r-value across all the subjects and trials. The marker shapes represent similar algorithms with a circle 
denoting linear algorithms, square for Kalman filters, cross for boosting, triangle for CNN, and diamond for 
RNNs. All the algorithms tend to increase their performance as the number of tap sizes increased. This is apparent 
in the errorbar range of 25th to 75th percentile as the range also increased the performance. UKF showed supe-
rior performance across different tap lengths for the hip and knee joint reaching an average r-value of more than 
0.50. LR and RR showed superior performance across different tap lengths for the ankle joint reaching an average 
r-value of more than 0.45. On the other hand, CB, TCN, and LSTM performed worse in this metric.

UKF also reached 90% of the accuracy in r-value with respect to the maximum r-value across all the tested tap 
sizes when it reached the tap size equal to five. LR and QRNN also reached their 90% of the maximum accuracy 
after a tap size of 20. Other algorithms tend to require larger tap sizes as the accuracies continued to grow even 
after a tap size of 50.

Evaluating from R2 score perspective.  Figure 5 shows a comparison of performances among each algorithm 
measured by R2 score with and without UKF, respectively. We are specifically focused on the first column for 
Experiment 1 where each marker represents a median R2 score across all the subjects and trials. Each row rep-
resents different joint angles. UKF significantly underperformed as compared to other algorithms (Fig. 5). We 
observed that the LR and RR outperform other algorithms with smaller tap sizes, but this was overcome by other 
algorithms such as GRU and TCN as tap size increased.

Experiment 2: downsampling effect on decoding performance. Experiment 2 from Fig. 1 was per-
formed to investigate the effect of downsampling on performance. In the following sections, we assessed the 
performance using the two metrics and comparing against the baseline data processing pipeline in Experiment 1.

Evaluating from r-value perspective. Figure 4 in the second column shows the r-value performance for the 
Experiment 2. We still see the UKF dominates the performance in the smaller tap sizes up to 10 in hip and knee 
and 5 in the ankle, but GRU and QRNN start to perform better as tap size increased. The performance of CB and 
TCN in this experiment still comparatively under performed, as in experiment 1.

https://doi.org/10.1038/s41598-020-60932-4
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To clearly see the difference in performance compared to Experiment 1, we subtracted the performance of 
Experiment 1 from the performance of Experiment 2, which is displayed in Fig. 6 in the first column. The black 
line represents zero performance difference between the two experiments. We could see the performance in most 
of the algorithms increased with the downsampling except for the TCN in the smaller tap sizes. In fact, RNNs 
(LSTM, GRU, and QRNN) improved its performance more than 0.1 in r-value for hip and knee, and 0.05 in 
r-value for ankle joint. UKF had a unique trend where the performance increase was at its highest for tap size = 1 
and slowly reduces to a plateau of performance at 0.025 as the tap sizes increased.

Evaluating from R2 score perspective. Figure 5 in the second column shows the R2 score for Experiment 2 with 
and without UKF, respectively. As represented in Fig. 5, UKF performed the worst compared to all the other algo-
rithms. To clearly show the other algorithms performance, we also included inset figures that magnify the other 
algorithms for comparison. In this experiment (2nd column), we could observe the RNNs (LSTM, GRU, QRNN) 
performed well compared to other algorithms across different tap sizes except for the smallest of tap sizes (1, 2, 
and 5) and certain joints (hip and ankle).

To evaluate the performance difference in R2 score compared to Experiment 1, we compared the R2 score 
by subtracting the performance of Experiment 1 from the performance of Experiment 2 (Fig. 7 in the second 
column). The black line represents the point of zero performance difference between the two experiments. 
UKF significantly increased its performance in Experiment 2 compared to Experiment 1 (Fig. 7) although the 
improved performance evaluated in R2 score was still the worst as compared to other algorithms (Fig. 5). The 
performance increase for UKF plateaued after the tap size of 2. Overall, RNNs (LSTM, GRU, and QRNN) sig-
nificantly increased its performance in Experiment 2 compared to Experiment 1. The performance of CB also 
increased essentially consistent with an increase in tap size. Linear algorithms such as LR and RR showed a min-
imal increase in performance with downsampling.

Figure 3. Example decoding for a single gait cycle for hip joint for each tap length resulting from Experiment 
1 (delta band feature). Rows show different decoding algorithms and columns show different tap sizes used to 
train the model. Black lines are the ground truth from an actual joint angle measured with goniometers. For 
knee and ankle joints, plots are available in the Appendix.
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Experiment 3: automatic feature learning in neural networks. Experiment 3 (see Fig. 1) investi-
gated how frequency band features, other than the delta band, affect decoder performance. Similar to Experiment 
2, we assessed the performance based on the two metrics.

Evaluating from r-value perspective. In the third column of Fig. 4, we see the performance changes with different 
tap sizes for Experiment 3. The trend was very similar to Experiment 2, where UKF initially performed well for 
hip and knee joints where the tap sizes were small, but then GRU and QRNN outperforms the UKF. One differ-
ence compared to Experiment 2 is that, for the ankle joint, GRU and QRNN always performed better than the 
UKF in all the tap sizes.

To evaluate the performance difference compared to Experiment 1, we subtracted the performance of 
Experiment 1 from Experiment 3 and showed the difference in Fig. 6 in the second column. One interesting trend 
in the performance difference is that the linear decoders (LR and RR) and UKF tend to perform worse when all 
the frequency was used. This effect is minimized as the tap size increased. On the other hand, boosting algorithms 
(CB) and neural networks gained a slight increase in performance (around 0.05 in r-value).

Evaluating from R2 score perspective. Figure 5 in the third column shows the performance evaluated for the 3rd 
experiment using R2 score. Again, UKF did not perform well when evaluated from R2 score. In the third column 
of the same Figure, QRNN performed well across different tap sizes for hip and knee joints. Ankle joints showed 
similar performance among different algorithms where it was difficult to conclude which algorithms performed 
the best.

To evaluate the performance difference compared to the Experiment 1, we subtracted the R2 score of Experiment 
1 from Experiment 3 and showed the difference in Fig. 7 in the third column. In Fig. 7, UKF showed a significant 
increase in performance in tap size = 1, but the Experiment 3 with all the frequency band features performed well in 

Figure 4. R-values for each experiment across all the joints. Each row represents each joint angle for the right 
leg. Each column represents each experiment. Each point represents a median performance across all the trials 
and subjects. Each errorbar represents 25th to 75th percentile. Different decoding algorithms are differentiated 
using colors. Similar algorithms were grouped using shapes. Linear algorithms with a circle (LR: Linear 
Regression, RR: Ridge Regression), Adaptive filter with a square (UKF: Unscented Kalman Filter), Boosting 
with a cross (CB: CatBoost), CNN with a triangle (TCN: Temporal Convolutional Network), RNN with a 
diamond (LSTM: Long Short Term Memory, GRU: Gated Recurrent Unit, QRNN: Quasi-Recurrent Neural 
Network).
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tap sizes 2, 5, 10 for hip and 2, 5, 10, 20, 30, for ankle joint. The only exception was the knee joint where the perfor-
mance in Experiment 3 for UKF was still superior compared to the R2 score in Experiment 1.

Figure 7showed an interesting pattern where the performances of linear algorithms such as LR and RR did 
not increase in Experiment 3 as compared to Experiment 1 in smaller tap sizes (1, 2, 5) for hip, all the tap sizes 
except 1 in the knee, and tap sizes until 30 in the ankle joint. CB constantly showed a performance increase across 
different tap sizes and joints. The performance of TCN did not increase for the hip and knee joints and decreased 
for the ankle joint. RNNs (LSTM, GRU, QRNN) showed the largest performance increase in the hip joint, but 
only some of the RNN algorithms had a performance increase in larger tap sizes for knee and ankle joint angles.

Figure 5. R2 scores for each experiment across all the joints including UKF. Each row represents each joint 
angle for the right leg and each column represents each experiment. Each point is a median of R2 score across 
trials and subjects. Each errorbar represents 25th to 75th percentile. The inset figures are the magnified version 
to compare algorithms other than the UKF. Different decoding algorithms are differentiated using colors. 
Similar algorithms were grouped using shapes. Linear algorithms with a circle (LR: Linear Regression, RR: 
Ridge Regression), Adaptive filter with a square (UKF: Unscented Kalman Filter), Boosting with a cross (CB: 
CatBoost), CNN with a triangle (TCN: Temporal Convolutional Network), RNN with a diamond (LSTM: Long 
Short Term Memory, GRU: Gated Recurrent Unit, QRNN: Quasi-Recurrent Neural Network).

https://doi.org/10.1038/s41598-020-60932-4


1 0Scientific RepoRtS |         (2020) 10:4372  | https://doi.org/10.1038/s41598-020-60932-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 6. R-values difference between (1) Downsample vs Delta and (2) All frequency vs Delta. Each row 
represents different joint angles for the right leg and each column represents the differences between (1) 
Experiment 2 vs (1, 2) Experiment 3 vs 1 in performance (r-value). The black line shows a zero threshold to 
indicate which experiment performed better at a certain tap size. Similar algorithms were grouped using shapes. 
The errorbar shows 25th to 75th percentile and the middle marker shows the median value. Linear algorithms 
with a circle (LR: Linear Regression, RR: Ridge Regression), Adaptive filter with a square (UKF: Unscented 
Kalman Filter), Boosting with a cross (CB: CatBoost), CNN with a triangle (TCN: Temporal Convolutional 
Network), RNN with a diamond (LSTM: Long Short Term Memory, GRU: Gated Recurrent Unit, QRNN: 
Quasi-Recurrent Neural Network).
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Different number of layers and hidden units. For the two well-performing neural networks (GRU and 
QRNN), we conducted rigorous experiments to investigate the patterns of the number of layers and hidden units. 
For each combination of layers and hidden units, we optimized for the hyperparameters to obtain the best perfor-
mance for the combination. This way, other parameters would not bias or favor some particular combination of 
layers and hidden units. We calculated the median performance across trials for the combination and represented 
them as a heatmap for each metric and each joint (Figs. 8 and 9). GRU (Fig. 8) and QRNN (Fig. 9) showed sim-
ilar patterns. Overall, the performance was superior with a lower number of layers (1-5) compared to a higher 
number of layers (6-10). Patterns based on the number of hidden units differed between the metrics and joints. 
When the performance was evaluated from R2 score, general patterns suggested that a fewer number of layers and 
hidden units (8-40) showed better performance when compared to a higher number of layers and hidden units.

Figure 7. R2 difference with UKF between (1) Downsample vs Delta and (2) All frequency vs Delta. Each 
row represents different joint angles for the right leg and each column represents the differences between (1) 
Experiment 2 vs (1, 2) Experiment 3 vs 1 in performance (R2 score). The black line shows a zero threshold 
to indicate which experiment performed better at a certain tap sizes. Similar algorithms were grouped using 
shapes. The errorbar shows 25th to 75th percentile and the middle marker shows the median value. The inset 
figures show a magnified view to compare different algorithms other than the UKF. Linear algorithms with a 
circle (LR: Linear Regression, RR: Ridge Regression), Adaptive filter with a square (UKF: Unscented Kalman 
Filter), Boosting with a cross (CB: CatBoost), CNN with a triangle (TCN: Temporal Convolutional Network), 
RNN with a diamond (LSTM: Long Short Term Memory, GRU: Gated Recurrent Unit, QRNN: Quasi-Recurrent 
Neural Network).
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Figure 8. GRU assessing the number of layers and hidden units patterns. The first row represents the median 
r-value for each joint. The second row represents the median R2 score for each joint. The columns show each 
joint. The color bar indicates the median performance across trials and subjects for the specific combinations. 
The x-axis in each figure shows the number of hidden units and the y-axis shows the number of layers used for 
the model.
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Figure 9. QRNN assessing the number of layers and hidden units patterns. The first row represents the median 
r-value for each joint. The second row represents the median R2 score for each joint. The columns show each 
joint. The color bar indicates the median performance across trials and subjects for the specific combinations. 
The x-axis in each figure shows the number of hidden units and the y-axis shows the number of layers used for 
the model.
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Figure 10. Feature of importance in channel assessment for each decoding algorithm evaluated with r-value. 
The x-axis shows the top five important channels for each algorithm and the y-axis shows the decrease in r-value 
when the specific channel was perturbed. The thick black line represents the median decrease in r-value for each 
algorithm for each channel.

Figure 11. Feature of importance in channel assessment for each decoding algorithm evaluated with R2 score. 
There are four plots that share the same x-axis with the channel of importance after input perturbation analysis. 
The y-axis shows the decrease in the R2 score after the perturbation of the channel. The first plot includes 
all the decoding algorithms. The second plot shows algorithms without LR and RR. The third plot shows the 
algorithms without LR, RR, and UKF. The fourth plot shows algorithms without LR, RR, UKF, and TCN. The 
thick black line represents the median decrease in R2 score for each algorithm for each channel.
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feature of importance. Feature of importance in channel analysis revealed not only the importance of 
some EEG channels, but the robustness of the model. Figs. 10 and 11 show the results of the feature of importance 
evaluated in the two metrics. Figure 10 presents the importance of channels evaluated based on the decrease in 
r-value with respect to the ground truth where no perturbation was performed. The x-axis shows the identified 
top five important channels from each algorithm and the y-axis shows the decrease in r-value when the channel 
was perturbed. Similarly, Fig. 11 evaluated the feature of importance using the R2 score decrease. There are four 
plots in this case because some algorithms significantly decreased its performance compared to other algorithms 
so that it was difficult to assess all the algorithms together in a single plot. All of the algorithms are represented 
in the 1st plot (1st row), the second plot excludes the linear models, such as LR and RR (2nd row), the third plot 
excludes the linear models and UKF (3rd row), and the final plot excludes linear models, Kalman filters, and TCN 
(4th row).

Discussion
This study aimed to determine better algorithms for EEG gait decoding from four different aspects: (1) 
Algorithms, including the number of layers and hidden units, (2) Tap sizes, (3) Downsampling, and (4) Frequency 
band features. We computed the decoding accuracy and also assessed the EEG channel of importance and robust-
ness of the decoder. The results identified that the former state-of-the-art algorithms (UKF) can still be one of 
the best algorithms when evaluated from the r-value perspective but performed the worst when evaluated from 
the R2 score perspective and were also vulnerable to the perturbations compared to the neural networks based 
algorithms. RNN based algorithms such as GRU and QRNN performed well when assessed from multiple per-
spectives. These algorithms were also the most robust algorithms as the perturbations in channels did not dete-
riorate the performance much compared to the other compared algorithms. Linear algorithms such as LR and 
RR are still widely used algorithms and they have their advantages as performing as the baseline. However, the 
performance of such algorithms significantly decreases when some channels were perturbed and this shows their 
vulnerability as a model.

The current study aimed to improve the decoding accuracy and robustness for the lower limb decoding using 
EEG from algorithm perspectives. Accurate lower limb decoding is important for controlling exoskeletons and 
neuroprosthetics for better usability and systems. In the previous studies, we showed the average accuracy across 
subjects could not exceed the r-value of 0.518. With such low to mid accuracy, participants may not be able to 
engage in the virtual reality feedback and the neural decoding could not extend to more practical applications of 
lower limb movements such as controlling exoskeletons or neuroprosthetic legs where a high decoding accuracy 
is necessary for safety and better usability.

It is important to note that there are four different combinations of preprocessing and decoders to prove 
decoding performances. (1) Offline preprocessing and offline decoding, (2) Offline preprocessing and online 
decoding, (3) Online preprocessing and offline decoding, (4) Online preprocessing and online decoding. The 
current paper focuses on the third combination although the fourth combination is the most idealistic scenario. 
However, the fourth combination is both challenging and time-consuming because the real-time validation has 
to be validated in a real-time manner and thus not suitable for testing every combination of parameters and 
decoders. To make our study on the third combination feasible, we utilized the same preprocessing pipeline and 
the decoder that we have previously used in a closed-loop experiment18,19 and compare the performance against 
it to validate each method we used. We also made sure not to use any future data and using the exact same data 
acquired during the closed-loop experiment for training and testing, simulating the real-time applicability in 
future studies.

Linear algorithms such as LR and RR showed a standard performance that is not necessarily superior to 
other decoder algorithms but can be used as a baseline decoder prior to closed-loop BCI studies. UKF was previ-
ously used both in invasive30 and noninvasive25 real-time applications to show its capability in neural decoding. 
Therefore, this can be considered as the state-of-the-art in a sample by sample decoding. In this study, UKF still 
showed its superior performance in early convergence with smaller tap sizes and when evaluated from the r-value 
perspective. On the other hand, UKF showed its vulnerability when evaluated from the R2 score and also when 
a channel is perturbed. Although CB did not show superior performance among the algorithms compared in 
this study, the uniqueness of CB is that the choice of a feature of importance was different from other algorithms. 
Therefore, CB itself could not be the main decoder, but when ensembling the models to aim for higher accuracy, 
this algorithm could be considered as one of the algorithms along with better performing algorithms. Despite the 
previous study34 showing TCN could outperform RNNs, this was not the case in this study. One of the reasons 
may be the fact that the number of training samples fed into the models at a time was low considering that the 
final goal is to build a real-time application where the number of tap sizes is limited. This can be indicated in Fig.4 
where Experiment 2 (Downsampling) experiment showed TCN performing the worst. On the other hand, we 
could observe that the R2 score of TCN becomes the best among all the other algorithms in tap size with 50 for 
hip and ankle joint in Experiment 1 (Delta, Fig. 5). However, from Fig. 6, when we used all the frequency bands, 
TCN did not perform as well, even for a tap size of 50. This could be explained by the influence of the filter size. If 
the filters are small, they might tend to learn local features; in our case, this would be high-frequency components. 
By including all frequencies, TCN will have more variance that it can explain in the high-frequency range and the 
majority of the filters might focus on these high-frequency components. Since deep learning models might tend 
to overfit and explain the maximal variance, it might weigh the higher frequencies more. This might lead to the 
model not focusing on the delta/ slower oscillatory components which would also have discriminatory informa-
tion. On the other hand, when you force it to look into the lower frequency (using delta band alone in experiment 
(1), since there is no information in the higher frequencies, it will naturally look for features in the delta band and 
increasing the tap size would essentially increase the information present in these lower frequencies.
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In the original paper, the dataset used to bench test involves data that are either highly correlated in space or 
contain high-frequency information. Therefore TCN should learn to capture this information with their smaller 
filter size and that could be the reason for having comparable results with recurrent networks. Since EEG has a 
lot of low frequency information, TCN might not put emphasis on this information when using lower filter size. 
Therefore more analysis needs to be done on filter width and how it would affect the features learned.

RNNs, especially GRU and QRNN showed superior performance from multiple perspectives. The most nota-
ble performance increase can be observed in Experiments 2 and 3 which we will discuss more details below. These 
algorithms also showed the robustness to channel perturbation (Fig. 11).

Generally, all the algorithms increased their performance as the tap sizes increased (Figs. 4 and 5) as expected. 
UKF quickly reached a plateau in performance reaching 90% of the maximum accuracy with the tap size equals 
five. Linear decoders such as LR and RR reaches 90% of its maximum accuracy with the tap sizes 20–30. Other 
neural networks kept increasing its performance as far as 50 in Experiment 1 and 3 or 20 in Experiment 2. 
Therefore, linear decoders and UKF tend to perform better at a lower tap size but with more tap sizes, other algo-
rithms could outperform the linear and UKF decoders. This could be used as one of the baselines when determin-
ing the tap size to be used in real-time decoding.

Downsampling of delta bandpassed features (Experiment 2) generally increased the performance compared 
to the equivalent tap size performance in Experiment 1 (Figs. 6 and 7). Only exceptions were some of the small 
tap sizes (1 and 2) and algorithms such as TCN. From the r-value perspective, RNNs benefited from the down-
sampling increasing the r-values up to 0.2 for hip and knee, 0.1 for the ankle in the best case (Fig. 6). From the 
R2 score perspective, UKF benefited the most increasing the R2 scores significantly in the smaller tap sizes and 
gradually plateauing its performance increase as the tap sizes reach 20. However, even with such increases, the R2 
score was still the worst compared to other algorithms (Fig. 5).

Previously, how sampling frequency would affect the performance was unknown42. This study investigated 
this issue in a sample-by-sample decoding scheme and showed that the performance could increase. We could 
still record the data using the highest sampling frequency, but if we were to use delta bandpassed features, we 
could technically reduce the sample size to 20 Hz provided that we give enough frequency range for a reconstruc-
tion. With this approach, we could technically also increase the future prediction time from 1 ms (when 100 Hz) 
to 5 ms (in 20 Hz) with the same decoding scheme. We also showed that the performance could actually improve.

Linear decoders and UKF decreased their performance in some cases when comparing the performance of the 
delta band features (Experiment 1) and all the frequency band features (Experiment 3) as represented in Figs. 6 and 7.  
We observed that the performance for the hip joint decreased until the tap size of 20, whereas the knee and ankle 
joint constantly showed a decrease in performance in both metrics (r-value: Fig. 6, R2 score: Fig. 7). UKF also 
showed performance decrease until tap size equals to 15 for hip, 30 for knee, and all along when evaluated from 
r-value (Fig. 6). Similarly, when evaluated from the R2 score (Fig. 7, the tap size equals 20 for hip and 30 for the 
ankle (except tap size equals to one in both metrics). On the other hand, this was not the case for other algorithms 
(except for TCN) where the performance increased up to 0.15 in r-values (Fig. 6) and R2 score (Fig. 7).

These results not only validate the importance of feature extraction using delta band for the performance for 
linear decoders and UKF, but it also shows us the boosting algorithm (CB) and RNNs could benefit from other 
frequency band features because of their ability to extract meaningful features for the performance.

GRU and QRNN showed similar preferences in the number of stacked layers and hidden units. We observed 
certain patterns of combinations of the number of stacked layers and hidden units that gave better performance 
compared to other combinations. For example, GRU showed better performance with less number of stacked 
layers when evaluated from R2 score perspective (Fig. 8). This is in line with the latest review42 where shallow 
networks were observed with intra-subject studies.

Linear decoders (LR and RR) and UKF showed vulnerability to the input perturbations when evaluated from 
both r-value (Fig. 10) and R2 score (Fig. 11). On the other hand, neural networks and boosting algorithms did 
not deteriorate their performance as much as well as the boosting algorithm (CB). This can be also considered 
that the RNNs and CB are more robust and not relying heavily on certain channels. CB also showed an interesting 
pattern where the identified feature of importance channels was unique from others. This could be beneficial 
when creating an ensemble model with other better performing algorithms so that the end model could not only 
be more robust but also perform well.

There are some channels that were identified as important from multiple algorithms such as F4, CP1 and CP6 
(Figs. 10 and 11). Although it is difficult to conclude from sensor level analysis compared to the source level anal-
ysis, these channels are located near the primary motor area at the center (CP1) and posterior parietal areas (CP6) 
that are known to be involved during the gait. Since the subject receives feedback based on the movement of the 
avatar, there might still be instances of adapting to this new paradigm of walking. This might be the reason why 
F4 was selected as an important feature by multiple algorithms as they are reported associated with coordinating 
motor movements and in adapting to the gait.

The real-time applicability of the model is an important part of the design of the neural decoder. Linear mod-
els and Kalman filters such as UKF were previously shown to be implementable by many studies. On the other 
hand, neural networks and boosting algorithms in neural decoding context had not shown its feasibility except 
for a few studies in the invasive decoding43,44. More specifically, Sussillo et. al. used a variant of RNN called 
Multiplicative RNN with big data collected throughout invasive neural decoding of kinematics43. The perfor-
mance was compared against the state-of-the-art kalman filter during the time and the RNN not only showed 
a superior performance but also robustness to noise which is in line with our results shown in this paper. Tseng 
et. al. compared the performance of a wiener filer, kalman filter, UKF, and LSTM44. They also reported similar 
trends in performance increase and robustness. The current results in our paper also prove these points and for 
the first time in a non-invasive context. Alternatively, the use of cloud computing is also promising as represented 
in Amazon Web Services (AWS) and the use of deep learning in real-time45.
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The preprocess pipeline used in our methods is focused on real-time applicability as mentioned before in 
this section. Therefore, we did not use some methods such as independent component analysis (ICA) for artifact 
removal. In addition, artifacts are carefully taken care of in our data processing pipeline where eye-related arti-
facts are removed using H-infinity filter23, motion-related artifacts are minimized by ensuring the use of elastic 
mesh on the electrodes during the data collection, slow walking speed (1 mph), and the removal of peripheral 
channels18,25 Muscle related artifacts were also dealt with in a similar manner18,25. Although we do not claim the 
EEG data are completely free from the artifacts, we performed reasonable data collection and processing to min-
imize the effects.

As a summary and recommendation, if the purpose of the lower limb decoding requires precise control (e.g. 
controlling an exoskeleton), based on the high R2 score, GRU or QRNN would be recommended with shallow 
layers and a small number of hidden units to start with. The tap sizes could be chosen from 10 to 20 to start as 
that is where the performance started to plateau. Further research is required to validate the applicability of such 
neural networks in real-time when the training is involved. If the purpose of the decoding is to show weak trends 
following the ground truth, such as virtual reality feedback, UKF might be sufficient as it could provide high 
r-value against the lower limb movement and it has already been shown as a real-time application. In either case, 
simple linear models such as LR and RR could also be implemented and be used a baseline benchmark results to 
further improve the performance of other algorithms when tuning hyperparameters.
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