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Identification of runs of 
homozygosity affecting female 
fertility and milk production traits 
in Finnish Ayrshire cattle
K. Martikainen  1*, M. Koivula  2 & P. Uimari1

Inbreeding gives rise to continuous lengths of homozygous genotypes called runs of homozygosity 
(ROH) that occur when identical haplotypes are inherited from both parents. ROHs are enriched for 
deleterious recessive alleles and can therefore be linked to inbreeding depression, defined as decreased 
phenotypic performance of the animals. However, not all ROHs within a region are expected to have 
harmful effects on the trait of interest. We aimed to identify ROHs that unfavourably affect female 
fertility and milk production traits in the Finnish Ayrshire population. The estimated effect of ROHs 
with the highest statistical significance varied between parities from 9 to 17 days longer intervals 
from calving to first insemination, from 13 to 38 days longer intervals from first to last insemination 
and from 0.3 to 1.0 more insemination per conception. Similarly, for milk production traits ROHs were 
associated with a reduction of 208 kg for milk yield, 7 kg for protein yield and 16 kg for fat yield. We also 
found regions where ROHs displayed unfavourable effects across multiple traits. Our findings can be 
exploited for more efficient control of inbreeding depression, for example by minimizing the occurrence 
of unfavourable haplotypes as homozygous state in breeding programmes.

In dairy cattle breeding, genetic gain of economically important traits has been achieved by intensive selection. 
The downside of intensive selection is, however, increased levels of inbreeding and, thus, possible accumulation 
of recessive deleterious alleles. This, in turn, results in inbreeding depression, which is defined as a reduction in 
average phenotypic performance1. Managing inbreeding is crucial to maintaining the profitability of dairy cattle 
production, since inbreeding depression has been linked with impairment in economically important traits such 
as fertility and milk production2–5.

With the availability of single-nucleotide polymorphism (SNP) marker panels, the effects of inbreeding can 
be investigated at the genomic level. Inbreeding gives rise to continuous segments of homozygous genotypes 
known as runs of homozygosity (ROH), which are present in an individual if both parents transmit identical hap-
lotypes to their offspring6. Since ROHs unlikely arise by chance, they are considered good estimates of inbreed-
ing7. Inbreeding depression is assumed to be mostly caused by homozygosity for deleterious recessive mutations, 
which occur typically at low frequency in a population8. ROHs are enriched for these deleterious recessive alleles 
and can, therefore, be linked to inbreeding depression9. Previous research has found an association between 
increased inbreeding based on ROH (FROH) and reduced fertility or milk production. For example, a 1% increase 
in FROH was associated with 1.72 days increase in days open and 20 kg decrease in 205-day milk yield3, and also 
with 0.4 days longer insemination interval in heifers5.

Since the patterns of inbreeding vary throughout the genome10, identification of genomic regions with associ-
ations between ROHs and impaired fertility or milk production traits will allow breeding programmes to balance 
more efficiently between genetic gain and levels of inbreeding. Pryce et al.4, Kim et al.11 and Martikainen et al.12  
reported unfavourable phenotypic effects on reproduction traits for several genomic regions in an ROH in 
Holstein, Jersey and Finnish Ayrshire cattle, respectively. Pryce et al.4 also found an association between several 
genomic regions in ROH and decreased milk yield in Holstein and Jersey cattle. However, these studies did not 
account for the effect of different ROH genotypes on the regions of interest. As noted by Howard et al.13, within a 
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region, the majority of ROH genotypes may have neutral or even favourable effects on the phenotype, thus hiding 
the effect of infrequent unfavourable ROH genotypes. Howard et al.13 presented a method to estimate the effect 
separately for each unique ROH genotype. Using this method, Baes et al.14 were able to identify genotypes within 
ROHs having unfavourable effects on production, reproduction and health traits in Canadian Dairy cows. For 
example, the ROH genotype with the most extreme effect was estimated to increase the number of services by 0.5 
for heifers (chromosome 16) and by 0.6 for cows (chromosome 11). For the 305-day milk yield, the animals with 
the most extreme ROH genotype on chromosome 11 were estimated to produce on average 690 kg less milk than 
animals without ROH.

The aim of our study was to identify ROH genotypes with unfavourable effects on female fertility traits and 
milk production traits in the Finnish Ayrshire population. We estimated the difference in phenotype between 
cows with the ROH genotype and cows without ROH. In addition, we identified regions harbouring multiple 
unfavourable ROH genotypes as well as ROH genotypes affecting multiple traits.

Results
In this study, we identified the ROH genotypes having an unfavourable effect on female fertility and milk pro-
duction traits in Finnish Ayrshire cattle. The fertility traits included interval from calving to first insemination 
(ICF), interval from first to last insemination (IFL) and number of inseminations (AIS). The fertility traits were 
considered separately for heifers (0), for first parity cows (1), for second parity cows (2) and for third parity cows 
(3). The milk production traits included deregressed proofs (DRP) of the first lactation of milk yield (MILK), 
protein yield (PROT) and fat yield (FAT).

The total number of unfavourable genotypes associated with the fertility traits exceeding the t-statistics cutoff 
value of 2.326 varied from 2,724 (AIS0) to 119 (IFL3) (Fig. 1). Most of the genotypes that exceeded the cut-
off value were associated with the heifer traits and the least for the third-parity cow traits, which was expected 
considering the larger number of animals with both genotypic and phenotypic records for heifers than for the 
third-parity cows. For the milk production traits, the total number of unfavourable genotypes exceeding the 
t-statistics cutoff value was 2,232 for MILK, 2,351 for PROT and 1,821 for FAT (Fig. 1).

Unfavourable genotypes associated with fertility. We identified genotypes within ROHs with signif-
icant unfavourable effects on each of the fertility traits examined. The most significant genotypes for each parity 
of each trait with the estimated effect of genotypes are presented in Table 1. Animals with the most significant 
unfavourable genotype showed 9.2, 9.5 and 17.1 days longer ICF for first-, second- and third-parity cows, respec-
tively (the corresponding P-values were 2.22e-04, 1.92e-04 and 2.20e-04, respectively). Similarly, animals with 
the most significant unfavourable tested genotype| showed 12.8, 13.2, 29.6 and 37.7 days longer IFLs for heifers, 
first-, second- and third-parity cows, respectively (the corresponding P-values were 4.8e-08, 2.9e-05, 5.0e-06 and 
1.2e-04, respectively). For AIS, the estimated effects of the most significant unfavourable genotypes were 0.26, 
0.48, 0.58 and 0.95 more inseminations for heifers, first-, second- and third-parity cows, respectively (the corre-
sponding P-values were 8.6-e07, 2.3-e06, 1.8e-05 and 2.3e-05, respectively).

Table 1 also presents the frequencies and lengths of the most significant ROH genotypes and the median 
length of the full ROH segments across all individuals with the genotype. All of the genotypes were rarely 
observed; the frequencies of the ROH genotypes (genotype frequency) varied from 0.01 to 0.03. The lengths of 
the genotypes varied from 0.84 Mb (IFL3) to 4.11 Mb (IFL2) and the median lengths of the full ROH segments, 
including the unfavourable genotype, varied from 3.15 Mb (AIS0) to 11.90 Mb (IFL2).
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Figure 1. Total number of unfavourable genotypes within the runs of homozygosity (ROH) with P-values 
< 0.05 and frequencies at least 0.01 for heifers (0) and parities 1, 2 and 3 for the interval from calving to first 
insemination (ICF), interval from first to last insemination (IFL) and number of inseminations (AIS), and for 
milk yield (MILK), protein yield (PROT) and fat yield (FAT).
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Table 2 presents the genomic regions containing genotypes (within the ROHs) that unfavourably affected the 
fertility traits. Due to the large number of tests, only genotypes with P-values smaller than 1.0e-05 are presented. 
For IFL0, three regions on chromosomes BTA17 (position 8.63–10.59 Mb), BTA22 (position 6.45–8.06 Mb) and 
BTA24 (position 58.64–60.58 Mb) were associated with impaired fertility (P-value < 1.0e-05). The estimated 
effects of the unfavourable genotypes varied from 6.0 days to 12.8 days longer insemination intervals than in ani-
mals without an ROH in that region. For IFL2, one genotype on chromosome BTA8 (position 65.01–69.12 Mb) 
showed an estimated effect of 29.6 days. Five regions on chromosomes BTA2 (position 26.21–27.18 Mb), BTA6 
(position 36.81–39.53 Mb), BTA17 (position 9.21–10.59 Mb), BTA19 (position 30.83–31.64 Mb) and BTA22 
(position 6.68–10.68 Mb) were associated with the effects of genotypes on AIS0. Animals that had ROH gen-
otypes on any of the five regions had 0.12–0.31 more inseminations than animals not having an ROH in that 
region. For AIS1, seven genotypes in the same region on chromosome BTA14 (position 81.61–83.87 Mb) showed 
the estimated effect, varying from 0.45 to 0.48 inseminations.

Unfavourable genotypes associated with milk production traits. We found several ROH genotypes 
with significant unfavourable associations with milk production traits. The most significant genotypes are pre-
sented in Table 3. The estimated unfavourable effects of the most significant genotypes were on average 208 kg 
for MILK, 7 kg for PROT and 16 kg for FAT (the corresponding P-values were 9.30e-08, 3.60e-10 and 8.60e-09, 
respectively). The frequencies of the most significant genotypes varied from 0.01 for FAT to 0.06 for PROT. The 
length of the genotypes varied from 1.08 Mb (FAT) to 1.98 Mb (PROT). The median length of the full ROH seg-
ments varied from 7.36 Mb (MILK) to 13.28 Mb (FAT).

Table 4 presents genomic regions containing genotypes (within the ROHs) with unfavourable effects on 
milk production traits. The same P-value threshold 1.0e-05 was applied as for the fertility traits. Nine regions on 
eight chromosomes were associated with the effects of genotypes on reduced MILK. These regions were located 

Trait CHR
Position 
(Mb)

Length 
(Mb) Frequency

Median length of 
full ROH (Mb) b (SE) P-value

ICF1 12 65.13–66.37 1.24 0.010 6.76 9.2 (2.5) 2.22e-04

ICF2 10 62.34–64.20 1.86 0.017 7.48 9.5 (2.5) 1.92e-04

ICF3 12 61.67–62.73 1.06 0.018 7.29 17.1 (4.6) 2.20e-04

IFL0 17 9.21–10.31 1.10 0.015 7.98 12.8 (2.4) 4.84e-08

IFL1 5 27.54–31.16 3.62 0.032 10.71 13.2 (3.2) 2.85e-05

IFL2 8 65.01–69.12 4.11 0.015 11.90 29.6 (6.5) 4.96e-06

IFL3 18 8.01–8.85 0.84 0.021 4.83 37.7 (9.8) 1.16e-04

AIS0 17 9.47–10.59 1.12 0.018 3.15 0.26 (0.05) 8.59e-07

AIS1 14 81.76–83.07 1.31 0.010 5.39 0.48 (0.10) 2.26e-06

AIS2 15 7.31–9.15 1.84 0.010 3.33 0.58 (0.14) 1.83e-05

AIS3 18 4.90–6.93 2.03 0.018 4.55 0.95 (0.22) 2.34e-05

Table 1. The most significant unfavourable genotypes within the runs of homozygosity (ROH) for heifers 
(0) and parities 1, 2 and 3 for the interval from calving to first insemination (ICF), interval from first to last 
insemination (IFL) and number of inseminations (AIS). Estimate b represents the difference between animals 
with the ROH genotype and animals without ROH (in days for IFL and ICF, in numbers of inseminations for 
AIS).

Trait CHR
Number of 
ROH genotypes Position (Mb) b P-value

Frequency of ROH 
genotypes (min/max)

IFL0 17 5 8.63–10.59 10.5–12.8 4.84e-08 0.01/0.02

IFL0 22 1 6.45–8.06 12.3 9.83e-06 0.01

IFL0 24 9 58.64–60.58 6.0–6.8 6.28e-08 0.05/0.06

IFL2 8 1 65.01–69.12 29.6 4.96e-06 0.01

AIS0 2 1 26.21–27.18 0.22 8.59e-06 0.02

AIS0 6 2 36.81–39.53 0.12–0.16 3.78e-06 0.04/0.09

AIS0 17 2 9.21–10.59 0.26–0.28 8.59e-07 0.01/0.02

AIS0 19 1 30.83–31.64 0.25 8.86e-06 0.02

AIS0 22 8 6.68–10.68 0.28–0.31 3.95e-06 0.01/0.01

AIS1 14 7 81.61–83.87 0.45–0.48 2.26e-06 0.01/0.01

Table 2. Regions with unfavourable genotypes within the runs of homozygosity (ROH) with P-values < 1.0e-05 
for heifers (0) and parities 1 and 2 for interval from first to last insemination (IFL) and number of inseminations 
(AIS). Estimate b represents the difference between animals with the ROH genotype and animals without ROH 
(in days for IFL and in numbers of inseminations for AIS), while the P-value represents the smallest P-value for 
the region.
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on chromosomes BTA2 (position 80.54–84.81 Mb), BTA3 (position 52.83–56.18 Mb), BTA5 (positions 89.16–
90.75 Mb and 96.55–102.05 Mb), BTA6 (position 115.84–117.01 Mb), BTA13 (position 44.37–58.55 Mb), BTA16 
(position 42.21–44.99 Mb), BTA20 (position 29.23–33.31 Mb) and BTA22 (position 58.68–59.46 Mb). The esti-
mated decrease in MILK varied from 141.9 kg to 354.2 kg.

Ten regions on seven chromosomes were associated with the effects of genotypes on reduced PROT. The cor-
responding regions located on chromosomes BTA3 (positions 1.55–2.91 Mb and 52.83–56.18 Mb), BTA6 (posi-
tions 72.53–80.66 Mb and 93.08–94.46 Mb), BTA8 (position 79.50–81.57 Mb), BTA13 (position 42.93–58.55 Mb), 
BTA14 (position 68.03–73.41 Mb), BTA16 (positions 43.64–46.51 Mb and 52.51–53.92 Mb) and BTA22 (position 
57.99–59.33 Mb). The estimated unfavourable effect of these genotypes varied from 4.7 kg to 11.7 kg.

Six regions on five chromosomes were associated with the effects of genotypes on reduced FAT. These gen-
otypes were located on chromosomes BTA5 (positions 87.02–88.11 Mb and 109.93–118.35 Mb), BTA8 (posi-
tion 11.74–20.81 Mb), BTA13 (position 57.32–58.55 Mb), BTA17 (position 7.14–8.03 Mb) and BTA29 (position 
36.76–37.96 Mb). The estimated decreasing effect of these genotypes on FAT varied from 3.9 kg to 15.7 kg.

Shared genotypes between traits. Table 5 presents the unfavourable genotypes identified across traits 
by accepting only genotypes with P-values < 1.0e-05 on both of the traits examined. Shared genotypes were 
found only between fertility traits or between milk production traits, and none were found between fertility 
and milk production traits. For the fertility traits, two genotypes were found on chromosome BTA17 (position 

Trait CHR
Position 
(Mb)

Length 
(Mb) Frequency

Median length of 
full ROH (Mb) b in kg (SE) P-value

MILK 20 31.55–33.15 1.60 0.049 7.36 −207.843 (38.9) 9.30e-08

PROT 13 53.66–55.64 1.98 0.056 12.75 −7.04 (1.12) 3.60e-10

FAT 5 87.02–88.11 1.08 0.012 13.28 −15.68 (1.69) 8.60e-09

Table 3. The most significant unfavourable genotypes within the runs of homozygosity (ROH) for milk, protein 
and fat yield (MILK, PROT and FAT, respectively). Estimate b represents the difference between animals with 
the ROH genotype and animals without ROH.

Trait CHR
Number of ROH 
genotypes Position (Mb) b in kg P-value

Frequency of ROH 
genotypes (min/max)

MILK 2 5 80.54–84.81 −269.3–−279.5 4.35e-06 0.02/0.02

MILK 3 3 52.83–56.18 −321.6–−329.0 3.11e-06 0.01/0.01

MILK 5 1 89.16–90.75 −218.0 6.36e-06 0.03

MILK 5 1 96.55–102.05 −329.9 6.29e-06 0.01

MILK 6 1 115.84–117.01 −354.2 5.19e-06 0.01

MILK 13 131 44.37–58.55 −145.52–−252.0 1.23e-07 0.03/0.08

MILK 16 2 42.21–44.99 −196.7–−215.9 4.45e-06 0.03/0.04

MILK 20 22 29.23–33.31 −141.9–−217.7 9.30e-08 0.04/0.07

MILK 22 1 58.68–59.46 −341.6 2.99e-06 0.01

PROT 3 1 1.55–2.91 −6.94 4.93e-06 0.03

PROT 3 5 52.83–56.18 −9.7–−11.7 1.32e-07 0.01/0.01

PROT 6 12 72.53–80.66 −6.7–−11.6 2.60e-07 0.01/0.03

PROT 6 1 93.08–94.46 −10.47 8.91e-06 0.01

PROT 8 3 79.50–81.57 −9.8–−10.0 3.51e-06 0.01/0.01

PROT 13 176 42.93–58.55 −4.7–−8.8 3.60e-10 0.02/0.08

PROT 14 11 68.03–73.41 −5.6–−6.6 3.00e-06 0.03/0.04

PROT 16 1 43.64–46.51 −11.1 7.43e-06 0.01

PROT 16 1 52.51–53.92 −9.7 8.71e-06 0.01

PROT 22 1 57.99–59.33 −10.9 7.17e-06 0.01

FAT 5 1 87.02–88.11 −15.7 8.60e-09 0.01

FAT 5 6 109.93–118.35 −7.0–−12.8 1.56e-06 0.01/0.04

FAT 8 46 11.74–20.81 −10.5–−14.8 6.34e-08 0.01/0.02

FAT 13 1 57.32–58.55 −6.6 8.55e-06 0.04

FAT 17 2 7.14–8.03 −11.4–−11.5 2.69e-06 0.01/0.01

FAT 29 5 36.76–37.96 −3.9–−4.5 5.41e-07 0.12/0.14

Table 4. Regions with unfavourable genotypes within the runs of homozygosity (ROH) with P-values < 1.0e-
05 for milk, protein and fat yield (MILK, PROT and FAT, respectively). Estimate b represents the difference 
between animals with the ROH genotype and animals without the ROH, while the P-value represents the 
smallest P-value for the region.
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9.21–10.59 Mb) with an increasing effect on both IFL0 and AIS0. These two genotypes were estimated to lengthen 
the insemination interval from 10.5 days to 12.6 days while increasing the number of inseminations by approxi-
mately 0.3 for heifers.

Several shared genotypes were found between the milk production traits. Three genotypes on chromosome 
BTA3 (position 52.83–56.18 Mb) negatively affected both MILK (322–329 kg) and PROT (11–12 kg). On chromo-
some BTA13, a region at position 44.37–58.55 Mb contained 83 genotypes with decreasing effects on both MILK 
and PROT. The estimated effect of these genotypes varied from 146 kg to 252 kg less MILK and 5 kg to 9 kg less 
PROT in contrast to animals without ROHs. These regions also contained one genotype at position 57.32–58.55 
with a decreasing effect of 6.6 kg on FAT.

Discussion
The aim of this study was to identify genotypes in ROHs with unfavourable effects on fertility and milk produc-
tion traits in Finnish Ayrshire cattle. The total number of unfavourable genotypes (with P-values < 0.05) detected 
in this study was 15,445, and it varied between traits from 119 for the IFL in third-parity cows (IFL3) to 2,724 for 
the AIS of heifers (AIS0). However, as reported by Howard et al.13, the algorithm of the Unfavorable Haplotype 
Finder software may result in multiple genotypes that seem different at the individual level, but in reality are 
tagging the same observed ROH. Therefore, the total number of unfavourable genotypes identified by the soft-
ware was expected to be much larger than the number of genotypes within ROHs with unfavourable effects on 
the traits examined. For this reason, and due to the tendency of multiple testing to produce false discoveries, we 
reported only the most significant genotypes for each trait and the regions containing genotypes with P-values 
smaller than 1.0e-05. Even though these selections may have omitted some genotypes, which would indeed have 
had a detrimental effect on the traits examined, it was expected to pinpoint those regions in the genome of the 
Finnish Ayrshires where homozygosity has the most harmful effects population-wise.

The average length of the most significant unfavourable genotypes across traits was 1.8 Mb, while the median 
length of the full ROH segments was much longer, varying from 3.15 Mb to 13.28 Mb (Table 1). Our results 
were based on medium-density SNP data that could have caused overestimation of the number of short ROH 
segments, which in reality are not truly identical by descent15. The Unfavorable Haplotype Finder software did 
not allow for setting a minimum length for ROHs, but we attempted to minimize the occurrence of short non-
autozygous ROHs by pruning out SNPs with very low minor allele frequency (MAF) and high linkage disequi-
librium (LD), as suggested by Howrigan et al.16. Howard et al.13 reported that the size of the full ROH segments 
can vary among animals, due to recombination occurring at different locations in the animals. The algorithm 
of the Unfavorable Haplotype Finder software finds the core genotype common to all animals to serve as a tag 
for the full ROH, and the length of the tag genotype is presumably shorter than that of the full ROH. Since the 
genotypes identified in this study tagged much longer ROHs, they should not be considered as exact locations 
in the genome harbouring detrimental quantitative trait loci, but rather as indicators for regions associated with 
inbreeding depression.

The estimated effect of the most significant genotypes presents the difference in the phenotypic mean between 
animals with the genotype in ROHs and those without. As noted by Howard et al.13, comparing animals without 
ROHs to those having ROHs aligns with the partial dominance hypothesis. This hypothesis suggests that inbreed-
ing depression is due to increased frequency of homozygous deleterious recessive or partially recessive alleles, and 
it is considered as the main reason for inbreeding depression17.

For the ICF, cows of first and second parity with the unfavourable genotype were estimated to have about 
9 days longer intervals than cows without the genotype. Previous studies performed with the same software 
estimated the effect of the most extreme genotype instead of the most significant genotype, yet the results of our 
study were consistent with Marras et al.18, who found an effect of 10.5 days for first-parity cows in a Canadian 
Holstein population and Baes et al.14, who found an effect of 9.3 days in a Canadian dairy cattle population. For 
third-parity cows with the most significant genotype, the estimated effects in our study were greater than in previ-
ous studies for all fertility traits. However, these previous studies did not estimate the effects separately for cows of 
different parities, which complicates the comparison of results. For the IFL, the effect was about 13 days for heif-
ers and from 13 to 38 days for cows. Baes et al.14 and Marras et al.18 studied the interval from first insemination 
to calving, which is defined as the IFL plus the gestation length. However, Pereira et al.19 showed that increased 
inbreeding did not affect the gestation length, suggesting why the lengthening in first insemination to calving can 

Trait 1 Trait 2 CHR
Number of ROH 
genotypes

Position 
(Mb) b on trait 1 (P-value) b on trait 2 (P-value)

IFL0 AIS0 17 2 9.21–10.59 10.5–12.8 (4.84e-08) 0.26–0.28 (8.59e-07)

MILK PROT 3 3 52.83–56.18 −321.6–−329.0 (3.11e-06) −11.3–−11.7 (1.32e-07)

MILK PROT 13 83 44.37–58.55 −145.5–−252.0 (1.23e-07) −4.9–−8.8 (3.60e-10)

MILK FAT 13 1 57.32–58.55 −207.3 (5.31e-07) −6.6 (8.55e-06)

PROT FAT 13 1 57.32–58.55 −7.6 (5.80e-09) −6.6 (8.55e-06)

Table 5. Regions containing shared unfavourable genotypes within the runs of homozygosity (ROH) between 
traits (interval from first to last insemination for heifers (IFL0), number of inseminations for heifers (AIS0), 
milk yield (MILK), protein yield (PROT) and fat yield (FAT) with P-values < 1.0e-05. Estimate b represents the 
difference between animals with the ROH genotype and animals without ROH (in days for IFL, in numbers of 
inseminations for AIS and in kg for MILK, PROT and FAT), while the P-value represents the smallest P-value 
for the region.
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be compared with that in IFL caused by the unfavourable genotype. Marras et al.18 found an effect of around 14 
days for heifers and 23 days for first-parity cows. Corresponding results from the study by Baes et al.14 included 17 
days for heifers and 18 days for cows. The effect of the most significant genotype for the number of inseminations 
(AIS) was about 0.3 more inseminations for heifers and from 0.5 to 1.0 more insemination for cows. The corre-
sponding results from Marras et al.18 were about 0.6 more inseminations for both heifers and first-parity cows, 
while the results from Baes et al.14 were about 0.5 more inseminations for heifers and 0.6 more for cows.

The effects of the most significant unfavourable genotypes affecting the milk production traits identified 
in this study were smaller than those reported in previous studies. Our estimates of the unfavourable effects 
included a reduction of 210 kg in MILK, 7 kg in PROT and 16 kg in FAT, while Marras et al.18 obtained a reduction 
of about 680 kg in 305-day milk yield, 22 kg in 305-day protein yield and 29 kg in 305-day fat yield, and Baes et al.14 
a reduction of about 920 kg in 305-day milk yield, 29 kg in 305-day protein yield and 32 kg in 305-day fat yield. 
Even considering the most extreme genotypes instead of the most significant genotypes found in our study, the 
effects were about 350 kg less MILK, 13 kg less PROT and 16 kg less FAT than animals without ROH genotypes. 
Overall, the effects of the most significant genotypes were strongly unfavourable for each of the fertility and 
production traits examined, which indicates that controlling the homozygosity of these and other unfavourable 
genotypes can be beneficial in breeding programmes.

We found several regions containing genotypes that were associated with impaired fertility and milk produc-
tion, with P-values smaller than 1.0e-05. If the P-values were adjusted for the number of tests (P < 0.05/15,445), 
where 15,445 is the total number of unfavourable genotypes of all traits detected using the software, the threshold 
would have been about 3.0e-06. However, a less stringent P-value threshold of 1.0e-05 was selected, because 
Bonferroni correction assumes independent testing, but both fertility and milk production traits are correlated 
between parities, between ICF, IFL, and AIS and between MILK, PROT and FAT. The number of unfavourable 
genotypes identified from these regions varied from 1 to 9 for fertility and from 1 to 176 for milk production 
traits. Although many of these genotypes may have been tagging the same unfavourable ROH, we expected that 
when the number of the genotypes increased, the number of the various ROH genotypes with an unfavourable 
effect on the trait of interest would also increase.

The previous study by Martikainen et al.12 used the same data to identify genomic regions where an increased 
ROH-based inbreeding coefficient was associated with impaired IFL. In Martikainen et al.12 different ROH gen-
otypes were not considered, and the regions identified on chromosomes 2, 18 and 22 (IFL0) and on chromosome 
15 (IFL2) differed from those identified in the present study. However, all the regions found in the previous study 
by Martikainen et al.12 contained several unfavourable genotypes that were also detected by us here, but their sta-
tistical significance was lower than the threshold used in Table 2. The proportion of ROHs with neutral or favour-
able effects on these regions was presumably low, suggesting these regions showed inbreeding depression even 
when all the various ROH genotypes were tested together. On the other hand, the regions found in the present 
study that were not revealed in the previous study by Martikainen et al.12 implies that these regions also contained 
ROHs that were neutral or even positively associated with IFL or AIS. Since selection may have created both det-
rimental and beneficial homozygosity, the effective control of inbreeding depression requires identification of the 
carriers of the unfavourable genotypes instead of simply avoiding the mating of any ROH carriers.

Nine regions on chromosomes 2, 3, 5, 6, 13, 16, 20 and 22 carried unfavourable genotypes for MILK, as did 10 
regions on chromosomes 3, 6, 8, 13, 14, 16 and 22 for PROT and six regions on chromosomes 5, 8, 13, 17 and 29 
for FAT. The estimated effect of the unfavourable genotypes in these regions varied from 140 to 350 kg for MILK, 
from 5 to 12 kg for PROT and from 4 to 16 kg for FAT. Most of these regions contained only a few unfavourable 
genotypes, which were in reality expected to tag the same ROHs. However, two regions were identified from chro-
mosomes 8 and 13 with dozens of genotypes. A region on chromosome 8 contained 46 genotypes associated with 
reduced FAT, and a region on chromosome 13 contained 131 genotypes associated with reduced MILK and 176 
genotypes associated with reduced PROT. The large number of genotypes indicates that they were tagging many 
different ROH genotypes, suggesting that inbreeding is generally harmful in these regions. The same region on 
chromosome 13 was also identified when scanning genotypes that showed unfavourable effects across multiple 
production traits. We identified 83 common genotypes between MILK and PROT on chromosome 13. One of 
these genotypes was common between all three milk production traits. The detrimental effects of homozygosity 
in this region may have been due to the guanine nucleotide-binding protein, alpha-stimulating (GNAS) locus, 
which has a highly significant (P-value 2.18e-19 or smaller) association with milk, protein and fat yields20. Three 
genotypes on chromosome 3 were also common between MILK and PROT, as were two genotypes from chro-
mosome 17 common between IFL0 and AIS0. However, it should be noted that in this study only the shared 
identical genotypes with P-values < 1.0e-05 for both traits were considered. As pointed out by Howard et al.13, the 
regions with unfavourable effects across multiple traits may be particularly interesting, because they are sensitive 
to inbreeding and thus strongly reduce the phenotypic performance of an individual. Moreover, Howard et al.13 
reported that some long ROH may be locally unfavourable around the identified genotype, but have an overall 
favourable effect on some trait with an economical importance. Therefore, more research is needed to analyse if 
the unfavourable ROHs identified in this study have positive or negative effects on other traits under selection. In 
addition, given the large number of unfavourable ROHs, an optimal use of these ROHs in breeding programmes 
should be investigated; a possible approach could be e.g. use of inbreeding load matrix for mating decision to 
minimize the occurrence of the unfavourable haplotypes as a homozygous state13,21.

Conclusions
Identification of unfavourable genotypes within ROHs revealed several regions from the genome of the Finnish 
Ayrshire cattle showed inbreeding depression of female fertility and milk production traits. These regions have 
previously remained undetected when the same data were used, but all ROH genotypes were considered to have a 
negative effect on the traits examined. The results of this study support the hypothesis that not all ROH genotypes 
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in a region have unfavourable effects. Therefore, different ROH genotypes should be tested individually for more 
precise detection of genomic regions associated with impaired phenotypic performance. The results of this study 
can be used to investigate the effects of the genes in these regions, or in the breeding programme to more effi-
ciently control inbreeding depression.

Materials and Methods
Genotypic data. No animal experiments were carried out for this study, and therefore ethical approval was 
not required. The genotypic data used in this study were the same as in Martikainen et al.5 and were obtained 
from the Nordic Cattle Genetic Evaluation (NAV) (Aarhus, Denmark). The original genotypes of 19,075 Finnish 
Ayrshire females were derived from the Illumina BovineLD v.2 BeadChip low-density panel22, which contains 
7,931 SNPs. Prior to the analyses, the genotypes were imputed to 50 K density. Imputation was performed with 
Fimpute software23, using default parameters. The reference population comprised Nordic Red AI bulls with 50 K 
genotypes.

The SNP positions were based on a UMD 3.1 assembly. Quality control of the imputed genotypes consisted 
of removing the SNPs with MAF less than 0.01. No filtering based on the deviation from the Hardy-Weinberg 
equilibrium was performed, since inbreeding is one possible cause for the deviation. High LD increases the prob-
ability of detecting nonautozygous ROHs that are formed by chance16. Therefore, the SNPs were pruned for LD, 
using the –indep command in PLINK version 1.924,25, which removed the SNP that had the variance inflation fac-
tor greater than 10 (corresponding to r2 > 0.9) within a 50-SNP window. After quality control and LD-pruning, 
29,227 SNPs were available for analysis.

Phenotypes of female fertility. Three female fertility traits including interval (in days) from calving to 
first insemination (ICF), interval (in days) from first to last insemination (IFL), and a number of inseminations 
(AIS) were used in the analysis. The IFL and AIS were considered separately for heifers (parity 0) and for cows of 
first, second and third parity (parities 1, 2 and 3). The ICF was considered separately for cows with parities 1, 2 
and 3. The raw phenotypic values were adjusted for the main systematic effects, including age at first insemina-
tion, herd-birth year or herd-year of first calving (for heifers and cows, respectively), insemination year-month 
(IFL and AIS) and calving year-month (ICF). Descriptive statistics of adjusted observations for each trait at each 
parity are presented in Table 6. The phenotypic records and solutions for the systematic effects of the fertility traits 
were derived from NAV and Faba (The Finnish Animal Breeding Association, Hollola, Finland). The combined 
fertility and genotypic data included observations from 13,712 animals.

Phenotypes of milk production traits. The milk production traits used in the analysis included deregressed 
proofs (DRPs) of the first lactation of milk yield (MILK), protein yield (PROT), and fat yield (FAT) expressed in 
kilograms. For the calculation of DRPs, the estimated breeding values (EBVs) of milk, protein, and fat yield were 
derived from the routine NAV milk production test day data. First, the effective record contributions (ERCs) were 
calculated by the ApaX99 program26 for all animals in the pedigree. The heritabilities used in the ERC approxima-
tions were 0.45, 0.43 and 0.44 for milk, protein, and fat yields, respectively. Next, the DRPs were calculated for all 
cows, using the EBVs and ERCs. The DRPs were obtained, using the Broyden method in option DeRegress in the 
MiX99 software27. The ERCs were used as weighting factors in the deregression. The three traits were deregressed 
simultaneously, but assuming zero genetic and residual correlations between the traits. Reliability of each individual 
DRPi was calculated as r2

DRPi = ERCi/(ERCi + λ), where λ = (1 − h2)/h2. Only DRPs with reliability r2
DRP ≥ 40% 

were accepted as observations for the analysis. All observations with r2
DRP < 40% for MILK, PROT or FAT were 

removed from the data. The combined production and genotypic data included observations from 12,233 animals. 
Descriptive statistics of milk production DRPs are presented in Table 6.

Trait Number of animals Mean SD

ICF1 9 453 0.25 23.89

ICF2 5 067 −0.13 24.08

ICF3 1 509 −0.96 22.51

IFL0 12 878 1.65 37.54

IFL1 9 546 3.72 52.48

IFL2 5 131 5.14 51.55

IFL3 1 567 6.47 49.12

AIS0 13 261 0.07 0.99

AIS1 9 323 0.15 1.13

AIS2 4 918 0.22 1.13

AIS3 1 453 0.22 1.08

MILK 12 233 270.11 1112.51

PROT 12 233 5.40 35.43

FAT 12 233 2.81 41.30

Table 6. Descriptive statistics of fertility traits adjusted for the main systematic effects for the interval from 
calving to first insemination (ICF), interval from first to last insemination (IFL) and number of inseminations 
(AIS), and deregressed proofs of the first lactation of milk yield (MILK), protein yield (PROT), and fat yield 
(FAT). ICF, IFL and AIS are considered for heifers (0) and for parities 1, 2 and 3.
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Identification of unfavourable ROH genotypes. Genotypes within ROHs with unfavourable effect on 
female fertility or milk production traits were detected, using Unfavorable Haplotype Finder software13. A com-
plete description of the algorithm is presented in Howard et al.13. The algorithm is comprised of three steps. In 
step 1, ROH genotypes (i.e. identical haplotypes from parents) with no heterozygous SNPs and a frequency above 
the user-defined threshold are placed in the ROH category, while the other genotypes are placed in the non-ROH 
category. In this study, the threshold for the frequency of unique ROH genotype was set as 0.01 to exclude rare 
genotypes. Then, the ROH genotypes associated with unfavourable effects on the phenotype were identified, and 
a sliding window of decreasing size was used to detect the core ROH genotype serving as a tag for the full ROH. 
In this study, the window size was decreased by 50 SNPs to 15 SNPs at 5-SNP intervals and the cutoff value for 
the mean phenotype of the unfavourable genotype was generated by performing 1,000 permutations for random 
genomic regions for each trait separately. Based on the permutations, a mean phenotypic value with a statistical 
significance between 0.05 and 0.10 was selected as a cutoff value. Genotypes with mean phenotypic values for 
ICF, IFL and AIS above the cutoff value, or for MILK, PROT and FAT below the cutoff value, were considered as 
unfavourable and tested in step 2.

In step 2, the significance of each genotype detected in step 1 was tested, using a linear mixed model. In step 
3, the nested genotypes were removed.

The linear mixed model used in step 2 was:

= + +X Zy b a e,i

where yi is a preadjusted phenotype (fertility traits) or DRP (production traits) of the trait of interest, b is a vector 
including the effect of ROH genotype, a a vector of random additive genetic effects and e a vector of random 
residual effects. Within the fertility traits (AIS, ICF and IFL), parities 0 (heifers for AIS and IFL), 1, 2 and 3 
were analysed separately. The additive genetic effects were assumed to be normally distributed with N(0, Aσ2

a), 
where A is the pedigree-based additive relationship matrix and σ2

a the additive genetic variance. The residual 
effects were assumed to be normally distributed with N(0, Iσ2

e), where I is an identity matrix and σ2
e the resid-

ual variance. The variance components of the fertility traits used in the analysis were the same as in the Nordic 
fertility evaluation28. For the production traits, the variance components were estimated by Average Information 
Restricted Maximum Likelihood (AI-REML), using the DMU software29. For each window and unique ROH 
genotype, two groups were formed: one including animals with the ROH genotype tested and the other group 
including animals that did not have an ROH in the window tested. A one-sided t-test was performed between 
these groups. In step 3, the nested windows were removed. The frequencies of the genotypes detected and the 
median lengths of the full ROH segments were calculated, using an R30 script by Jeremy Howard (J. Howard, 
Smithfield Premium Genetics, Roanoke Rapids, NC, USA, personal communication).

Data availability
The data that support the findings of this study are available from NAV, Aarhus, Denmark and Faba, Hollola, 
Finland. Restrictions may apply to the availability of these data, which were used under agreement for this study, 
and so are not publicly available. Data are however available from the corresponding author upon reasonable 
request and with permission of NAV and Faba.
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