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Evaluation of the efficiency of dried 
blood spot-based measurement 
of hepatitis B and hepatitis C virus 
seromarkers
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Tomoyuki Akita1, Keiko Katayama1, Joseph Woodring3,5, Md. Shafiqul Hossain4, 
Kazuaki takahashi1 & Junko tanaka  1*

Although hepatitis B (HBV) and C (HCV) virus infections are still global health issues, measuring 
sero-markers by standard venipuncture is challenging in areas limited with the adequate human 
resources and basic infrastructure. This study aimed to inform the usefulness of dried blood spot 
(DBS) sampling technique for epidemiological study of HBV and HCV in the resources limited areas. 
We compared specimen recovery rate expressed as analytical sensitivity ratio of HBsAg, HBcAb and 
anti-HCV between serum specimens and DBS samples (HemaSpot vs Whatman903). Sensitivity 
ratio was calculated as the ratio of the measured value from DBS to the measured value from serum. 
Then both the qualitative and quantitative comparisons of HBsAg detection by DBS were done using 
Cambodian samples. HBsAg, HBcAb and anti-HCV sensitivity ratios for the highest sample dilution (8-
fold) were 31.2:1, 38.9:1 and 32.0:1 for Whatman903 card and 17.6:1, 23.5:1 and 26.3:1 for HemaSpot 
respectively. Detection efficacy of HemaSpot (80%) was not inferior to Whatman903 (60%) after 
1 month storage, and no significant difference in any hepatitis virus sero-markers was observed in 
HemaSpot-spotted patient samples stored for 2 weeks at −25 °C and 29 °C. All reference HemaSpot 
-spotted 400 HBsAg sero-negative samples showed negative. Sensitivity and specificity of HBsAg in 
HemaSpot were 92.3% and 100%. The recovery expressed as analytical sensitivity ratio of HBsAg, 
HBcAb and anti-HCV of HemaSpot specimen were not inferior to Whatman903. Therefore, DBS with its 
usefulness proved as an acceptable tool for large epidemiological study of HBV and HCV in resources 
limited remote area.

Hepatitis B virus (HBV) and hepatitis C virus (HCV) constitute a global health issue. Although there are the 
effective hepatitis B vaccine since 19821 and anti-viral drugs such as interferon alpha, lamivudine and others (ten-
ofovir, adefovir, etc)2,3, WHO reported that approximately 257 million people have been infected with HBV and 
only 16.7% of the people diagnosed with hepatitis B were on anti-viral treatment as of 20164. Similarly, even there 
is no vaccine for HCV till now, the direct-acting antiviral drugs (DAAs) for the treatment of HCV were initially 
developed in 20115 and have since yielded high sustained virologic responses (SVRs)6. But, WHO reported that 
71 million people have been chronically infected with HCV and approximately 19% of global population (13.1 
millions) knew their diagnosis and around 5 million only had treated with DAA at the end of 20177. Therefore, 
the World Health Organization (WHO) announced in 2016 a target to eliminate HBV as public health threats by 
2030 by reducing the hepatitis B surface antigen (HBsAg) prevalence among children to ≤0.1%8 and to eliminate 
HCV by 90% reduction in new diagnosis and 65% reduction in HCV related mortality by 20309. However, both 
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the expected or unexpected barriers are still existed particularly in remote areas for its less accessibility, high cost 
and require human and technical resources to eliminate HBV and HCV in the world10,11.

Understanding the particular disease burden in situ in particular countries is the essential key to meet the 
WHO 2030 elimination goal of either HBV or HCV. The disease burden may vary geographically in different 
parts of the world12,13. Given the widespread nature of HBV and HCV, global epidemiological surveys are needed 
to fully understand the infection rates and prevalence. To investigate the ground situation of the infections, the 
screening and the surveillance are the core principles. Although the sampling by gold standard venipuncture 
requires well-experienced human resources, equipment and infrastructure, it is difficult to conduct epide-
miological surveys of factors such as viral seromarkers in resources constraint settings with limited adequate 
human resources and basic infrastructures14. So that it makes barriers in the prevention, control and its clinical 
management.

The dried blood spot (DBS) is a non-invasive relatively new blood sampling technology that requires the col-
lection of a very small amount of blood. Specifically, a blood sample is obtained from a finger prick and dropped 
onto a filter paper, dried and stored for subsequent analysis. Accordingly, this may be a more practical option 
for resource-limited areas. However, very few published reports have discussed DBS, and most have used the 
Whatman903 card14–25.

Although HemaSpot-HF blood collecting device (Spot on Science Inc., Austin, USA) is a newly developed 
DBS in recent years, it represents an affordable alternative to serum-based evaluation of viral hepatitis infections. 
However, there is no report assessing the feasibility of hepatitis virus marker measurements using HemaSpot, and 
there are very few reports on its effectiveness14–17,26. So far, no report has directly compared the sensitivity of the 
Whatman903 card with the HemaSpot (another type of DBS) and standard serum analysis14–17,26 for measuring 
hepatitis virus seromarkers. As the amount of blood on the punched filter paper of Whatman903 depends on the 
initial spread of blood on the filter paper and the position of punching, it is difficult to accurately assess the blood 
volume on the paper and, therefore, the extraction efficiency. Thus, the evaluation of the sensitivity ratios of vari-
ous blood collection methods that use absorbent/filter papers, rather than validation of the extraction efficiency, 

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

Whatman
(1 drop) 47.0 : 1

Whatman
(2 drops) 53.3 : 1

Hemaspot
(3 drops/kit) 49.2 : 1

Expected sensitivity 
ratio in serum

H
B

sA
g

(I
U

/m
l)

HBsAg negatives by 
HemaSpot sample (N=400)

serum sample

Whatman sample (1 drop)

Whatman sample (2 drops)

HemaSpot sample (3 drops/kit)

Undiluted 2 fold
dilution

4 fold
dilution

8 fold
dilution

Sensitivity ratio compared to 
serum sample in Fig. 1

Cut off

37.8 : 1 49.5 : 1 41.8 : 1 40.0 : 1

42.2 : 1 41.6 : 1 31.2 : 1 20.0 : 1

39.0 : 1 20.7 : 1 17.6 : 1 26.7 : 1

0.1

0.2
0.3
0.4
0.5
0.7
1

2

3
4
6

10

20
30
40
50
70

100

200

300
400
600

1000

2000

3000

0.1 0.2 0.4 1 2 3 5 10 20 40 100 300 1000 3000

DBS HBsAg (C.O.I)

S
er

um
 H

B
sA

g 
(C

.O
.I)

N=921
2-a) HBsAg: DBS sample and serum samle

S
en

si
tiv

ity

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

1-specificity

AUC=0.98

2-b) ROC curve of HBsAg positivity by DBS sample

DBS

(+) (-)

S
e
ru
m (+) 24 2

(-) 0 895

Peason r =0.98
(Log-transformed)

P<0.001

1)

Figure 1. Hepatitis B virus surface antigen (HBsAg) sensitivity ratios for Whatman903 and HemaSpot samples 
relative to serum samples. (a) The sensitivity ratio of each DBS sample is presented relative to the direct serum 
sample (gold standard). White, orange, dark green and light green dots represent the sensitivity ratios of serum, 
HemaSpot and Whatman903 at one drop/circle and two drops/circle, respectively. Each spot indicates the 
resultant ratios obtained at different dilutions (undiluted, 2-fold, 4-fold, 8-fold). The dot plot represents the 
measured HBsAg values from HBsAg-seronegative HemaSpot samples from a general Cambodian population 
(n = 400). (b) (i) The correlation between the serum measurement value and the DBS sample measurement 
value of the general population in Cambodia (n = 921) is shown in the scatter plot. Black solid line was 
drawn at the cutoff value of HBsAg. The breakdown of HBsAg positive numbers and negative numbers of 
serum specimens and DBS specimens is shown in the table. (ii)The vertical axis shows the sensitivity ratio, 
the horizontal axis shows the false positive rate (1 - specificity). ROC curve was represented based on the 
measurement result of DBS specimen.
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should be considered the conventional method. In this context, sensitivity can be estimated as the ratio of the 
measured value from DBS samples to the measured value from serum samples14. Therefore, this study aimed to 
evaluate the usefulness of DBS sampling technique for epidemiological study of HBV and HCV in the resources 
limited areas by comparing the specimen recovery rate expressed as analytical sensitivity ratio of HBsAg, HBcAb 
and anti-HCV between serum specimen and DBS samples.

Results
Comparison of HBsAg sensitivity ratios from serum samples, Whatman903 and HemaSpot.  
For the artificially prepared HBsAg samples in whole blood, direct serum measurement yielded the quantitative 
titer of HBsAg in the range of 17.2–227.4 IU/ml for undiluted to 8-fold diluted solutions. As for Whatman903 at 
one drop/circle, two drops/circle and HemaSpot, the quantitative titers of HBsAg were measured in the range of 
0.4–4.8, 0.6–4.3 and 1.0–4.6 IU/ml, respectively. Therefore, the estimated sensitivity ratios were 40.0 (41.8–47.0) 
for Whatman903 at one drop/circle, 20.0 (31.2–53.3) for Whatman903 at two drops/circle and 26.7 (17.6–49.2) 
for HemaSpot three drops/ kit (Fig. 1a).

Specificity of HBsAg titer measured using HemaSpot. All HBsAg-seronegative HemaSpot samples 
(n = 400; confirmed by Rapid-POC and whose specimens were collected using DBS only) obtained during the 
nationally representative survey in Cambodia yielded HBsAg quantitative titers of ≤0.005 IU/ml (Fig. 1a) show-
ing the negative to HBsAg.

Rate of agreement, sensitivity and specificity of HBsAg in HemaSpot. The rate of agreement of 
HBsAg qualitative measurement between Rapid test and HemaSpot-spotted samples from 921 Cambodian res-
idents using kappa coefficient is 0.978 (95%CI: 0.94–1.0%, Supplementary Table S1a). Moreover, HBsAg from 
HemaSpot samples and serum specimens were measured quantitatively for 921 Cambodian residents (whose 
specimens were collected using both venipuncture and DBS) and shown in Supplementary Table S1b. HBsAg 
prevalence of serum sample was 2.8% (26/921) and HBsAg prevalence of DBS samples was 2.6% (24/921) 
(Fig. 1b-i). AUC of HemaSpot was 0.98, with sensitivity of 92.3% and specificity of 100% (Fig. 1b-ii).

Comparison of HBcAb and anti-HCV sensitivity ratios between Whatman903 and HemaSpot 
samples. The HBcAb sensitivity ratios for the two different types of DBS were estimated using the calibration 
curves (solutions ranging from undiluted to 8-fold dilution). The sensitivity ratios were in the range of 15.0–39.3, 
14.8–38.9 and 18.2–23.5 for Whatman903 at one drop/circle and two drops/circle and HemaSpot, respectively 
(Fig. 2A, Table 1). Similarly, the anti-HCV sensitivity ratios were also calculated from the calibration curves, 
which yielded values in the range of 17.8–40.8, 19.1–32.0 and 22.3–26.3 in Whatman903 at one drop/circle and 
two drops/circle and HemaSpot respectively (Fig. 2B, Table 1).

Stability of HBsAg, HBcAb and anti-HCV in Whatman903 and HemaSpot-spotted artificial 
samples after 1 month at different storage temperatures. At 1 month after storage at room temper-
ature (29 °C), the detection efficiencies of HBsAg, HBcAb and anti-HCV relative to those obtained from samples 
stored at −25 °C were 57.6–64.7% for Whatman903 samples and 70.2–77.8% for HemaSpot samples (Fig. 3).

Stability of HBsAg, HBcAb and anti-HCV in HemaSpot-spotted patients samples after 2 weeks 
at different storage temperatures. Compared to patient serum samples (HBV cases 4–6) stored at 
−25 °C for 14 days, the sensitivity ratios of HBsAg for HemaSpot samples stored at −25 °C, 29 °C and 37 °C. In 
case 4, it was 18.1–24.0 against the theoretical value of 12.22, in case 5 it was 50.4–75.5 against the theoretical 
value of 26.88, and in case 6 it was 6.7–28.3 against the theoretical value of 7.04 (Fig. 4). Compared to patient 
serum samples (HCV cases 1–3) stored at −25 °C for 14days, it was 3.6–11.2 against the theoretical value of 
6.62 in case 1, 10.0–51.6 against the theoretical value of 22.47 in case 2, and 29.9–45.7 against the theoretical value 
of 21.87 in case 3 (Fig. 4).

Discussion
As noted in introduction and previous reports, DBS methods such as the Whatman903 card are considered useful 
for measurement of hepatitis virus seromarkers in resource-limited areas16,20. By the qualitative comparison of 
HBsAg detection between WHO standard Rapid Point of care test and DBS (HemaSpot-spotted samples) using 
the same samples from 921 Cambodian residents, the rate of agreement for the detection of HBsAg qualitatively 
between Rapid test and HemaSpot is very high (Supplementary Table S1a). Consistent with this perceived use-
fulness, our analysis yielded HBsAg, HBcAb and anti-HCV sensitivity ratios for Whatman903 and HemaSpot 
samples from which the measured values were the same as the estimated sensitivity ratios of serum when it was 
theoretically estimated by flowchart.

Interestingly, HBsAg sensitivity ratios obtained from Whatman903 (two drops/circle) and HemaSpot (three 
drops/kit) samples tended to be 40–50-fold higher than those of sera at high concentrations of HBsAg. It may be 
probably due to application of whole blood containing high concentration which is exceeded over the maximum 
absorbable amount sufficiently by the filter paper used for DBS. Although our flowchart (Fig. 5) led us to expect 
that the measured values of hepatitis virus seromarkers from Whatman903 samples with two drops/circle would 
double to those measured in one drop/circle samples even this was not the observed in this study. The failure to 
achieve a doubled value with two drops vs. one drop might depend on the upper limit of the absorbed blood21 
in Whatman903. This finding warrants further investigation considering its implications to using DBS in field 
settings where an uneven spread of blood on the filter paper may more likely occur than in laboratory settings and 
where the upper limit of the absorbed blood should be known and incorporated into training before collecting 
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samples using Whatman903. Among 921 Cambodian residents, there were two samples indicated HBsAg positive 
of serum sample and HBsAg negative of DBS sample. The cause of the disagreement between HBsAg measured 
values of serum and DBS among these two samples is shown in Fig. 1. The measured amount of serum is 100 μl, 
but the measured amount of DBS sample is 3.75 μl in terms of serum. As HBsAg sensitivity of HemaSpot samples 
calculated from the ROC curve is 92.3% and specificity is 100%, both sensitivity and specificity showed more than 
90%, hence HemaSpot can be used for survey in various places even in the resource limited areas as the one of 
DBS sampling techniques.

Regarding stability, HemaSpot yielded detection efficiencies that were 12.6–15.4% higher than those of 
Whatman903 at a room temperature (29 °C). Furthermore, Whatman903 appears to have a higher risk of con-
tamination because it requires 1 hour for dry14,22,23 and it requires punch circles from filter paper. HemaSpot, on 
the other hand, requires only 10 minutes for dry, easy to transport25, allows for sealing and easy labeling of each 
kit and is designed with the absorbent paper fins which can be easily removed after opening each individually 
sealed kit. In brief, HemaSpot appears to be superior to Whatman903 in terms of thermos-stability and the risk 
of contamination.

We further observed that HBsAg and HBcAb from HemaSpot samples remained stable across different stor-
age temperatures [−25 °C, room temperature (29 °C) and 37 °C]. On the other hands, anti-HCV from HemaSpot 
samples remained stable at −25 °C and room temperature (29 °C), but the sensitivity ratio of anti-HCV from 
Whatman903 stored at 37 °C showed high value indicating low sensitivity. Although reports on HemaSpot for 

Figure 2. Hepatitis B virus core antibody (HBcAb) and anti-hepatitis C virus (anti-HCV) calibration curves 
and sensitivity ratios for Whatman903 and HemaSpot samples relative to serum samples. The graphs depict 
the calibration curves and sensitivity ratios for (A) HBcAb and (B) Anti-HCV and plot the dilution ratio 
(x-axis) versus the COI (y-axis) for different dilutions (undiluted, 2-fold, 8-fold) and different types of DBS 
(Whatman903 at one drop/circle and two drops/circle and HemaSpot).
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humans were only literature on HIV measurement14–17,26, it was suggested that HBsAg, HBcAb and anti-HCV 
could also be measured from HemaSpot specimens through this study.

This is the first report to measure HBsAg (both qualitatively and quantitatively), HBcAb and anti-HCV 
from HemaSpot samples. Our analysis demonstrated that based on stability and measured hepatitis B and 
hepatitis C values under different storage temperatures, the analyte recovery expressed as analytical sensi-
tivity ratio of HemaSpot was not inferior to the Whatman903 card. HemaSpot shows high rate of agreement 
to qualitative HBsAg rapid test and high sensitivity and specificity (sensitivity: 92.3%, specificity: 100%) 
in detecting HBsAg quantitatively. Not only HBsAg, the stability ans sensitivity ratio of anti-HCV using 
HemaSpot showed the acceptable reference value in this study. Although both Whatman903 and HemaSpot 

Marker DBS type and number of drop Dilution ratio 1st measure 2nd measure Mean SD

HBcAb

Whatman 1drop

x1 20.4 11.0 15.7 6.6

x2 8.6 7.5 8.1 0.8

x8 1.7 1.4 1.6 0.2

Whatman 2drop

x1 12.7 16.6 14.7 2.8

x2 7.2 4.1 5.7 2.2

x8 2.2 1.2 1.7 0.7

Hemaspot 3drop

x1 13.1 10.9 12.0 1.6

x2 5.4 6.7 6.1 0.9

x8 2.6 2.4 2.5 0.1

HCV Ab

Whatman 1drop

x1 2.7 2.6 2.7 0.1

x2 1.5 1.4 1.5 0.1

x8 0.4 0.4 0.4 0.0

Whatman 2drop

x1 2.5 2.5 2.5 0.0

x2 1.5 1.4 1.5 0.1

x8 0.5 0.5 0.5 0.0

Hemaspot 3drop

x1 2.2 2.2 2.2 0.0

x2 1.3 1.4 1.4 0.1

x8 0.6 0.6 0.6 0.0

Table 1. Measurement result of hepatitis B virus core antibody (HBcAb) and anti-hepatitis C virus (anti-HCV) 
in Whatman903 and HemaSpot samples. The table shows the duplicate measurement values and SD of HBcAb 
and anti-HCV in different types of DBS (Whatman903 at one drop/circle and two drops/circle and HemaSpot).

Figure 3. The detection efficacy of hepatitis B virus (HBV) soluble antigen (HBsAg), HBV core antibody 
(HBcAb) and anti-hepatitis C virus (anti-HCV) in Whatman903 and HemaSpot samples stored for 1 month at 
different storage temperatures. Each graph indicates the HBsAg, HBcAb and Anti-HCV detection efficiencies 
(blue, orange and light brown bars, respectively) in (A) Whatman903 and (B) HemaSpot samples. All samples 
were tested following a 1-month exposure to different storage temperatures (−25 °C or 29 °C).
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are very easy and simple methods of collecting the blood samples, HemaSpot with its compact cartridge 
design is more benefit in safe transportation of large quantities of samples and protects samples from con-
tamination as well as easy labeling of samples comparing to Whatman903 which favors for the easy contam-
ination due to lack of cover. This finding supported the reason for choosing HemaSpot as the preferable DBS 
sampling technique in the large sero-survey. Moreover, the HemaSpot method appears to be an easy and safe 
blood sampling method for children who may fear the use of syringes or 18-gauge needles for blood collec-
tion and prefer the ease, less painful and potentially high compliance with finger prick procedure. Not requir-
ing the centrifugation of samples after blood collection as in the case of venipuncture, DBS is very useful tool 
in the very remote area where the human resources, technical development and the basic infrastructures such 
as electricity are limited.

In conclusion, this study has evaluated the usefulness of DBS sampling strategy particularly HemaSpot in 
term of its sensitivity, specificity and thermal stability in detecting HBV and HCV sero-markers which is the core 
essential step for the screening and surveillance of HBV and HCV infection. Because of its proven usefulness, we 
proposed that HemaSpot is acceptable as an appropriate sampling tool for large epidemiological study of HBV 
and HCV in all parts of the world especially in the resources limited remote areas.

Methods
Types of HBsAg Rapid Point of care test used in this study. 
 (1) Alere DetermineTM HBsAg point-of-care test strip, Abbott, Chicago, USA

Types of DBS used in this study. 
 (2) Whatman903 card (Whatman903 protein saver card, GE Healthcare Europe, Freiburg, Germany)
 (3) HemaSpot (HemaSpot-HF, Spot On Sciences, Austin, Texas)

Samples
Reference samples. Reference samples were artificially generated by adding 400 µL of recombinant HBsAg 
that was expressed and purified from a highly differentiated human liver cancer-derived huH-1 cell line27 (HBsAg; 
5000 IU/ml; Fujirebio Inc., Tokyo, Japan), 2000 µL of an HBV core antibody (HBcAb)-positive specimen [Cut-off 
Index (C.O.I): 270.5, HBV DNA: 5.7 × 105 copies/ml] or 2000 µL of an HCV-antibody positive specimen (C.O.I: 
91.7, HCV RNA: 1.6 × 107 copies/ml) to samples of HBV and HCV seronegative blood respectively.

Patient specimens from Japan. Three HBsAg positive and three anti-HCV positive patient specimens 
from Japan were used as the gold standard in comparison of the sensitivity ratios of HemaSpot samples versus 
serum samples.

Anti-HCV positive samples from the following patients were used:

Figure 4. The sensitivity ratios of HBsAg, HBcAb and Anti-HCV in HemaSpot samples stored for 2 weeks 
at different temperatures (relative to serum samples). Each graph represents the sensitivity ratio of HBsAg 
(hepatitis B virus surface antigen; first graph), HBcAb (hepatitis B virus core antibody; second graph) or 
anti-HCV (hepatitis C virus antibody; third graph) in samples that had been stored at different temperatures 
(−25 °C, 29 °C or 37 °C) for 2 weeks. Cases 1, 2 and 3 are samples collected from HCV-infected patients; cases 4, 
5 and 6 are samples from HBV-infected patients.
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 (1) Case-1: 74-year-old woman with chronic hepatitis (CH) (anti-HCV: C.O.I unmeasured, HCV RNA: 6.3 
LogIU/ml)

 (2) Case-2: 66-year-old woman with CH (anti-HCV: C.O.I 100, HCV RNA: 6.4 LogIU/ml)
 (3) Case-3: 70-year-old woman with CH (anti-HCV: C.O.I 84, HCV RNA: 4.3 LogIU/ml)

HBsAg positive samples from the following patients were also used:

 (1) Case-4: 58-year-old woman with CH (HBsAg: 838.47 IU/ml, HBcAb: C.O.I 167, HBV DNA: 4.8 LogIU/ml)
 (2) Case-5: 59-year-old man with CH (HBsAg: 3177.91 IU/ml, HBcAb: C.O.I 192.8, HBV DNA: 7.2 LogIUs/ml)
 (3) Case-6: 83-year-old man with CH (HBsAg: 934.66 IU/ml, HBcAb: C.O.I 131.6, HBV DNA <2.1 LogIU/ml)

Samples from Cambodia sero-survey. A total of 921 samples including four hundred HBsAg negative 
HemaSpot samples, all of them were initially screened and confirmed by WHO standard Rapid point of care 
HBsAg test, were collected using DBS(HemaSpot) and venipuncture from 5–6 years-old children and their moth-
ers from a nationally representative epidemiological survey conducted in Cambodia in 2017and were used to 
evaluate the rate of agreement and specificity of DBS28. DBS samples were shipped at −80 degrees from Cambodia 
to Japan by the World Courier.

Quantitative HBsAg was measured in HemaSpot samples and serum specimens from 921 Cambodian resi-
dents (where the blood samples previously screened by Rapid test). The rate of agreement of HBsAg qualitative 
measurement between Rapid test and HemaSpot-spotted samples were estimated by Cohen’s kappa statis-
tic. Correlation between serum sample and DBS samples were evaluated by Pearson’s correlation coefficient. 
Sensitivity and specificity of HemaSpot were calculated by ROC curves. All data were analyzed by JMP12 (SAS 
Institute Inc., Cary, NC, USA).

Measurement Methods
Measurement of HBsAg, HBcAb and anti-HCV in DBS eluates and the respective serum specimens.  
Automated chemiluminescent immunoassay instrument, LumipulseG1200 (Fujirebio, Inc.) was used to measure 
HBsAg (HBsAg-HQ, Fujirebio), HBcAb (HBcAb-N, Fujirebio) and anti-HCV (Ortho-II HCV, Fujirebio, Japan) 
in DBS eluates and the respective serum specimens.

Whatman903 extraction method. Two different Whatman903 samples were prepared: In 5 circles of 
Whatman903, 1 drop/circle (1drop = 20 µL, in total 100 µL) and 2 drops/circle (in total 200 µL). Samples were 
dried at room temperature (29 °C) for 1 hour prior to storage at −25 °C for 17 hours in plastic bags containing 
desiccant. To elute sample from the Whatman903 card, four punched disks (diameter: 3 mm) were extracted 

Figure 5. Flow chart of the conversion of Whatman903 and HemaSpotTM blood samples to serum equivalent 
values. The flow chart describes the conversion of values for each eluate from Whatman903 and HemaSpot 
samples to values equivalent to serum samples. The arrow indicates the brief procedure by which the DBS filter 
papers are first eluted and then diluted in an appropriate buffer solution.
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from each circle and then transferred to separate wells of a 96-well plate. Each well contained 200 µL of elution 
buffer [Tris-buffered saline (TBS): 50 mM Tris, 150 mM NaCl, 0.1% Proclin 300 and 0.05% Tween 20 at pH 7.2]. 
After stirring the plates for 1 hour, the DBS eluates were then centrifuged at 3000 revolutions per minute (rpm) 
for 10 minutes and the supernatants were filtered. A chemiluminescent enzyme immunoassay (CLEIA) was then 
used to detect hepatitis virus seromarkers in 100-µL aliquots of the supernatants (Fig. 5).

HemaSpot extraction method. The HemaSpot comprises absorbent filter paper separated into eight frag-
ments in a fan-shape and a desiccant; this arrangement is covered with clear rubber in which a small central hole 
has been placed to allow the application of blood. Following application of the whole blood through central hole, 
it spreads across the eight filter paper fragments of absorbent filter paper. Three drops of whole blood (in total 
60 µL) were spotted onto a HemaSpot. Subsequently, the cartridge was opened, and the sample was allowed to dry 
at room temperature (29 °C) for 10 minutes. The cartridge was then closed, placed into a plastic bag (FTA pouch 
with Silicagel, described above) and stored at −25 °C for 17 hours. Then, one fragment was detached from each 
HemaSpot and transferred individually into a well of a 96-well plate. The subsequent elution was performed as 
described above for the Whatman903 card samples. Thereafter, CLEIA was used to detect hepatitis virus sero-
markers in 100-µL aliquots of supernatants from HemaSpot eluates (Fig. 5).

Estimation of serum-converted values in Whatman903 and HemaSpot samples. The 
serum-converted value was 2.5 µL per drop (20 µl) of whole blood spotted over one circle on the Whatman903; 
four punched spots were used for measurements. Similarly, the serum-converted value was 5 µL when two drops 
(40 µl) of whole blood were spotted over one circle of the Whatman903; again, four punched spots from the circle 
were used for measurements.

For HemaSpot, the serum-converted value was 3.75 µL when three drops (60 µl) of whole blood were spotted 
onto the filter paper; subsequently, one fin was used for measurements (Fig. 5).

Estimation of sensitivity ratio of HBsAg, HBcAb and anti-HCV measured using Whatman903 
and HemaSpot. Because HBsAg could be measured quantitatively, the sensitivity ratios for this seromarker 
in DBS and serum were directly compared. The sensitivity ratio of HBsAg was calculated by (measured value 
from each DBS)/(serum measured value). However, as HBcAb and anti-HCV were measured qualitatively and 
semi-quantitatively, the resultant dilution curves (n = 2) were created using diluted fractions (2-, 4-, 8-, 16-, 32- 
and 64-fold) of each of the reference samples. The sensitivity ratios of HBcAb and anti-HCV were then calculated 
using these curves. One sample was measured twice and the mean ± SD was calculated. Further, a dilution curve 
was prepared by power approximation based on the average value.

According to the package insert of the assay kits, the cutoff value of HBcAb is the amount of luminescence of 
the standard positive solution for HBcAb × 0.9 and the cutoff value of anti-HCV is the amount of luminescence 
of standard positive serum for HCV × 0.28. Then, each cutoff index (C.O.I) was calculated as (amount of lumi-
nescence of specimen/cutoff value).

Stability of HBsAg, HBcAb and anti-HCV in DBS-spotted artificial samples. To determine the 
stability of hepatitis virus seromarkers in DBS samples, all the artificial samples prepared using Whatman903 (1 
drop and 2 drops/circle) and HemaSpot (3 drops/circle) samples were stored at two different storage temperatures 
[at −25 °C and at room temperature (29 °C)] for 1 month (Fig. 3). The detection efficiencies for each seromarker 
were calculated for the samples stored at 29 °C assuming the measured values of HBsAg, HBcAb and anti-HCV 
from DBS samples stored at −25 °C for 1 month have 100% detection efficacy.

Stability of HBsAg, HBcAb and anti-HCV in HemaSpot-spotted patients’ samples. Whole blood 
from patients were dropped onto HemaSpot and stored at three different storage temperatures [−25 °C, room 
temperature (29 °C) and 37 °C] for 14 days and then sensitivity ratio for each hepatitis virus seromarker was 
directly compared. We compared the sensitivity ratio calculated based on the theoretical value [(serum measured 
value)/(estimated sensitivity ratio of DBS)] and measured value (Fig. 4). Kruskal-Wallis test was compare among 
sensitivity ratios of each temperature.

Ethical consideration. Written informed consent was obtained from all participants prior to sample collec-
tion. For participants under the age of 18 years, written informed consent was obtained from a parent and/or legal 
guardian for study participation before samples was collected. Informed assent was obtained from all children. 
This study was conducted with the approval by the Ethics Committee for Epidemiological Research of Hiroshima 
University (E-440, E-573) and the Cambodia National Ethics Committee for Human Research (392NECHR). All 
methods were performed in accordance with the relevant guidelines and regulations.

Data availability
All data generated or analyzed in this study are included in this published article and its Supplementary 
Information Files.
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