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Influence of watershed 
characteristics on streambed 
hydraulic conductivity across 
multiple stream orders
Olufemi P. Abimbola1, Aaron R. Mittelstet1*, Troy E. Gilmore1,2 & Jesse T. Korus2

Streambeds are critical hydrological interfaces: their physical properties regulate the rate, timing, and 
location of fluxes between aquifers and streams. Streambed vertical hydraulic conductivity (Kv) is a key 
parameter in watershed models, so understanding its spatial variability and uncertainty is essential 
to accurately predicting how stresses and environmental signals propagate through the hydrologic 
system. Most distributed modeling studies use generalized Kv estimates from column experiments or 
grain-size distribution, but Kv may include a wide range of orders of magnitude for a given particle size 
group. Thus, precisely predicting Kv spatially has remained conceptual, experimental, and/or poorly 
constrained. This usually leads to increased uncertainty in modeling results. There is a need to shift 
focus from scaling up pore-scale column experiments to watershed dimensions by proposing a new 
kind of approach that can apply to a whole watershed while incorporating spatial variability of complex 
hydrological processes. Here we present a new approach, Multi-Stemmed Nested Funnel (MSNF), to 
develop pedo-transfer functions (PTFs) capable of simulating the effects of complex sediment routing 
on Kv variability across multiple stream orders in Frenchman Creek watershed, USA. We find that using 
the product of Kv and drainage area as a response variable reduces the fuzziness in selecting the “best” 
PTF. We propose that the PTF can be used in predicting the ranges of Kv values across multiple stream 
orders.

Water scarcity is among the most pressing issues to humanity. Intensive water consumption, driven by a grow-
ing population and changing climate, places the world’s limited water supplies under increasing pressure. These 
stresses often propagate throughout a hydrologic system, because streams, rivers, and lakes are connected to 
underlying aquifers. For these reasons, the interaction between groundwater and surface water is of much interest 
to water managers. The water exchange or interaction pattern depends on substrate permeability1–4. Kv is one of 
the major parameters controlling stream-aquifer interactions. There are several reach-scale and watershed-scale 
variables which influence the spatial variation and distribution of Kv along and across stream reaches. These 
factors can be geological, hydrological, anthropogenic, or biological5–11. Some geologic factors that mostly influ-
ence streambed Kv are sediment particle size, underlying geology, heterogeneity of the substratum, thickness of 
bed material, channel geometry, hydraulic radius variations, and roughness due to natural and anthropogenic 
alterations8.

In hydrological modeling studies, homogeneity of Kv is usually assumed for practical reasons even though it 
may lead to more uncertainty in streamflow modeling12,13. Since it is not practical to measure Kv at every location 
along a stream course, modelers often rely on literature values or few measurements, and assume Kv does not vary 
across the watershed. Owing to lack of detailed information about the order of magnitude of its variation and 
the uncertainties in characterizing variability of Kv, satisfactory results can be achieved, in many cases, by simply 
assuming that the streambed is homogeneous. However, assuming homogeneity across a watershed often leads 
to the under- or over-prediction of streambed leakage and baseflow13–16. It is imperative to reliably estimate the 
spatial distribution of Kv to improve hydrological models and better understand the connectivity between surface 
water and groundwater17–20.
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There are many laboratory and in-situ tests to determine streambed Kv
18,21–23. While some studies focused on 

advantages and limitations of different measurement techniques24,25, others have focused on only the spatial var-
iability of streambed Kv along transects across a channel26, both the spatial and temporal variability18, statistical 
description (means, ranges, variances) for hydraulic conductivity data22,27, or spatial interpolation of streambed 
Kv

22,28. These studies have all grappled with challenges of estimating Kv because of the difficulty of determining 
representative samples and comparing results, considering the heterogeneity and anisotropy of streambed mate-
rials and geological conditions5.

Similar to the issue of spatial variability is the effect of scaling. Based on some unsolved problems in hydrology 
that were recently published29, one of the unanswered questions posed was, “What are the hydrologic laws at the 
watershed scale and how do they change with scale?” They also questioned why dominant hydrological processes 
emerge and disappear across scales, and why hydrology seems to be simple at the watershed scale despite being 
complex at smaller scales29. Since the pore-scale approach to flow in porous media may be inherently inadequate 
at the watershed scale, a more fruitful path forward is to consider a watershed as a single ecosystem, and to build 
a new kind of theory or propose a new kind of approach that can apply to the whole watershed.

Saturated hydraulic conductivity (Ksat) is a quantitative measure of the ability of a saturated soil to transmit 
water when subjected to a hydraulic gradient30. Although Kv and Ksat are similar in definition, the processes that 
govern their distribution are different. While Ksat is essential in modeling surface and subsurface flow as well 
as solute transport in soils and sediments31, Kv is an important variable controlling water and solute exchange 
between streams and surrounding groundwater systems17–20. Many pedo-transfer functions (PTFs) have been 
developed in the past five decades to estimate Ksat from easily measureable parameters, such as textural prop-
erties, bulk density, and sample dimensions31–37. In comparison to Ksat, PTFs have not been as widely applied to 
streambed Kv estimation from other soil properties38,39. While most of the Kv studies have focused on analyzing 
the spatial and temporal variations of point measurements, very few empirical studies have focused on predicting 
Kv using only reach-scale attributes8. There is still a knowledge gap in the spatial prediction of streambed Kv using 
PTFs based on soil textural distribution and watershed characteristics. Although PTFs may not be applicable 
beyond the regions for which they were developed39, we attempted to develop PTFs for estimating Kv within a few 
orders of magnitude of the measurements using a new approach which hinges on the premise that the sediment 
composing the streambed is originated from the eroded rocks and sediment within its enclosing drainage area.

Results and Discussion
The geometric mean Kv value varies between 7.57 × 10−3 and 1.81 m/day, about four orders of magnitude varia-
tion, which indicates different types of soils with various structures across different stream orders. The summary 
statistics of streambed Kv values at each of the ten test sites (stream channels) are shown in Table 1.

Spatial distributions of soil texture show that, compared to the upland areas, there is about twice more silt than sand 
in the downstream areas (Sites 4 and 10) of the watershed (Fig. 1). Conversely, in situ permeameter tests and sieve anal-
ysis show that the streambed is predominantly sandy (>95%) in the downstream areas with higher Kv values (Fig. 2). 
In general, we observe that geometric mean Kv values tend to increase in the downstream direction in the study area. 
This seems counterintuitive because Kv is expected to decrease going downstream since the grain size of streambed 
sediments typically decreases with distance downstream due to abrasion, sorting, and selective transport40. However, 
a downstream transition occurs in stream channels due to the assortment of sediments coming from all points in 
a watershed and the spatial variation of soil textural properties of the sediment. In addition, the sediment source of 
the tributaries plays a major role in controlling the grain-size distribution for streambed sediments41. A downstream 
decrease in Kv would be true only if all the sediments enter a stream only from the upper headwaters and there are no 
sediment contributions from tributaries, streambank erosion and runoff from adjacent fields that enters the stream by 
flowing over the streambanks. In reality, storms deliver large amounts of eroded sediment from the surrounding land-
scape. Therefore, we introduce a new approach called Multi-Stemmed Nested Funnel (MSNF) to capture the effect of 
the spatial variability of soil, reach and watershed properties on Kv prediction (Fig. 3).

The multi-stemmed nested funnel (MSNF) approach. MSNF approach is based on the concept of 
nested hierarchy of lower-ordered sub-watersheds and also involves the understanding of soil erosion and sediment  
mobilization processes. A large watershed is typically made up of many sub-watersheds that are drained by 

Site
Sample 
size, n

Geometric 
mean Minimum Maximum

Coefficient 
of variation Skewness Kurtosis

1 9 7.57 × 10−3 3.88 × 10−3 1.64 × 10−2 0.49 1.02 0.51

2 9 1.25 × 10−2 6.11 × 10−3 4.81 × 10−2 0.91 1.59 1.31

3 9 4.04 × 10−2 1.01 × 10−2 0.11 0.58 1.07 1.79

4 9 1.42 1.54 × 10−2 51.75 2.06 2.91 8.60

5 9 0.62 3.28 × 10−3 26.84 1.32 0.86 −1.36

6 9 8.66 × 10−2 5.65 × 10−3 0.45 0.96 1.66 2.84

7 12 0.16 3.03 × 10−2 1.13 1.12 2.27 6.03

8 9 2.23 × 10−2 4.87 × 10−3 0.19 1.36 2.49 6.71

9 9 0.10 4.48 × 10−3 0.78 1.11 0.91 −0.54

10 9 1.81 5.55 × 10−2 9.04 0.96 1.02 −0.39

Table 1. Summary statistics of Kv (m/day) values at ten sites.
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tributary streams and rivers. These sub-watersheds, in turn, are also made up of smaller watersheds of streams 
draining into their main channels. Headwater watersheds are known to be major contributors of sediments to 
downstream reaches. This approach suggests that the order of magnitude of Kv (m/day) depends on the textural 
composition of the sediments coming from headwater watersheds as well as reach and watershed attributes. Thus 
we hypothesize that a point estimate of Kv should be a function of the sediments coming from the entire area it 
drains, the reach properties as well as the contributing watershed attributes. Also, point estimates should vary 
across multiple stream orders due to the heterogeneity and anisotropy of streambed materials.

We choose seven frequently available watershed and soil characteristics (SSURGO datasets) as predictor var-
iables for this study. These are drainage area (DA), reach slope (Rch_Slp), percent organic matter (OM), per-
cent sand, percent silt, percent clay and soil erodibility factor (K_Erod). Although other watershed-scale and 
reach-scale attributes derived from digital elevation models (DEMs) such as the watershed elevations, reach ele-
vations, reach length, width at top of bank, depth, width-depth ratio, and average width of tributary channels 
would also affect Kv, we do not use them in this study. This is partly because of their high sensitivity to spatial 
resolutions of DEMs used in most studies. These attributes are major inputs to distributed parameter watershed 
models that are used in simulating the hydrologic response of a watershed42,43. Moreover, with 93 permeameter 
tests carried out across 10 sites (n = 10), such sample size with many predictor variables will lead to overfitting 
which reduces the accuracy of the estimates and the power of the PTFs.

The correlation matrix shows that Kv is more highly correlated with DA than with other selected predictor 
variables (Fig. 4). There is also a negative correlation between DA and Rch_Slp. Several studies related to stream-
flow and sediment yield have also shown a negative relationship between drainage area and average watershed 

Figure 1. Spatial distributions of the soil properties for 0–50 cm depth. The sharp vertical and horizontal 
boundaries between classes in some maps are county boundaries which are effects of differences in how county 
soil surveys were conducted.
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slope44–46. Although the correlation coefficients of streambed Kv with OM and clay are relatively small, both OM 
and clay are still suitable for developing PTFs because of the relatively high inter-correlation among soil textural 
properties.

Developing PTFs for predicting Kv. With the MSNF approach and seven predictor variables, all 127 pos-
sible PTFs based on all possible combinations of these variables were developed and analyzed. The performances 
of all PTFs were assessed by the values of thirteen selection criteria (see Methods). The distributions of all the 
possible k-variable (k = 1, 2, …, 7) models for six criteria are shown (Fig. 5a). The best subset regression models 
were selected for each variable-number category using these criteria. That is, of all the possible k-variable models, 
the best performing model was selected. Since there is only one possible model with seven variables (k = 7), this 
implies that this is the best 7-variable model.

Except for the best Model 4 (k = 4), all the best subset PTFs consist of DA as a predictor and explains 65% of 
the variance in LogKv. The next most important variable is OM. Results indicate that there is no consistency in 
the selection of the overall best PTF based on these thirteen criteria, although Model 5 appears to be the strongest 
candidate since five out of the thirteen selection criteria choose Model 5 as the overall best PTF.

KvDA as a better response variable. In order to better predict Kv spatially, there is a need to avoid seeking 
exactness where only an approximation is possible, and accept the degree of imprecision that the nature of complex 
erosion and sedimentation processes allow. Therefore, we introduce a new response variable (KvDA) for predicting 

Figure 2. Soil textural compositions of the soils at the ten sites. SB-Surf (subbasin surface level), SB-0–50 
(0–50 cm of subbasin), SB-50–100 (50–100 cm of subbasin), SB-100–150 (100–150 cm of subbasin), SB-150–200 
(150–200 cm of subbasin), SB-All (0–200 cm of subbasin), P-Surf (point surface), P-0–50 (point 0–50 cm), Sieve 
(sieve analysis 0–30 cm of streambed).
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the order of magnitude of variation of Kv so as to help balance the accuracy we seek with the uncertainty that exists. 
While Kv is an intrinsic property of streambed materials, KvDA is an extrinsic property which behaves like hydraulic 
conductance and is a property of a reach which varies depending upon its shape and size as well as watershed attrib-
utes. It is important to note that whereas hydraulic conductance is the product of hydraulic conductivity, stream 
width and length of stream reach divided by the thickness of streambed, KvDA is the product of streambed vertical 
hydraulic conductivity at a location and the watershed area drained by that location.

Coupling Kv and DA can be important for reducing the fuzziness in the selection of the overall best PTF. It can 
also help to capture the hydrological processes which control magnitude of variation of Kv across scale, soil tex-
ture domains, as well as across different stream orders. Based on the MSNF approach, KvDA is used as a response 
variable that is dependent on the long-term sediment transport and deposition processes by overland flow from 
the surrounding landscape. Figure 5a shows all the 63 possible PTFs for predicting log-transformed KvDA (that 
is LogKvDA) from percent OM, sand, silt and clay content as well as Rch_Slp and K_Erod.

In contrast to PTFs for predicting LogKv, different model categories select LogRch_Slp and LogOM as the 
most significant predictor variables when Kv is coupled with DA. Models 1, 5, and 6 select LogRch_Slp as the 
best predictor variable while Models 2, 3 and 4 select LogOM. Comparison of the performance of the best subset 
PTFs and the rank totals of the selection criteria (Fig. 6) shows that Model 4 is the overall best PTF due to a better 
consistency of all the selection criteria. This implies that OM, sand, silt and clay contents are the best predictor 
variables for predicting LogKvDA.

Figure 3. Breakdown of the MSNF approach. Top: A typical nested watershed; Bottom left: Five separate funnels 
representing five sub-watersheds; Bottom right: Funnels coupled to form a MSNF.

Figure 4. Correlation matrix of all variables. The correlation between Kv and DA is highly positive while Kv and 
Rch_Slp are highly negatively correlated.
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Conclusion
Beyond demonstrating that using KvDA as the response variable in the MSNF approach enables prediction of stre-
ambed Kv with lower prediction error (when compared to using Kv as the response variable), it is also important 
to note that predicted Kv values are only rough estimates and are probably best considered as order-of-magnitude 
estimates. In many applications of distributed models, we believe the MSNF approach we propose can be useful in 
hydrological modeling using tools such as Soil and Water Assessment Tool (SWAT) and MODFLOW. Prediction 
errors for the “best” PTF can be used to determine the minimum and maximum Kv values for calibration pur-
poses. However, it is important to note that the use of different prediction error equations in predicting calibra-
tion ranges should be expected to lead to different results in terms of the predicted uncertainty limits. We hope 
that the MSNF approach might provide the basis for further studies which include more soils from the soil texture 
triangle, specifically clay. Our results, which shall be corroborated by further studies, support the importance of 
using spatial Kv in modeling to understand the interactions between streams and aquifers.

Figure 5. Pedo-transfer functions. (a), All possible PTFs for predicting Log(Kv). The triangles indicate the best 
subset PTFs and the overall model numbers. (b), All possible PTFs for predicting Log(KvDA). The triangles 
indicate the best subset PTFs and the overall model numbers.
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Methods
Study area. Our study site is located in southwest Nebraska and eastern Colorado, USA. It is a sub-watershed 
of the Republican River watershed. Like much of the High Plains aquifer, Frenchman Creek watershed has experi-
enced significant reductions in groundwater levels and streamflow over the past five decades. The water table has 
declined ~25 m and the perennial reach of the stream has shortened by more than 21 km. The major tributaries 
include Stinking Water Creek, Spring Creek, and Sand Creek.

Data collection. In this study, ninety three in-situ falling head permeameter tests were carried out at 10 test 
sites within the Frenchman Creek watershed (Fig. 1). Seven sites (Sites 4–10) are on Frenchman Creek, two sites 
(Sites 2 and 3) are on Stinking Water Creek and one site (Site 1) on Spring Creek. The number of sites was lim-
ited to landowner access. Other tributaries within the watershed were dry at the time of the study. Each test site 
comprised of at least three transects and each transect comprised of at least three Kv measurements. Transparent 
tubes (76 cm long and 8 cm inside diameter or 183 cm long and 6.8 cm inside diameter) were pressed vertically 
into the channel sediments. The thickness of the tube wall is about 3 mm, typical of many previous studies18,28. 
The locations of permeameter stations were mapped with a global positioning system (GPS). For each Kv meas-
urement, the tube was inserted into the stream bed to a depth of 30 cm. Before beginning the falling head test, 
it was assumed the stream water level was equal to the groundwater level. This assumption increased measure-
ment uncertainty, but likely by a small amount compared to the variability within and between sites. The surface 
water-level at the streambed surface was considered as the initial hydraulic head at the measurement point. Water 
was added slowly to fill up the tube from the top so as not to disturb the sediments inside the tube. As the hydrau-
lic head in the tube began to fall, a series of hydraulic heads at given times were recorded for the derivation of the 
vertical hydraulic conductivity of the sediment column. Kv (m/day) was calculated using Eq. (1) derived from 
Hvorslev’s23 equation.
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where H is the water level inside the permeameter relative to the ambient pre-test water level, D is the inside 
diameter of the tube, Lv is the length of the sediment in the tube, t is time, and m is the isotropic transformation 
ratio K K/h v  where Kh is the horizontal hydraulic conductivity of the sediment around the base of the tube. This 
study used the average of Kv values using m = 1 and m = ∞. Note that the m = ∞ scenario simplifies to the stand-
ard Darcy equation24.

Data analysis. To check whether the distribution of Kv are normal for the sites, formal tests of normal-
ity were carried out using six normality tests47. Anderson-Darling (AD), Cramer-von Mises (CVM), Lilliefors 
(LL), Pearson chi-square (CSQ), Shapiro-Francia (SF), and Shapiro-Wilk (SW) tests were applied at 0.05 signif-
icance level. Owing to the fact that there are contradicting results as to which test is the optimal or best test48, 
these six normality tests were compared in order to see how they performed for both non-transformed and 
log-transformed Kv values.

For more general heterogeneous systems, the effective hydraulic conductivity is known to be the geometric 
mean since samples of hydraulic conductivity in most cases follow lognormal distribution. Since Kv values may 
vary by orders of magnitude within a short distance along a river reach and across a section, the geometric mean 
for each site was used in this study to capture the spatial variation.

The database used in this study includes soil datasets from the SSURGO database that consists of information 
about soils as collected by the National Cooperative Soil Survey49 in the Unites States. Spatial soil properties (% 
sand, silt, clay and organic matter) at 0–50 cm depth, K_Erod (fraction), Rch_Slp (fraction) and DA (ha) were 
extracted using Soil Map Viewer in ArcMap 10.3.

PTFs for predicting the order of magnitude of Kv were developed using a new approach called Multi-Stemmed 
Nested Funnel (Fig. 3). A new response variable (KvDA) was also introduced to help in the selection of the most 
significant predictor variables (Fig. 5b). Multiple linear regression (MLR) method was used to develop the PTFs 
because it has been used extensively due to its simplicity, good application and accuracy. The PTFs were devel-
oped by log-transforming all the variables in order to avoid heteroscedasticity and non-normality of the resid-
uals of the regressions. We evaluated and compared the predictive performance of all possible 127 PTFs using 
thirteen performance indicators including R-squared (R2), Adjusted R-squared (Adj.R2), Mallow’s C(p), Akaike 
Information Criteria (AIC), corrected Akaike Information Criteria (AICc), Sawa’s Bayesian Information Criteria 

Figure 6. Rank totals of the best subset regression models for predicting Log(KvDA).
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(SBIC), Schwarz Bayesian Criteria (SBC), Mean Squared Error of Prediction (MSEP), Final Prediction Error 
(FPE), Hocking’s Sp (HSP), Amemiya Prediction Criteria (APC), Leave-One-Out Cross-Validation (LOOCV), 
and Predicted Residual Error Sum of Squares (PRESS). The major difference between these criteria is how 
severely each penalizes increases in number of predictor variables (Eqs. (2–14)). For good prediction, the overall 
“best” PTF is the one that maximizes R2, Adj. R2 and APC and minimizes the other selection criteria. All statistical 
analyses and calculations were done using R version 3.4.450.
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where xi is the observed value, xiˆ  is the predicted value, x  is the observed mean value, p is the number of explan-
atory variables, x̂ip is the predicted value of the ith observation of x from the p explanatory variables, p⁎ is the 
number of explanatory variables including the intercept, x̂ii is the predicted value of the ith observation of x using 
all data except ith, S2 is the residual mean square after regression on the complete set of K explanatory variables, 
N is the sample size, L is the maximized value of the likelihood function for a model, σ2 is the pure error variance 
fitting the full model.

In order to select the overall “best” PTF for predicting LogKvDA, all the best subset PTFs (i.e. best n-predictor 
models) are selected for each number of predictor variables. For each criterion, the models are ranked from 1 to n, 
and the rank total for each best n-predictor model is calculated by adding all the ranks for all the criteria. All rank 
totals exclude R2 because it increases every time a predictor variable is added to a model, even if due to chance 
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alone. If a model has too many predictor variables, it begins to model the random noise in the data. Hence, this 
overfitting produces misleadingly high R2 values and a reduced ability to make predictions. Also, to avoid bias 
due to double counting, LOOCV was excluded in calculating the rank totals because it is identical to the PRESS.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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