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Mechanistic insights into the 
deleterious roles of nasu-Hakola 
disease associated TREM2 variants
Raju Dash  , Ho Jin choi & il Soo Moon  *

Recently, the critical roles played by genetic variants of TREM2 (Triggering Receptor Expressed on 
Myeloid cells 2) in Alzheimer’s disease have been aggressively highlighted. However, few studies have 
focused on the deleterious roles of Nasu-Hakola disease (NHD) associated TREM2 variants. In order 
to get insights into the contributions made by these variants to neurodegeneration, we investigated 
the influences of four NHD associated TREM2 mutations (Y38C, W50C, T66M, and V126G) on loss-of-
function, and followed this with in silico prediction and conventional molecular dynamics simulation. 
NHD mutations were predicted to be highly deleterious by eight different in silico bioinformatics tools 
and found to induce conformational changes by molecular dynamics simulation. As compared with the 
wild-type, the four variants produced substantial differences in the collective motions of loop regions, 
which not only promoted structural remodeling in the CDR2 (complementarity-determining region 2)  
loop but also in the CDR1 loop, by changing inter- and intra-loop hydrogen bonding networks. In 
addition, structural studies in a free energy landscape analysis showed that Y38, T66, and V126 are 
crucial for maintaining the structural features of CDR1 and CDR2 loops, and that mutations in these 
positions produced steric clashes and loss of ligand binding. These results showed the presence of 
mutations in the TREM2 ectodomain induced flexibility and caused structural alterations. Dynamical 
scenarios, as provided by the present study, may be critical to our understanding of the roles of these 
TREM2 mutations in neurodegenerative diseases.

The accumulation of amyloid-β (Aβ) in brain parenchyma is the main hallmark of Alzheimer’s disease (AD), 
which results in a slow progressive decline of cognitive function by causing the formation of intracellular neu-
rofibrillary tangles, synapse loss, and cell death1,2. Although the precise mechanisms and molecular determinants 
of this neurodegenerative disease are incomplete, recent whole-genome sequencing studies have demonstrated 
altered genetic loci including those in TREM2 (Triggering Receptor Expressed on Myeloid cells 2) are associated 
with a markedly higher risk of progression to AD3,4.

TREM2 is a V-type immunoglobulin (Ig) domain-containing transmembrane protein that is expressed in oste-
oclasts, microglia, alveolar macrophages, and other mononuclear phagocytes4. The activation of TREM2 is initi-
ated by anionic lipids, such as bacterial lipopolysaccharide (LPS) and phospholipids, and several putative ligands 
like apolipoprotein J (ApoJ) and apolipoprotein E (ApoE) have been reported to bind to TREM25–7. Upon ligand 
binding, TREM2 recruits protein tyrosine kinase SYK through an adapter protein known as DNAX-activating 
protein of 12 kDa (DAP12), which interacts with the transmembrane region of TREM28–10. This binding is fol-
lowed by a cascade of signaling events, which include the activations of MAPK and PI3K, and regulates the 
phagocytosis of cellular debris and the inflammatory responses of microglia10–12. During early and mid-term AD, 
TREM2 plays a protective role13, and its overexpression is associated with clearing soluble and insoluble Aβ42 
aggregates from brain14,15. Furthermore, TREM2 has also been reported to suppress the accumulation and diffu-
sion of Aβ by modulating microglial activation around amyloid plaques16–19.

During the past six years, cell biological research studies have suggested links between several TREM2 vari-
ants and failure of Aβ clearance, and several rare variants have been shown to be associated with AD progression 
(Table S1)20. Mutations, such as, R47H and R62H variants have been shown to present significant risks of AD, 
and, as a result, are considered AD-associated variants21. Interestingly, at the molecular level, genetic variations in 
TREM2 have also been linked with frontotemporal dementia (FTD) and Nasu-Hakola disease (NHD), the latter 
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of which is characterized by demyelination, early-onset dementia, and bone cyst lipoma and known to be associ-
ated with Y38C, W50C, T66M, and V126G mutations in the ectodomains of TREM222–25.

In this regard, Yeh et al. showed that TREM2 variants, including AD-associated (R47H, R62H, and D87N) 
and NHD linked mutations (Y38C and T66M) reduce binding between TREM2 and its ligands. Moreover, loss of 
ligand binding was found to be more severe for NHD associated mutations than AD-associated mutations7. The 
present study provides in silico insights of the magnitudes of the damaging effects of TREM2 variants, particularly 
of NHD associated mutations, and provides classical molecular dynamics simulation-based descriptions of the 
structural dynamic behavior of TREM2 protein in the wild and mutated states.

Results and Discussions
Assessment of pathogenicity of TREM2 variants. Human TREM2 is composed of 230 amino acids 
and a polypeptide chain that consists of three distinct regions, namely, an N-terminal mature ectodomain (ECD, 
residues 19–174), a membrane-spanning region (residues 175–195), and a C-terminal cytosolic tail (residues 
196–230). The other amino acids, especially residues 1–18 act, as a signaling peptide in the TREM2 signaling cas-
cade. As shown in Fig. 1, the tertiary structure of the TREM2 ECD domain is mainly composed of nine β-strands 
(βA - βF), which include three major complementarity-determining regions (dubbed CDR loops), that is, CDR1 
(residues Pro37 to Arg47), CDR2 (residues Thr66 to Arg76), and CDR3 (His144 to Glu117). Like the other members of 
the Ig superfamily, ligands bind to TREM2 ECD near apical CDR loops. Previous studies have shown that CDR2 
maintains a stable conformation in normal conditions by maintaining H-bonding using the CDR1 loop, which 
is necessary for ligand interactions26. However, genetic variations result in the destabilizations of these loops, 
and thus, by impairing ligand binding may have deleterious effects. According to X-ray diffraction analysis, the 
H-bonding network between CDR loops appears to be lost in the R47H variant and result in conformational 
remodeling of the CDR2 loop. In the present study, we used in silico deleterious prediction analysis to re-rank 
the risk associations of known disease-associated TREM2 variants. Eight in silico state-of-the-art-tools were uti-
lized to predict deleteriousness: SIFT (= 0), PolyPhen‐2 (>0.9), PROVEAN (<−2.5), I‐Mutant 3.0 (<−0.5), 
FATHMM (<−3.0 or >3.0), MutPred (>0.75), CADD (>20), and Condel (>0.8), where parenthesis show the 
cutoffs used. Of these tools, I-Mutant 3 predicted the highest number of deleterious variants, though all predic-
tions substantially concurred (Fig. S1). In fact, in silico predictions of any two tools were found to be significantly 
associated for most combinations (P < 0.0001 by the Student’s t‐test). Analysis showed the NHD W50C muta-
tion was the most deleterious by all tools, whereas other NHD variants, including Y38C, T66M, and V126G, 
were classified as significantly deleterious (P = 0.0001) by seven of the eight computational tools. Interestingly, 
these results are consistent with those of a previous experimental study, in which the Y38C and T66M mutations 
(located in the CDR1 and CDR2 regions, respectively) were found to be involved in loss of ligand binding. Since 
NHD variants were found to be more deleterious by in silico analysis and experimental findings, we systematically 
analyzed how these mutations contribute to the pathological behavior of TREM2.

Changes in the conformational stabilities of TREM2 variants. Over past decades, molecular simu-
lation has provided means of characterizing in detail the structural configurations of macromolecules in various 
environments, as determined by their functions and interactions with other molecular species27,28. In this context, 
molecular dynamics simulations of wild-type and Y38C, W50C, T66M, and V126G variants were conducted for 
100 ns to access their structural dynamic and stability characteristics. The conformational stabilities of wild and 
variant types during simulations were analyzed by calculating RMSD values for the backbones of all proteins from 

Figure 1. Wild-type and variant structures of the TREM2 ectodomain. Cartoon depiction of the TREM2 
wild-type ectodomain showing domain boundaries (a). 3-D view of NHD-associated mutated positions (green 
colored residue), Y38C (b), W50C (c), T66M (d), and V126G (e).
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starting structures (Fig. 2). RMSD analysis revealed that the wild-type and Y38C variant achieved equilibrium 
after 5 ns and that equilibrium states were maintained until the end of simulations, whereas the three other var-
iants achieved equilibrium after 20 ns. Furthermore, wild-type and Y38C structures showed similar deviations 
from their starting structures at 100 ns, which resulted in backbone RMSD values of ~1.4 to 1.7 Å during simu-
lations. However, W50C, T66M, and V126G structures showed significantly different deviations from wild-type 
and Y38C structures (range ~1.9 to 3 Å). After the relaxation period, the magnitudes of fluctuations of the Y38C, 
W50C, and V126G variants were stably maintained29. However, the RMSD of the T66M variant reduced at 80 ns 
but then remained stable from 84 ns to the end of the simulation, indicating a major conformational change 
occurred. A similar pattern was also observed for the W50C variant. Overall, RMSD analysis suggested that the 
trajectories produced provided an appropriate basis for further analysis.

Conformational in changes in variants as compared with the wild-type were evaluated using radius of gyration 
(Rg) (Fig. 3), which describes overall dimensions of protein structures in terms of compactness (higher Rg values 
represent lower compactness)30,31. As shown in Fig. 3a and c, the overall dimensions of Y38C and T66M were sim-
ilar to those of the wild-type, whereas V126G (Fig. 3d) showed increased compactness from 50 ns to the end of 
the simulation. On the other hand, W50C (Fig. 3c) had a higher Rg than the wild-type. SASA provides a measure 
of solvent accessibility, and SASA profiles were similar to Rg profiles for variants and the wild-type. The wild-type 
and Y38C, W50C, and T66M variants showed similar deviations from their initial structures (Fig. 4a–c), but 
V126G showed an increase in SASA after 50 ns (Fig. 4d), which indicated bloating of its structure as compared 
with the wild-type32. Although RMSD analysis showed conformational alterations in T66M and V126G variants 
versus the wild-type, only the V126G variant showed conformational alterations by Rg and SASA. T66M showed 
a decrease in RMSD before 80 ns, and Rg and SASA values also reduced at this time point. Summarizing, Rg, 
SASA, and RMSD analyses (Table S1) showed that the Y38C, W50C, T66M, and V126G variants modulated pro-
tein dimensions, which in turn suggested misfolding and changes in protein-protein interactions33.

Figure 5 shows RMSF values for protein backbones and depicts local changes in protein structure caused 
by mutations. Local residue fluctuations in proteins underlie biological functions, as the many functional sites 
in proteins are uniquely coupled with structural fluctuations34–36. As represented in Fig. 5a, TREM2 contains 
ten loops, including three CDR loops, which all fluctuated throughout simulations. Degrees of fluctuation were 
greater in variant structures than in the wild type. Interestingly, Y38C and T66M variants showed high levels of 
fluctuation in CDR1 and CDR2 regions, respectively. The V126G variant showed increased local flexibility, espe-
cially in the regions including residues 50 to 60 and 85 to 95 and in the CDR1 loop and N-terminal tail. On the 
other hand, no significant changes were observed for the W50C variant as compared with the wild-type with the 
exception of residues 86 to 93, which had a lower RMSF value, suggesting conformational changes in this region. 
For more insight, SASA values were calculated per residue for the wild-type and variants. Variant structures 
showed an increase in residual SASA values, especially W50C and T66M in CDR1 and CDR2 regions (Fig. 5b). 
SASA deviations were also observed for Y38C and V126G variants in the CDR1 and CDR2 loop regions. SASA 
per residue values reflect structural conformational changes at protein surfaces; lower values mean residues are 
buried inside globular folded conformations37–39. This analysis together and the RMSF study suggest that the 
Y38C, W50C, T66M, and V126G increase solvent exposure, modulate protein-protein interactions, and possibly 
increase aggregation propensity40–42.

Figure 2. Root-mean-square deviation (RMSD) of Cα atoms for wild-type and TREM2 variants at 100 ns. Here, 
the dark green line represents the wild-type, and the blue, red, orange and violet lines represent Y38C, W50C, 
T66M, and V126G variant RMSDs. In addition, the bottom panel shows density plots for the wild-type and 
variants and illustrates the distributions of sampled conformations during simulation.
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Effects of mutations on protein dynamics. In different functional states, proteins undergo confor-
mational transitions due to global domain motions facilitated by the collective motions of backbone atoms43. 
Generally, the residues located in the regions with secondary structures move in a concerted manner44. For addi-
tional insight into the dynamics of wild-type TREM2 and its variants, dynamic cross-correlation maps (DCCM) 
and principal component analyses were performed on the MD trajectories of different systems. DCCM addresses 
the concerted motions of protein residues and highlights strongly correlated motions between specific residues in 
red (Fig. 6), and conversely, highlights highly anti-correlated motions in blue. Analysis revealed that as compared 
with the wild-type, the Y38C, W50C, T66M, and V126G mutations induced completely different motions. Y38C 
(Fig. 6b) produced significant anti-correlative motion between residues 17–27 (CDR1 loop, residues 37 to 47) 
and residues 45 to 56 (CDR2 loop, residues 65 to 76), and 65 to 74 (residues, 85 to 94). The T66M variant (Fig. 6d) 
slightly reduced the degrees of correlated and anti-correlated motions observed in the wild-type, although no 
significant correlation has been seen in the DCCM analysis. The W50C variant exhibited correlative motions not 
observed in Y38C, T66M, or V126G variants, and showed strong anti-correlative motions between residues 5 to 
11 (residues, 25 to 31) and residues 38 to 46 (residues, 58 to 66), 56 to 60 (residues, 76 to 80), 62 to 67 (residues, 
82 to 87), 73 to 76 (residues, 93 to 96), respectively (Fig. 6c). Furthermore, significant positive correlations were 
observed between region 40 to 46 (residues, 60 to 66) and 63 to 69 (residues, 83 to 89), the latter of which showed 
anti-correlative motions with residues in CDR2 loops 50–56 (residues, 70 to 76) and the region including residues 
from 77 to 85 (residues, 97 to 105). For the V126G variant (Fig. 6e), results showed mutation increased correlative 
intra-residue movement, specifically between the loop residues, 34 to 40 (residues, 54 to 60) and the c-terminal 
portion 80 to 105 (residues, 100 to 125). A negative correlation was also observed in the CDR1 and CDR2 loop 
regions, suggesting the mutation had a deleterious effect on TREM2 functions.

To further support the changes on the protein dynamics, principal component analysis (PCA) was conducted 
based on Cα atoms (Fig. S2). PCA analysis, which reduces the complexity of collective motions is usually per-
formed to obtain insight of the dynamics and mechanical properties of simulated systems28. Furthermore, the 
dynamics of two different proteins are best compared by characterizing their phase space behaviors, which are 
directly associated with protein stability and function45,46. We described the overall combined motions of Cα 
atoms of protein structures using eigenvectors of covariance matrix, which is correlated with the coincident 
eigenvalues. Trace values for the wild-type and the Y38C, W50C, T66M, and V126G variants were found to be 
46.707 Å2, 47.487 Å2, 58.94 Å2, 49.822 Å2, and 99.309 Å2, respectively, which suggested that mutations induced 
collective flexibility. V126G had a higher trace value than the wild-type or Y38C, W50C, or T66M variants, 
although its Rg value reduced after 50 ns of simulation. This observation suggests V126G exhibits significantly 
greater protein local flexibility rather than overall flexibility, as can be seen in the RMSF plot (Fig. 5), which shows 

Figure 3. Radius of gyration of the Y38C (a), W50C (b), T66M (c), and V126G (d) variants versus wild-type 
TREM2. Here, the dark green line represents the wild-type and blue, red, orange, and violet lines represent the 
Y38C, W50C, T66M, and V126G variants, respectively.
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greater flexibility in residues 50 to 60 and 85 to 95. To investigate further, three PCAs were considered for further 
analysis. Resultantly, simulated systems of the wild-type and Y38C, W50C, T66M, and V126G variants showed 
variances of 19.81%, 33.43%, 24.50%, 20.94%, and 29.67%, respectively, for the first three PCAs. The motions 
of different proteins can be visualized using projections of trajectories in phase spaces of the first two principal 
components (PC1, PC2), whereas variants show different patterns of conformational spaces, indicating significant 
changes in protein conformations. Using these projections, Y38C showed a uniform conformational distribution 
in a larger phase space, indicating greater flexibility, than the wild-type (Fig. S2b). The T66M variant also showed 
conformational transitions during simulation that indicated less flexibility over time (Fig. S2d). On the other 
hand, the W50C and V126G variants exhibited higher periodic jumps, indicating greater fluctuations than the 
wild-type and the occupation of more phase space (Fig. S2c and e).

The variations in atomic movement were presented by all first PCAs (Fig. 7), and PC1 exhibited the most 
dynamic motion. In the figure, the displacement of atoms is denoted by wide tubes, whereas narrow tubes mark 
regions that remained rigid during the simulation. Structural deviations in the wild-type and in variants were 
obvious for first PCAs (Fig. 7), in which the contributions of residues to first principal components are repre-
sented in the plot rendered in the bottom panel (Fig. 7f), which describes residual mobilities during the simula-
tion. As shown by the figure, Y38C induced flexibility in several loops of TREM2, including CDR1, CDR2, and 
CDR3 (Fig. 7b), whereas T66M induced significant flexibility in CDR2 (Fig. 7d).

Conformational changes in the wild-type structure were observed in the loop region, including residues 47 to 
60, and this region also exhibited significant changes in the W50C variant (Fig. 7c and e). The W50C variant also 
exhibited more residual mobility in the CDR1 loop than the wild-type. Interestingly, V126G induced the highest 
residual mobility in the region from 47 to 60, which is consistent with RMSF and DCCM results and supports 
mutation-induced local conformational changes.

Mutation-induced conformational changes. Although MD simulations well explained conformational 
changes in protein structures, we also investigated mutation-driven changes in secondary structures. RMSF, 
DCCM and PCA analysis showed Y38C and T66M variants exhibited considerable flexibility in CDR regions 
that might alter structural orientations in these regions. Therefore, variations in secondary structural elements 
for wild-type and variant proteins during simulation were characterized using Schrödinger 2017–1 simulation 
interaction diagrams (LLC, New York, NY, USA)47. During simulation, the appearance of secondary structural 
elements determines protein structural flexibility, for example, conformations such as α-helices and β-sheets are 
naturally more rigid than coil or turn conformations28. Total percentages of secondary structural elements in total 

Figure 4. Changes in total solvent accessible surface areas (SASA) of the Y38C (a), W50C (b), T66M (c), and 
V126G (d) variants as compared with wild-type TREM2. Here, the dark green line represents the wild-type and 
blue, red, orange, and violet lines represent Y38C, W50C, T66M, and V126G variants, respectively.
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simulation time are shown in Figs. S3,S4 to S8. Interestingly, variants increased total secondary structures as com-
pared with the wild-type. Moreover, the CDR1 (residue index 17–27) and CDR2 (residue index 46–57) regions 
gained a short α-helix conformation in variant structures, though the percentage of helix formation was greater 
in Y38C (Table S2). During simulation, Y38C showed higher α-helix propensity in the CDR1 loop from 20 to 
40 ns, although α-helix formation was observed to persist over the entire simulation (Fig. S5). On the other hand, 
W50C and V126G variants increased the total secondary structure elements in the TREM2, and increases in 
α-helix conformation in the CDR2 region was greater in W50C and V126G than in Y38C and T66M. The W50C 
variant only showed α-helix formation in CDR1 loop, but its percentage was less than that of Y38C and T66M. 
Furthermore, the W50C variant demonstrated significant conformational changes in the region residue 48 to 64 
(mainly in β-strands, βc and βc′) within the simulation time 68 to 78 ns (Fig. S6). Notably, the residues of βc and 
βc′ strands are located near the W50C mutation site, where formation and reduction of β-strand propensity were 
observed, as a result, the RMSD pattern was seen to change in this time point. In addition, T66M had low RMSD 
values at simulation times <80 ns. Interestingly, during this period, T66M showed aggressive α-helix formation 
in the CDR2 loop, which supported the dramatic behavior of T66M during the simulation (Fig. S7). Previous 
studies on AD associated variants have shown that substitution of R47 by H47 facilitates CDR2 loop remodeling 
to a short α-helix, which contributes to loss of ligand binding26. In summary, our results suggest that the variants 
examined facilitate conformation remodeling of CDR2 loop and of CDR1 regions.

Mechanistic insights into conformational remodeling. Intra-residue H-bonding influences the sec-
ondary structures of biological macromolecules48. Thus, H-bond occupancy analyses within CDR1 and CDR2 
loops of the wild-type and variants types were undertaken as both loops undergo conformational remodeling 
(Fig. S9). As shown in Fig. S9, mutations induced diverse intra and inter loop H-bond interactions. Furthermore, 
these loops were identified as flexible regions by RMSF and PCA studies, indicating that increasing flexibility 
by mutations render residues liable to different interaction networks. According to the RMSF study, the substi-
tution of tyrosine with cystine at the 38th position induced high flexibility next to D39 and facilitated H-bond 
interactions within the CDR1 loop, especially with M41 and H43 (Fig. S9a). H-bond occupancy between D39 
and H43 in Y38C variant was maintained at 12.34% during simulation, whereas it was 3.91% in the wild-type. 
Furthermore, D39 maintained 6.6% H-bond occupancy with M41, but this interaction was absent in the 

Figure 5. Investigation of the local structural effects of mutations. Root mean square fluctuations of Cα atoms 
for wild-type TREM2 and the four variants (a). SASA values were computed on a per residue basis for the wild-
type and TREM2 variants (b). In all plots, residues index is level with colored bar, representing the structural 
propensity. In each graph, the dark green line represents the wild-type, while blue, red, orange, and violet lines 
represent the Y38C, W50C, T66M, and V126G variants, respectively.
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wild-type. This observation indicates that maintaining intra-loop H-bonds between D39 and M41 or H43 may 
facilitate short helix formation of the CDR1 loop in Y38C. In the case of the CDR2 loop, the Y38C variant showed 
less H-bonding between S73 and W70, L72, and S75 than in the wild-type. In addition, Y38C exhibited two 
new H-bonds between T66 and S73 and between S73 and L69, which were lacking in the wild-type structure 
(Fig. S9b).

Previous studies have shown that conformational changes of the CDR2 loop are facilitated by π-π stack-
ing interactions between the imidazole moieties of H47 and H67, which cause H67 to swing by ~180 °26. When 
we investigated the inter-loop interaction between CDR1 and CDR2 we found that Y38C increased H-bonding 
between H47 and H67 (Fig. S9c), which indicated conformational changes in the CDR1 loop.

Similarly, the T66M variant showed significant local fluctuations in S65 and H67 residues as compared 
with the wild-type; H67 maintained H-bonding with L72 by >20%. Interestingly, mutation at T66 increased 
H-bonding capacity with R47 versus the wild-type. However, unusual H-bonding between R47 and S65 was 
observed after replacing M66 in T66M, which possibly contributed to conformational changes of CDR1. 
Nevertheless, the interaction between M66 and R47 dominated, and as a result, the degree of helix formation in 
the CDR1 loop was observed to decrease subsequently during the simulation (Fig. S9c).

The W50C mutation reduced intra-loop H-bonding in the CDR1 loop versus the wild-type, and K42 main-
tained H-bonding only with the D39 residue with an occupancy of 39.41%. Furthermore, the W50C mutation 
changed the H-bonding pattern in the CDR loop, where it increased the interaction between T66 and S73 and 
between H67 and L72. Additionally, the interaction between T66 and R47 was also greater in W50C, in which 
R47 also interacted with the H67 residue with an occupancy of 8.22%. On the other hand, V126G mutation 
reduced H-bonding between R47 and T66 and induced interaction between R47 and N68, which might facilitate 
conformational CDR1 loop changes. Besides, conformational changes in CDR2 loop could be induced by numer-
ous H-bonding interactions between H67 and M41, H43, and T66.

In order to validate our H-bonding findings, we performed additional free energy landscape (FEL) analysis to 
select the most stable conformer from the simulation ensemble. FEL results are rendered in Fig. 8, where different 
colors represent structures with different energies. Lower energy conformations are colored blue and are usually 
more stable than other conformations (red) generated by simulation49. The thermodynamic stabilities of proteins 
are represented by depths of energy minima, and protein kinetic stabilities are indicated by the height of barriers 
between energy minima.

The depths of energy minima may also suggest conformational changes, where the width of an energy min-
imum associated with the number of conformational ensemble within the energy well50. As shown in Fig. 8, 
the region of conformational space corresponding to the basin changed in the wild-type and in variants, which 

Figure 6. Calculated dynamic cross-correlation matrix of Cα atoms around their mean positions for 100 ns 
molecular dynamics simulations. Extents of correlated motions and anti-correlated motions are color-coded 
from red to blue, which represent positive and negative correlations, respectively. Wild-type (a), Y38C (b), 
W50C (c), T66M (d), and V126G (e).
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indicated that the overall conformational stability TREM2 is affected by mutations. In order to understand the 
disordered state, the conformation from the favorable energy minima has been visualized. We also analyzed 
the intra-residue H-bonding networks using residue interaction network analysis. The lowest minima in the 
wild-type trajectory was found to have average Rg and RMSD values of 1.33 and 1.32 nm, respectively, which 
exhibit no conformational changes in the CDR1 or CDR2 loops.

In detailed structural view, T66 was found to interact with R47 by forming two H-bonds. A short helix was 
found in the CDR2 loop of the most stable conformer of variant trajectories. In Y38C, M41 maintained a H-bond 
with D39, and R47 H-bonded with H67 and L72, while in T66M, R47 maintained a π-π stacking interaction with 
H67. Intra and inter-loop H-bonding analysis showed a similar residual interaction in W50C, but when whole 
trajectory systems were considered, the interaction between D39 and H43 was maintained in the residual inter-
action network (Fig. S10c). On the other hand, the V126G variant showed unusual H-bonding between residues 
66 and 67 and between R47 and S65. Although no conformational change in the CDR1 loop was visualized, inter-
action between D39 and M43 was also seen within the CDR1 loop. These observations were consistent with the 
residual interaction networks generated from total MD trajectories (Fig. S10).

Computational analyses in mutational landscapes, particularly MD simulations, have proven to be crucial 
tools in terms of deciphering the structural basis of protein aggregation and misfolding at the molecular level51. 
MD simulation provides a complete understanding of the phenotypic expressions of mutations by generating 
detailed information on conformational and structural consequences at a reasonable quality and adequate time 
scale52. Several recent studies have investigated the correlation between experimental studies and MDS analysis, 
and have suggested MDS studies are helpful for uncovering underlying mutation-associated disease mechanisms, 
especially in the context of neurodegeneration40,53–57. It has been suggested in previous MD simulation studies 
that R47H is responsible for loop distortions in TREM258 and to induce flexibility, particularly in CDR2 loops59. 
Furthermore, an X-ray crystallography study on the R47H mutation concluded that it mediated CDR2 remod-
eling by causing short helix formation in the loop region that ultimately abolished the ligand interaction and 
caused loss of ligand binding26.

Consistent with the mechanisms deemed responsible for loss of function by AD-associated variants, as 
described in studies mentioned above26, NHD mutations in the present study also showed significant structural 

Figure 7. Representation of atomic displacements of PCA1 as determined by simulations of wild-type 
TREM2 (a), and of the Y38C (b), W50C (c), T66M (d), and V126G (e) variants, showing significant movement 
differences. The green circles indicate regions of greater flexibility. Residue-wise loadings for PC1, where the 
dark green line represents the wild-type and blue, red, orange and violet lines represent the Y38C, W50C, T66M 
and V126G variants (f).
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alterations during molecular dynamics simulations, especially in the loop regions. It has been demonstrated 
mutations involving the substitution of an amino acid with different properties can disrupt molecular function 
by disturbing domain organization28,60. Likewise, in the present study, substituents at the 38 and 66 positions of 
TREM2 were found to induce effects that differed from those of native residues, and consequently to cause steric 

Figure 8. Free energy contour maps derived from radius of gyration and RMSD values, where the dark blue 
color area indicates lower energy. Each graph accompanied by a corresponding 3-D structure of lowest energy 
and a residue interaction network. Nodes in networks represent residues, whereas edges represent interactions. 
Edge colors signifying indicate interaction types, i.e., green = hydrogen bond, orange = van der Walls contact, 
cyan = salt bridge, blue = pi-pi stacking, and pink = disulfide bridge.

https://doi.org/10.1038/s41598-020-60561-x


1 0Scientific RepoRtS |         (2020) 10:3663  | https://doi.org/10.1038/s41598-020-60561-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

clashes between junctions of the CDR1 and CDR2 loops. Other W50C and V126G mutations had similar effects, 
and V126G was found to induce steric clash in CDR1. As was revealed by H-bond analysis, all of these mutations 
altered H-bonding patterns in CDR loops in the most native conformational states and in overall MD ensembles. 
Sudom et al. reported residues S65, T66, H67, N68, and H67 were critical for maintaining conformation stability 
of the CDR2 loop by forming a H-bonded network with residue R47 in the CDR1 loop26. Similarly, NHD muta-
tions caused also deleterious effects similar to those caused by the AD-associated R47H mutation, which indicates 
this H-bonding network is important for maintaining the stabilities of CDR1 and CDR2 loops. Kober et al.61 sug-
gested that NHD mutations might cause conformational changes of buried TREM2 residues, promote misfolding, 
and inconsistently impact TREM2 surface expression and aggregation. In particular, our simulation-based study 
showed that the Y38C, W50C, T66M, and V126G mutations cause CDR aggregations by changing secondary 
structural preferences, and hence, contribute to NHD-associated loss of function.

conclusion
The effects of genetic variants on TREM2 loss of function is crucial to understanding its involvement in late-onset 
Alzheimer’s disease (AD). Using molecular dynamics simulation, this study presents novel findings on the dele-
terious roles of NHD variants, which were found to promote structural alterations in the ectodomain of TREM2. 
The Y38C, W50C, T66M, and V126G mutations examined all increased flexibility and altered hydrogen bonding 
patterns, and Y38C, T66M, and V126G induced structural remodeling in the CDR1 and CDR2 loops by inducing 
steric clashes. This study supports previous findings and provides additional insight of the mechanism responsi-
ble for loss of ligand binding, which is critical to our understanding of the role of TREM2 in neurodegenerative 
diseases.

Methods
Prediction of pathogenicity from in silico tools. The deleterious effects of selected variants were 
characterized using several in silico bioinformatics tools and information retrieved from the NCBI dbSNP62. 
Eight tools were utilized, namely, Sorting Intolerant From Tolerant (SIFT)63, Polymorphism Phenotyping v2 
(PolyPhen-2)64, Functional Analysis through Hidden Markov Models (FATHMM)65, PROVEAN66, Mutpred67, 
I‐Mutant 3.068, Combined Annotation Dependent Depletion (CADD)69, and Condel 2.070. SIFT using sequence 
homology approaches to predict deleterious effects, whereas PolyPhen-2 uses the position‐specific independent 
counts (PSIC) scoring method and the Bayesian classifier. Pathogenicity prediction by FATHMM is typically 
accomplished using hidden Markov models (HMMs), and I-Mutant 3.0 uses a support vector machine algo-
rithm to calculate the stabilities of variant protein structure based on free energy changes. Mutpred predicts 
gain and loss of 14 different structural and functional properties of proteins caused by mutations. CADD con-
siders protein level scores derived by SIFT and Polyphen analysis and a broad range of data, including functional 
genomics data, to predict the pathogenicities of nonsynonymous mutations. On the other hand, Condel uses a 
consensus approach to predict SNP impact by integrating Log R Pfam E-value (LogRE)71, MAPP[8,19,72, Mutation 
Assessor18,73, Polyphen2 (PPH2)64, and SIFT63.

Preparation of the simulation system. The three-dimensional crystal structure of the ectodomain of 
TREM2 (PDB id of 5ELI61) was retrieved from the protein databank (http://www.rcsb.org/pdb)74. The struc-
ture of wild-type TREM2 was initially prepared by adding bond orders, hydrogens, and charges and refined by 
removing water molecules and optimizing it at neutral pH. The structure was further fixed by correcting for 
asparagine amide groups, some thiol and hydroxyl groups, protonation states of glutamic acids, aspartic acids, 
and histidines. In order to adjust heavy atom Root Mean Square Deviation (RMSD), minimization was applied by 
using Optimized Potentials for Liquid Simulation (OLPS3) force field down to 0.30 Å. Y38C, W50C, T66M, and 
V126G variant structures were constructed by computational mutagenesis using the Mutate Residues script from 
Schrödinger suite 2017-1 (LLC, New York, NY, USA)75.

Additional short molecular dynamics refinement simulation was performed to better resolve the structures 
(wild-type TREM2 and those of the Y38C, W50C, T66M, and V126G variants). Thus, molecular dynamics sim-
ulation was conducted by applying YAMBER3 force field76 for 500 ps at pH 7.4 and 298 K at a solvent density of 
0.997 g/cc. The simulation was run using YASARA software by a default md_refine macro, and the final structures 
were selected based on the lowest free energy energies.

Molecular dynamics simulation. Molecular dynamics simulation was used to study the changes in the 
dynamic behaviors of protein caused by mutations using the Desmond module of Schrödinger suite 2017-1 
(LLC, New York, NY, USA)77,78. Here, OLPS3 all-atom force field was utilized to visualize molecular behav-
ior79–81. Structures were prepared for wild-type TREM2 and the Y38C, W50C, T66M, and V126G variants sol-
vated in the presence of explicit solvent in a triclinic periodic boundary box. Each system was submerged to 
a Monte-Carlo equilibrated TIP3P solvation model extending to ~10 Å in each direction, which is known to 
provide best experimental outputs82. Additional counter ions were added to the water model to neutralization 
the system. Physiological condition and ionic strength of the solvent system were maintained by maintaining a 
default salt (NaCl) concentration of 0.15 M in the simulation box. The default relaxation protocol83,84 was used to 
relax the 8-stage system. Followed by Brownian dynamics, the second stage simulation was started at 10 K in an 
NVT ensemble for 12 ps with restraints on solute heavy atoms. Third stage simulation was done for 12 ps in the 
same ensemble at 10 K with restraints on solute heavy atoms. The fourth stage was begun by running 12 ps simu-
lation under the NPT ensemble at 1 bar pressure while maintaining solute heavy atom restraints. In the fifth stage, 
protein cavity was solvated using the solvate pocket script. Stage 6 involved 12 ps simulation in an NPT ensemble 
with restraints on solute heavy atoms, and stage 7 involved a 24 ps simulation with no restraints on solute heavy 
atoms (both stages were performed at 300 K at 1 bar. Finally, a 100 ns MD simulation was performed for each 
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system with no constraints applied, and resulting trajectories were subjected to further analysis. Throughout the 
simulation, RESPA85 integrator (a motion integration package) was employed with 2 fs as inner time step with 
the M-SHAKE86 algorithm to constrain all covalent bonds connecting hydrogen atoms. The Particle Mesh Ewald 
method was used to calculate long-range electrostatic interactions and 9.0 Å was used for short-range electrostatic 
contacts; uniform density approximation was select for the cutoff of long-range van der Waals (VDW) interac-
tions. Conditions during simulations were maintained by Nose–Hoover thermostats87 at 300 K and 1 atmosphere 
using the Martyna–Tobias–Klein method88.

Resultant trajectories were used to evaluate protein conformational changes and stabilities using Root Mean 
Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and SSE (Secondary Structure Elements) in 
the Simulation Interactions Diagram panel of Schrödinger 2017-1 (LLC, New York, NY, USA). Radius of gyration 
(Rg), Solvent Accessible Surface Areas (SASA), and H-bond occupancies were calculated using VMD software89. 
Dynamic cross-correlation maps were generated from trajectories to explain time-correlated protein motions, 
which were assembled using Bio3D90 software by R programming. Time-correlated information between protein 
atoms i and j (cij) was represented as a matrix in DCCM, which was obtained using the following expression:

DCCM
d d

i j
d i d j

i j
, 2 2

=
→ . →

|

Displacements between current and average positions of atom i and j are represented by d, and mean times 
overall trajectories are represented by the angled brackets. Calculated values in DCCM ranged between −1 
and +1, which denoted negative and positive correlations, respectively. Principle Component Analysis (PCA) 
was further utilized to describe the collective motions of TREM2 variants44. PCA eigenvectors were calculated 
by superimposing atomic coordinates on reference structures without translational or rotational movements. 
Eigenvectors represented mean square displacements (MSD) of atoms and were associated with eigenvalues. 
Mathematical details have been previously described in detail91,92.

Free energy landscape (FEL). The free energy landscape technique is used to map all possible conforma-
tional changes of macromolecules using energy levels derived from the spatial dispositions of interacting mole-
cules93,94. For FEL analysis, Gibb’s free energy is calculated as a function of protein enthalpy and entropy and also 
identifies conformational states related to protein structure-function correlations. In the present study, the energy 
bases of conformational diversity in various TREM2 structures were investigated using the following equation:

= −
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N
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where kB is Boltzmann’s constant, T is the temperature (which was set at 300 K), Ni is the population in bin i and 
Nmax is the population in the most populated bin. An artificial barrier scale is set to the bin with no population 
with the lowest provability. Color-code modes were used to display different energy levels.

Residue interaction network. To analyze the Residue Interaction Network (RIN), the most stable 3-D 
coordinates of the wild-type and of variants were transferred to the RING server95, which provides intra-residue 
interactions in the exhaustive network view. In the network model, protein residues are represented by nodes 
and interaction modes as edges. Results from the RING server were then processed using Cytoscape to construct 
interactive RIN 3.2.196 using the plug-in RINalyzer. Types of interactions are described by dashed or dotted edges, 
and salt bridge, H-bonding, and van der Waal interactions. In addition, residual interaction networks were con-
structed by considering the whole trajectories of 100 ns molecular dynamics simulations. For that 1000 repre-
sentative structures with an interval of 100 ps from each simulation system were visualized and analyzed using a 
combination of UCSF Chimera97, structureViz98, and Cytoscape99.
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