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integrated metabolome analysis 
reveals novel connections between 
maternal fecal metabolome and 
the neonatal blood metabolome in 
women with gestational diabetes 
mellitus
chunchao Zhao1,3, Jun Ge1,3, Xia Li1, Ruifen Jiao1, Yuan Li1, Huili Quan1, Jianguo Li2*, 
Qing Guo1* & Wenju Wang1*

Gestational Diabetes Mellitus (GDM), which is correlated with changes in the gut microbiota, is a risk 
factor for neonatal inborn errors of metabolism (ieMs). Maternal hyperglycemia exerts epigenetic 
effects on genes that encode IEM-associated enzymes, resulting in changes in the neonatal blood 
metabolome. However, the relationship between maternal gut microbiota and the neonatal blood 
metabolome remains poorly understood. this study aimed at understanding the connections between 
maternal gut microbiota and the neonatal blood metabolome in GDM. 1H-NMR-based untargeted 
metabolomics was performed on maternal fecal samples and targeted metabolomics on the matched 
neonatal dry blood spots from a cohort of 40 pregnant women, including 22 with GDM and 18 controls. 
Multi-omic association methods (including Co-Inertia Analysis and Procrustes Analysis) were applied to 
investigate the relationship between maternal fecal metabolome and the neonatal blood metabolome. 
Both maternal fecal metabolome and the matched neonatal blood metabolome could be separated 
along the vector of maternal hyperglycemia. A close relationship between the maternal and neonatal 
metabolomes was observed by multi-omic association approaches. Twelve out of thirty-two maternal 
fecal metabolites with altered abundances from 872 1H- NMR features (Bonferroni-adjusted P < 0.05) 
in women with GDM and the controls were identified, among which 8 metabolites contribute (P < 0.05  
in a 999-step permutation test) to the close connection between maternal and the neonatal 
metabolomes in GDM. Four of these eight maternal fecal metabolites, including lysine, putrescine, 
guanidinoacetate, and hexadecanedioate, were negatively associated (Spearman rank correlation, 
coefficient value < −0.6, P < 0.05) with maternal hyperglycemia. Biotin metabolism was enriched 
(Bonferroni-adjusted P < 0.05 in the hypergeometric test) with the four-hyperglycemia associated 
fecal metabolites. the results of this study suggested that maternal fecal metabolites contribute to the 
connections between maternal fecal metabolome and the neonatal blood metabolome and may further 
affect the risk of IEMs.

Gestational diabetes mellitus (GDM) has attracted worldwide public health concern due to its adverse maternal, 
fetal and neonatal outcomes. GDM is a serious pregnancy complication with various risk factors1, including over-
weight, obesity, a family history of diabetes, advanced maternal age, etc. GDM has been linked with an increased 
risk of inborn errors of metabolism (IEMs) in offspring2,3. IEMs are caused by inherited genetic defects and can be 
influenced by environmental stimuli4. Accumulating evidence suggests that maternal hyperglycemia is associated 
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with epigenetic changes in affected offspring2,5,6. The transfer of excess glucose across the placenta stimulates fetal 
pancreatic insulin secretion and results in epigenetic changes to fetal genes involved in metabolic programming, 
which may contribute to the development of IEMs2.

GDM has also recently been associated with changes in the gut microbiota compared to normoglycemic preg-
nant women7–9, and is believed to alter the microbiota of both pregnant women and the neonates10. However, 
although an association between gut microbiota and GDM has been established, the interactions between GDM 
and the gut microbiota are not yet fully clear8.

Metabolites are key players in the interactions between gut microbiota and the host11. Short chain fatty acids 
and trimethylamine oxide produced by gut microbiota play essential roles in host energy metabolism and car-
diovascular functions, respectively12,13. For this reason, metabolomics has emerged as a promising approach in 
elucidating the relationship between gut microbiota and the host14,15.

Because gestational hyperglycemia has been associated with increased risk of IEMs (featured by metabolic 
disorders), and maternal gut microbiota is proved to be a contributor of hyperglycemia, we hypothesized that 
GDM related changes of maternal gut microbiota contributes to the neonatal IEMs. To assess possible connec-
tions between maternal gut microbiota and the neonatal IEM-related metabolic disorders, we applied multi-omic 
association approaches to investigated the relationship between maternal fecal metabolome and the neonatal 
blood metabolome (Fig. S1). We observed that maternal hyperglycemia is a discriminating factor for the two 
metabolomes. We further identified maternal fecal metabolites that are responsible for the variations of neonatal 
blood metabolome between GDM and the healthy control, and provide a discussion of the potential underlying 
connections.

Materials and Methods
Subjects. A cohort of 40 pregnant women who entered Shijiazhuang Obstetrics and Gynecology 
Hospital (Hebei, China) between March and October of 2018 were enrolled in this study. This cohort included 
22 patients with GDM (diagnosed as described below) and 18 NDM controls. Women with pre-existing diabe-
tes, impaired fasting glucose, chronic or serious acute infections, cardiovascular or hematological diseases, or 
abnormal liver or kidney function were excluded from the cohort. During the 24th–28th week of gestation, fasting 
plasma was collected and a 75-g, 3-hour oral glucose tolerance test (OGTT) was performed. Fasting plasma glu-
cose was measured using an AU5800 Automatic Biochemical Analysis System (Beckman coulter, Brea, CA, USA). 
GDM was diagnosed according to the criteria of the International Association of Diabetes and Pregnancy Study 
Group (IADPSG)16, with at least one plasma glucose level being no less than the following thresholds: fasting, 
5.1 mmol/L, OGTT- 1 hour, 10.0 mmol/L, OGTT- 2 hour, 8.5 mmol/L. The study was conducted according to the 
guidelines in the Declaration of Helsinki and approved by the Ethics Committee of Shijiazhuang Obstetrics and 
Gynecology Hospital.

Demographic data and sample collection. Maternal demographic data were obtained by interview on 
the day of sample collection, including nationality, parity, age, height, blood pressure, and body weight. Overnight 
fasting stools were collected from the enrolled pregnant women during the fourth trimester of pregnancy and 
stored at −80 °C. Dried blood spot samples from the offspring of the enrolled pregnant women were collected 
by heel stick, spotted on Whatman 903 filter paper sampling cards, air-dried for 3 hours, stored at 2–8 °C, and 
detected within 24 hours after collection.

1H-NMR based untargeted metabolic profiling. Stool samples were prepared for 1H-NMR spectrom-
etry as described previously17, with some adjustments. Briefly, 100 mg fecal sample was resolved with 1 ml D2O 
(containing 0.05% TSP (3-trimethylsilyl-[2,2,3,3-D4]-propionate) as internal standard), homogenized in an 
ice-water bath with an IKA T10 Basic ULTRA-TURRAX disperser (IKA, Germany), and centrifuged at 4 °C, 13, 
000 rpm for 20 min. Six hundred microliters of the supernatant was transferred into a 5 mm NMR tube for anal-
ysis. 1H-NMR spectrometry was performed using a Bruker 600-MHz AVANCE III NMR spectrometer (Bruker 
BioSpin, Germany). 1H-NMR spectra were acquired using the noesygppr1d pulse sequence with the following 
parameters: 64 scans; spectral size, 65536 points; spectral width, 12345.7 Hz; pulse width, 40.5 μs; and relaxation 
delay, 1.0 s. MestReNova (v8.0.1, MestreLab Research, Santiago de Compostella, Spain) was used for spectra pro-
cessing. The phase and baseline were corrected manually, and the chemical shift of TSP was calibrated at 0.00 
ppm. The spectral region of δ 0.16 to δ 9.58 was segmented to 0.01 ppm widths after excluding the region corre-
sponding to residual water (δ 4.60–δ 5.15). The resulting NMR data was normalized to the total sum of spectra 
before further analysis.

Multivariate pattern recognition analysis. SIMCA-P (v14.1, Umetrics AB, Umea, Sweden) was used 
for multivariate pattern recognition analysis of the 1H-NMR data. Principle Component Analysis (PCA) was 
performed to maximize the difference between samples and to exclude outliers. Orthogonal Projection to Latent 
Structures Discriminant Analysis (OPLS-DA), incorporating known classification information, was performed 
to observe the 1H-NMR features with discriminating power between GDM and the NDM control. The 1H-NMR 
data was scaled by auto-scaling and pareto scaling for PCA and OPLS-DA, respectively. The best-fitted OPLS-DA 
model was selected by a cross-validation of all models using a 200-step permutation test. The fitting validity and 
predictive ability of the selected OPLS-DA model were assessed by the parameters R2Y and Q2, respectively. 
Differential metabolites were defined as metabolites with altered between-group abundances, and simultaneously 
meet the following criteria: Importance for the Projection (VIP) values greater than 1 in the selected OPLS-DA 
model and false discovery rate (fdr)-adjusted P < 0.05 in an independent-sample t-test. Metabolite enrichment 
and pathway analysis was performed using the pathway analysis module implemented in MetaboAnalyst web 
portal (http://www.metaboanalyst.ca).
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targeted metabolomics of neonatal dry blood spot. Targeted metabolomic profiling of dry blood 
spots (DBSs) was carried out according to a previously reported protocol18 with some adjustments. Briefly, each 
DBS sample was punched into a 96-well plate, and metabolites were extracted using internal standard containing 
extraction solvent (50% MeOH, 50% ACN, 250 nM internal standard). The extracted samples were derivatized 
with 3 N butanolic-HCl at 65 °C, and then reconstituted with an acetonitrile/water (70:30) solution containing 
0.05% formic acid. A 10 μl aliquot of each sample was injected to an API 3200 ESI-MS/MS mass spectrometer 
(Applied Biosystems, USA) for analysis. A total of 42 metabolites (31 acylcarnitines and 11 amino acids, Table S1) 
were scanned with MRM mode. Each analyte was quantified using the signal intensity ratio of the compound to 
its internal standard.

Statistical analysis. Co-Inertia Analysis (CIA) was performed by R software (v3.5.0, package vegan) to 
assess the consistency of maternal fecal metabolome and the matched neonatal blood metabolome. CIA is a 
multivariate approach identifying trends or co-relationships in multiple datasets containing the same or matched 
samples. The parameter RV coefficient (scale 0–1) was applied to assess the global similarity between the two 
datasets

Procrustes Analysis (PA) was performed by R software (v3.5.0, package vegan) to assess the structural simi-
larity between maternal fecal metabolome and the matched neonatal blood metabolome. PA is a visualization of 
a superimposition of the sample coordinates of ordination analysis19. The parameter m2 was applied to assess the 
dissimilarity of the two datasets.

Redundancy Analysis (RDA) was performed by R software (v3.5.0, package vegan) to investigate the contri-
butions of maternal fecal differential metabolites to the association between maternal fecal metabolome and the 
neonatal blood metabolome. The fitness of each metabolite to an ordination of RDA was evaluated by envfit test. 
The parameter squared correlation coefficient (r2) was applied to assess the fit goodness of a metabolite to the 
correlation.

Between-group statistical analyses were performed via two-tailed Student’s t-tests in SPSS 22.0. P-values were 
adjusted with false discovery rate (fdr) correction in R (v3.5.0, package vegan), and adjusted P < 0.05 were defined 
as statistically significant.

ethical approval. All procedures performed in studies involving human participants were in accord-
ance with the Ethical Standards of the Institutional and/or National Research Committee and with the 1964 
Helsinki Declaration and its later amendments or comparable ethical standards, and were approved by the Ethics 
Committee of Shijiazhuang Obstetrics and Gynecology Hospital.

informed consent. Informed consent was obtained from all individual participants included in this study.

Results
Maternal hyperglycemia discriminates maternal fecal metabolome and the matched neonatal 
blood metabolome. To investigate the effects of maternal hyperglycemia on the neonatal blood metabo-
lome, we compared the DBS metabolome of neonates from mothers with GDM to those from the NDM controls. 
The DBS metabolome showed a separation trends between the offspring of GDM and the NDM control in PCA 
score scatter plot (Fig. 1a), and a clear separation in OPLS-DA score scatter plot (Fig. 1c, the OPLS-DA model 
was validated by a permutation test showed in Fig. S2b). Because plasma metabolome is significantly affected by 
the gut microbiota20,21, we further examined whether hyperglycemia could differentiate the fecal metabolomes 
between GDM and the NDM controls. From the score scatter plot of PCA (Fig. 1b) and OPLS-DA (Fig. 1d, the 
OPLS-DA model validated by a permutation test in Fig. S2a) of the offspring-matched maternal fecal metab-
olome, pregnant women with GDM were clearly separated from the NDM controls. These results suggest that 
maternal hyperglycemia is a discriminating factor of both the maternal fecal metabolome and the neonatal blood 
metabolome.

Maternal fecal metabolome of GDM is associated with the matched neonatal blood metabolome.  
Because the maternal fecal metabolome and the neonatal blood metabolome displayed similar separation trends 
along the direction of maternal hyperglycemia, we further investigated the potential relationship between these 
two metabolomes using Co-Inertia Analysis (CIA) and Procrustes Analysis (PA). CIA is a multivariate method 
that identifies co-variability (trends or co-relationships) in multi-omic datasets that contain the same or matched 
samples22. CIA of maternal fecal metabolome (solid circle) and the matched neonatal blood metabolome (solid 
triangle) revealed a significant relationship (RV coefficient = 0.72, 999 permutations, P < 0.05) between the two 
datasets (Fig. 2a). Samples from GDM (red) and the healthy control (black) are closely projected, which sug-
gest similar covariations between maternal fecal metabolome and the neonatal blood metabolome of these two 
groups, indicating the effect of hyperglycemia to the intrinsic communications. PA is a statistical shape analysis 
used to analyze the distribution of a set of shapes and has been successfully applied to evaluate relationships in 
multi-omic datasets23. Procrustes superimposition of sample coordinates obtained from redundancy analysis 
revealed a good correlation (dissimilarity parameter m2 = 0.32) between maternal fecal metabolome and the neo-
natal blood metabolome. The closely projected samples from GDM (pink) and the healthy control (light blue) in 
PA (Fig. 2b) demonstrated again the effect of hyperglycemia to the intrinsic communications between maternal 
fecal metabolome and the neonatal blood metabolome. These results suggest that maternal fecal metabolome is 
closely correlated with the neonatal blood metabolome.

Maternal fecal metabolites of GDM contribute to the cluster separation of neonatal blood 
metabolome. To further investigate the extent to which maternal fecal metabolites are associated with 
changes in the neonatal blood metabolome, we performed redundancy analysis (RDA) using the relative 
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Figure 1. Maternal hyperglycemia discriminates both maternal gut metabolome and the matched neonatal 
blood metabolome. (a) PCA score plot for the neonatal blood metabolome based on targeted metabolic 
profiling of 42 metabolites (detailed in Table S1) from dry blood spots. The first two principal components 
(PCs) explained 73.6% and 5.37% of the total variances, respectively. (b) PCA score plot for the maternal fecal 
metabolome based on untargeted metabolic profiling of maternal feces. The first two PCs explained 66.9% 
and 6.35% of the total variances, respectively. (c) OPLS-DA score plot of the neonatal blood metabolome. The 
horizontal axis represents the predicted score of the first component, which explained 53.9% of the between 
group variations. The vertical axis represents the orthogonal principal component score, which explained 10.6% 
of the within-group variations. R2X = 0.461, R2Y = 0.787, Q2 = 0.533. (d) OPLS-DA score plot of the maternal 
gut metabolome based on untargeted metabolic profile from feces. The horizontal axis represents the predicted 
score of the first component, which explained 59% of between group variations. The vertical axis represents the 
orthogonal principal component score, which explained 12.9% of the within-group variations. R2X = 0.719, 
R2Y = 0.791, Q2 = 0.658.

Figure 2. The maternal gut metabolome is closely correlated with the matched neonatal blood metabolome. 
Correlations between the two metabolomes were assessed by (a) Co-Inertia analysis (CIA) of the co-variability 
and (b) Procrustes analysis (PA) of the squared differences. In the sample space of CIA (a), solid circle 
represents maternal fecal metabolome, solid triangle represents the neonatal blood metabolome, samples in 
black were from the non-diabetic control, samples in red were from GDM. The matched maternal and neonatal 
samples are linked by edges. The shorter the edge, the better the correlation of the matched samples. In the 
Procrustes superimposition plot (b), solid circle represents maternal fecal metabolome, solid circle with an 
arrow represents the neonatal blood metabolome. The length of the edge represents the similarity between 
maternal fecal metabolome and the neonatal blood metabolome. Samples in pink were from GDM, samples in 
light blue were from the non-diabetic control.
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abundance of maternal fecal metabolites (as explanatory variables) and the neonatal DBS metabolome data 
(as response variables). Prior to RDA, we identified maternal fecal metabolites that had differential relative 
abundances in the GDM group and the NDM control group. A total of 872 features was obtained in 1H-NMR 
spectrometry of maternal feces, from which 32 metabolites were assigned. Twelve metabolites with altered abun-
dances (VIP > 1, adjusted P < 0.05) between GDM and the NDM control were observed (Table 1). To determine 
the maternal fecal metabolites that affecting the neonatal blood metabolome, RDA (Fig. 3a) was performed on the 
DBS metabolome of GDM and the NDM controls with the twelve altered maternal metabolites as environmental 
factors. The results of RDA revealed a clear cluster separation of the DBS metabolome between GDM and the NDM 
controls along the vectors of 8 maternal fecal metabolites with high correlation coefficient and strong statistical 
significance (envfit test, r2 > 0.1, adjusted P < 0.05 under 999 permutations, Table S2). The eight maternal fecal 
metabolites with a discriminating power to the DBS metabolome between GDM and the NDM control included 
hexadecanedioate, lysine, leucine, alanine, glycyl-leucine, putrescine, guanidinoacetate, and isocaproate. These 
results suggested that changes in the abundance of maternal fecal metabolites in GDM contribute to variations  
of the neonatal blood metabolome.

Maternal fecal biotin metabolism of GDM is associated with the neonatal blood metabolome.  
To further evaluate the correlation between the eight maternal fecal metabolites that contribute to changes in the 
neonatal blood metabolome, we carried out Spearman rank-correlation analysis (Fig. 3b). Four out of the eight 
maternal fecal metabolites (guanidinoacetate, hexadecanedioate, lysine, and putrescine) were strongly negatively 
correlated with maternal hyperglycemia (ρ <−0.60, P < 0.05, Table S3). The other four maternal fecal metabolites 
(alanine, glycyl-leucine, isocaproate, and leucine) showed weak negative correlation with maternal hyperglyce-
mia (−0.6 < ρ < 0, P < 0.05, Table S3). Because the hyperglycemia correlated maternal fecal metabolites showed 
strong positive correlations between each other, we hypothesized that these metabolites share common metabolic 
pathways. Using pathway enrichment analysis, we found that biotin metabolism was significantly enriched with 
these metabolites (pathway impact >0.1 adjusted P < 0.05, Fig. 3c, Table S4). These results suggested that biotin 
metabolism in the maternal gut metabolome contributes to maternal hyperglycemia and changes in the neonatal 
blood metabolome.

Discussion
In the present study, maternal fecal metabolome and the matched neonatal blood metabolome could be sepa-
rated along the vector of maternal hyperglycemia. Our multi-omic association studies revealed close relationships 
between these two metabolomes. We further identified a panel of four maternal fecal metabolites that contribute 
to the separation of normal and hyperglycemic neonatal blood metabolomes. Pathway analysis of the four closely 
correlated metabolites suggested that biotin metabolism in the maternal gut may play a role in changes of the 
neonatal blood metabolome.

changes in gut microbiota has been associated with GDM. A distinct microbiota profile is present 
in patients with GDM24, and the ratio of GDM-enriched bacteria to control-enriched bacteria is positively cor-
related with blood glucose level9. Furthermore, members of the gut microbiota are emerging as potential GDM 
biomarkers10. Although such associations between gut microbiota and GDM have been established, the underly-
ing mechanisms by which the microbiota and the host interact remain largely unknown25. Metabolites represent 
some of the key players in the interactions between gut microbiota and the host12. Metabolomics therefore pro-
vides a powerful tool for investigating the differentially enriched metabolites between study groups26. In the pres-
ent study, we observed a total of 12 maternal fecal metabolites that were differentially enriched between GDM and 
the NDM controls, among which 4 metabolites (lysine, putrescine, guanidinoacetate, and hexadecanedioate) were 
responsible for the separation of the mother-matched neonatal blood metabolome. These four metabolites have all 
been previously reported to be associated with GDM or other diabetes. Plasma lysine level during pregnancy is an 
independent risk factor for insulin resistance and GDM27. Serum putrescine level is significantly correlated with 

Metabolites Chemical shift VIP* P-Value Adjusted P-value HMDB

ethylmalonate 0.89037 2.22 1.58E-03 1.72E-03 HMDB0000622

adipate 0.92040 2.03 1.07E-04 1.82E-04 HMDB0000448

leucine 0.96046 2.32 7.08E-06 1.74E-05 HMDB0000687

alanine 1.48113 2.34 4.08E-06 1.63E-05 HMDB0000161

glycylleucine 1.59128 1.74 2.20E-04 2.64E-04 HMDB0000759

putrescine 1.72145 1.81 1.01E-05 2.02E-05 HMDB0001414

lysine 1.91169 1.64 1.22E-04 1.82E-04 HMDB0000182

hexadecanedioate 2.20207 1.88 9.05E-03 9.05E-03 HMDB0000672

isocaproate 2.24212 1.51 1.84E-04 2.46E-04 HMDB0000689

N-acetylneuraminate 3.62392 1.57 2.73E-08 3.60E-07 HMDB0000230

guanidinoacetate 3.77411 1.94 7.25E-06 1.74E-05 HMDB0000128

creatine 3.91430 1.66 1.63E-06 9.78E-06 HMDB0000064

Table 1. Identified fecal metabolites that differed in abundance between GDM and healthy control. *VIP: 
Variable Importance in the Projection.
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the level of glycosylated hemoglobin28. Putrescine partially prevents the dysmorphogenic effects of high glucose 
in rat embryos29. Guanidinoacetate was observed to be significantly decreased in the serum, urinary tract, and 
renal cortex of diabetic rats30. Hexadecanedioate is causally associated with increased blood pressure31, increased 
risk of heart failure and stroke32. SNPs at Locus CYP4A11 and SLCO1B1 are associated with the abundance of 
hexadecanedioate33. Biotin metabolism was enriched with the four hyperglycemia associated fecal metabolites in 
the present study, which has been previously reported to play an essential role in influencing GDM34. Combined 
with previous reports, the results of this study suggest that fecal metabolites (lysine, putrescine, guanidinoacetate, 
and hexadecanedioate) and biotin metabolism may contribute to gestational hyperglycemia.

Maternal factors affecting Inborn errors of metabolism (IEMs) of the neonates. IEMs are a large 
group of rare genetic diseases that result from one of several defects in an enzyme or transport protein that affects 
a particular metabolic pathway35. Although genetic defects are the major determining factors in the occurrence 
of IEMs36, it is believed that maternal environmental factors (such as gestational hyperglycemia) play an non-
negligible role in the epigenetic regulation of gene expression in offspring2,4. Maternal GDM is associated with 
genome-wide DNA methylation changes in the placenta and cord blood of the exposed offspring2. Further studies 
have revealed that methylation at multiple genes/loci regulated by maternal GDM is responsible for the transmis-
sion of GDM effects to the next generation37. Another study revealed that GDM has epigenetic effects on genes 
that are preferentially involved in metabolic disease pathways, with consequences to fetal development2. Thus, 
maternal GDM represents a risk factor for IEMs and abnormal fetal development in the exposed offspring36, 
and factors that influence GDM could also affect the risk of IEMs35. Four maternal fecal metabolites (lysine, 
putrescine, guanidinoacetate, and hexadecanedioate) were observed to be correlated with GDM in the present 
study, which may exert potential effects to the neonatal risk of IEMs. The four maternal fecal metabolites were 
also correlated with the neonatal IEMs related blood metabolome in this study. All of the four metabolites and 
their related biotin metabolism have been previously reported to be associated with IEMs. Inborn errors in the 
metabolism of lysine result in Glutaric Aciduria type 1 (GA1), an inborn error of metabolism that is caused by 
mutations in GCDH, which encodes glutaryl-CoA dehydrogenase38. Brain accumulation of guanidinoacetate 
can cause developmental delay, seizures, and movement disorders39. The accumulation of putrescine is associ-
ated with another inborn error of metabolism, cystinuria40. The concentration of hexadecanedioate is elevated 
in the Peroxisome Biogenesis Disorders-Zellweger Syndrome Spectrum disorders41. Biotinidase deficiency is an 
inborn error of metabolism that affects the endogenous recycling of biotin, causing neurological and cutaneous 
symptoms42.

conclusions
In the present study, we observed a close relationship between the maternal fecal metabolome and the matched 
neonatal blood metabolome in GDM. The four maternal fecal metabolites (lysine, putrescine, guanidinoacetate, 
and hexadecanedioate) that are responsible for the separation of neonatal blood metabolome from GDM and 
the NDM control have previously been associated with both maternal hyperglycemia and the neonatal inborn 
errors of metabolism. We therefore conclude that maternal GDM related fecal metabolites are correlated with the 
neonatal IEMs related blood metabolome. Hyperglycemia-mediated epigenetic regulation or substrate effects of 
IEMs-related enzyme deficiency are two possible linkers of the correlation.

Figure 3. Maternal gut metabolites of GDM contribute to the separation of the matched neonatal blood 
metabolome. (a) Redundancy analysis (RDA) of differential fecal metabolites in the separation of the neonatal 
blood metabolome. Green dots: samples from the GDM group; red dot: samples from the NDM control group. 
Envfit test (see Table S2) was performed to evaluate the fitness of each metabolite to the two ordinations in RDA. 
Only metabolites that significantly correlate (P < 0.05) with the separation of neonatal blood metabolome are 
shown. (b) Spearman’s rank correlations between maternal fasting glucose and maternal fecal metabolites that 
significantly contributed to the separation of neonatal blood metabolome. *Represents P < 0.05, **Represents 
P < 0.01. (c) Metabolic pathway-enrichment analysis of the metabolites that significantly correlated with 
maternal fasting glucose (in b) using the MetaboAnalyst web portal. Only pathways with scores of impacts 
higher than 0.05 and P-values lower than 0.05 were labelled (for further details, see Table S4).

https://doi.org/10.1038/s41598-020-60540-2


7Scientific RepoRtS |         (2020) 10:3660  | https://doi.org/10.1038/s41598-020-60540-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Data availability
The Raw maternal fecal metabolome has been deposited in MetaboLights with ID MTBLS1248. The neonatal 
blood metabolome data is listed in Table S1. Codes for CIA, PA and CCA can be found in the help file of each R 
package. Default settings were used for all software analyses unless otherwise stated.
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