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node-Level Resilience Loss in 
Dynamic complex networks
Giannis Moutsinas1 & Weisi Guo1,2*

In an increasingly connected world, the resilience of networked dynamical systems is important in 
the fields of ecology, economics, critical infrastructures, and organizational behaviour. Whilst we 
understand small-scale resilience well, our understanding of large-scale networked resilience is 
limited. Recent research in predicting the effective network-level resilience pattern has advanced our 
understanding of the coupling relationship between topology and dynamics. However, a method to 
estimate the resilience of an individual node within an arbitrarily large complex network governed 
by non-linear dynamics is still lacking. Here, we develop a sequential mean-field approach and show 
that after 1-3 steps of estimation, the node-level resilience function can be represented with up to 
98% accuracy. This new understanding compresses the higher dimensional relationship into a one-
dimensional dynamic for tractable understanding, mapping the relationship between local dynamics 
and the statistical properties of network topology. By applying this framework to case studies in 
ecology and biology, we are able to not only understand the general resilience pattern of the network, 
but also identify the nodes at the greatest risk of failure and predict the impact of perturbations. These 
findings not only shed new light on the causes of resilience loss from cascade effects in networked 
systems, but the identification capability could also be used to prioritize protection, quantify risk, and 
inform the design of new system architectures.

Organized behaviour in economics1, infrastructure2, ecology3, biology4, and human society5 often involve 
large-scale networked systems, coupling together relatively simple dynamics to achieve complex behaviour. A 
critical part of the organized behaviour is the ability for a system to be resilient - the ability to retain original 
functionality after a perturbation6 or failure. When failures lead to disconnections, traditional robustness meas-
ures only consider topological changes, e.g. random removals to giant component collapse7. Yet, we know that 
the dynamics can play an important role, and often systems fail long before they are disconnected, e.g. connected 
components can lose desirable functionality due to cascade effects.

As we will see in the two case studies, the definition of resilience depends a lot on the exact system that is being 
studied.

Background
For the example illustrated in Fig. 1i, a change in circumstance (represented by control parameter β in Eq. 1) can 
shift behaviour from a desirable (blue) to an undesirable (red) state. The definition of desirable state is application 
specific. The system cannot always bounce back to this desirable state and this is defined as a loss in resilience. 
Over the last few decades, practitioners have built up a strong understanding of each individual subsystem’s 
functional resilience. For example, a simple one-dimensional subsystem can be described by how the variable x 
changes: 

β=
dx
dt

f x( , ), (1)

 where at equilibrium f(x = e, β) = 0 and 0f
x x e

d
d

<
=

 maps to the resilience function x(β) given in Fig. 1i-a.

Whilst many physical, biological, ecological, social, and engineering systems have subsystems that can be 
described by Eq. 1, we do not have tractable understanding of the resilience function in large-scale networked 
dynamics (see Fig. 1i-b): 
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Figure 1. Estimating Node Level Resilience in Complex Networks. Each networked system is interested in a 
performance metric x, which is affected by disturbances. Desirable behaviour is contextual to the application 
(e.g. high x is the designed desirable operating regime). (i) Problem Definition - coupled dynamics in a complex 
network, where each node is governed a self-dynamic f(. ) and a coupling dynamic g(. ). This is connected 
together through a complex network. Individual resilience is sensitive to β, and connected resilience is sensitive 
to the topological measure wi. (ii) Characteristic Functions - (a) dynamic responsex(t) shows how a system or 
node can recover to desirable x value (resilience behaviour); (b) rate dynamics x x( ) gives desirable and 
potentially undesirable equilibrium solutions, which change with perturbations; and (c) resilience 
functionx(w) describes how perturbations in the network property w cause unrecoverable collapse (loss in 
resilience). (iii-iv) Method Overview: Step 1: mean field approximation using weighted degree to estimate the 
homogeneous equilibrium solution e0 at all nodes. Step 2 to s: sequential substitution of equilibrium solution 

−ei
s 1 into xj to estimate the heterogeneous equilibrium solution ei

n.
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dx
dt

f x a g x x( ) ( , ),
(2)
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ji i j

where each subsystem (node) i’s behaviour is described by a self-dynamic f(⋅) and a coupling dynamic g(⋅) with 
node j via the connectivity matrix Aij. We rewrite system 2 in the compact form: 

X F X( ), (3) =

where → F: N N  defined by Eq. 2.
In general, we do not know very well how functional resilience maps to the topological resilience (e.g. prop-

erties of Aij) in connected ecosystems. Whilst tractable solutions exist for phase synchronization dynamics8 (e.g. 
Master Stability Function), general solutions do not exist for the non-linear dynamics that exist in many applica-
tion areas set out in9. Indeed, recent research have begun to address this by mapping the overall effective dynam-
ics of a networked system to its topological structure and individual dynamics10: 

x x( , ),eff eff eff β

where xeff yields the effective mean network dynamics and βeff captures effective aspects of the network topology. 
This work has been extended to consider negative interactions11, noise effects12, attack strategies13, and applied to 
critical infrastructure areas14. Other network level predictions using dimension reduction techniques have also 
been developed to yield similar insights15. However, we still do not understand the resilience and dynamics of 
individual nodes. As we will show, many systems can exhibit a common network-level effective dynamic, but have 
different node level dynamics. The precision to identify the resilience function at the node-level is sorely needed 
in all application domains in order to inform ground operations (e.g. prioritize conservation in ecology, enhance 
monitoring in infrastructures).

Approach and Methodology
To answer this question, this paper presents a sequential estimation approach. This enables us to understand how 
network topology affects the resilience function of a node (see Fig. 1i-c). As an overview to the coupled dynamical 
system, we show how 3 key characteristic functions map to each other (see Fig. 1ii). First, we show that the 
dynamic response x(t) of the whole networked system or an individual node, can have a context dependent desir-
able and undesirable operating state. The dynamic response describes if the system can bounce back from unde-
sirable to a desirable state over time. Second, we show that the rate dynamics x x( ) defines the equilibrium states 
of the system, where there are desirable equilibrium and potentially undesirable ones (formation of which 
depends on dynamics, network, and perturbations). Finally, we show that by understanding the aforementioned 
dynamics, we can predict the resilience function of the whole system and each node as a function of perturbations 
x(w).

Assumptions. For our method to work we assume the following: 

 (1) The functions f and g are twice differentiable and there exists ∈ +R   such that for all for all ∣x∣, ∣y∣ > R and 
∈ +w , (f(x) + wg(x, y)) x < 0.

 (2) The weights are independent and identically distributed random variables, with positive mean.
 (3) The graph has low degree correlation.

 The necessity of the assumptions and the effect their violation has are discussed in the SI.

Sequential estimation. The proposed framework utilizes an initial homogeneous mean field estimation 
(Fig. 1iii) to drive sequential substitution and evaluation of heterogeneous resilience at each node (Fig. 1iv). We 
also quantify the complexity of the algorithm at each step.

Step 0: First, we calculate a mean field approximation of the system. By using either a homogeneous average 
degree = ∑ ∑w a

N i
N

j
N

ijav
1  or a weighted average degree 

=w w w
w

,av
out in

out

 we can calculate the equilibrium e{0} of the dynamical system: 

= + .
dx
dt

f x w g x x( ) ( , ) (4)av

 The method to derive this ODE is explained in the SI. The relative merits of the two way to define wav are also 
discussed in SI, both are used frequently in literature10.

If g(x, y) = (x − y)h(x, y) and f(e) = 0, then the system has uniform equilibria in the form of e1, where e is such 
that f(e) = 0. Let L be the in-Laplacian matrix of the graph and λi be its eigenvalues. If h(e, e) = α ≠ 0, then the 
Jacobian matrix at e1 is 
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α= +′J f e L( )Id ,e N

 where IdN is the N × N identity matrix. For the eigenvalues, μi, of Je it holds that 

f e( )i iμ α λ= + .′

 This gives a direct indication of system stability (μi < 0) as a function of the network topology (λi) and the indi-
vidual dynamics ( f e( )′ ).

In the general case where the system does not have uniform equilibria, then we proceed to Step 1.
Step 1: We use the mean field approximation as an initial guess to bootstrap our approximations. We approx-

imate the dynamics on each node by the dynamical system: 

= + = .
dx
dt

f x w g x e( ) ( , ) 0 (5)i
{0}

 See the SI for an explanation of how we get this equation. The solution of this equation is a function of wi, i.e. 
χ{1}(wi). Then our first order approximation is e{0}1i = χ{1}(wi).

Step 2: We can use the previous approximation to approximate the effect that the graph has on a single vertex. 
Given a vertex i an effect an in-edge will have on the dynamics is g(xi, xj). In order to find the average effect of an 
in-edge, we have to notice that the probability of a vertex j is on the other side of the in-edge is proportional to its 
out-degree. With this in mind we can average over all possibilities and we find that the average effect is 

d g x x d( , )/j
N

j i j j
N

j1
out

1
out∑ ∑= = . In order to find their mean effect of the neighbours, each component of the coupling 

vector g(⋅) is weighted by dout. This means that we can use the previous step’s approximation and we find that the 
the equilibrium of the system can be approximated by the equilibrium of 

( )dx
dt

f x w
d g x

d

e
( )

,

(6)
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j
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j
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j
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 The solution of this equation depends on wi, i.e. χ{2}(wi). Then our second order approximation is χ=e w( )i i
{2} {2} .

We define the slope at each vertex.

s f e a g e e( ) ( , )i i j

N
ji i j

{2} {2}
1

(0,1) {2} {2}∑= + .′
=

 If our approximation was exact that would be an upper bound for the eigenvalues of the Jacobian. However, since 
we have an approximation, if all si

{2}’s are negative and smaller than F(e{2}) when compared components-wise, this 
is a strong indication that the equilibrium is stable.

We define w w{ ( ), , ( )}n n
N

{ }
1

{ }χ χ= …  and we define e{0}nmax to be the maximum possible value of e{1}n, i.e.

e n r f r w g r emax max{ : ( ) ( , ) 0}w e
{0}

max , W X= ∈ + = .∈ ∈

 Similarly we define e n
min
{ }  to be the minimum possible value of e{n}. These upper and lower bounds can indicate 

when the system has potentially lost resilience. This is discussed in results.
Step 3 to n: We repeat the above, using each time the approximation we calculated in the previous step.
Using the bounds we can find the region where a bifurcation can happen and the system can lose resilience. 

We find that outside of this region, as long as the assumptions are satisfied, our method works with good accu-
racy. However, there is no practical algorithm that can precisely bound the error of our approximation, i.e. every 
algorithm that does this has complexity at least equal to the complexity of solving the full system numerically. 
Instead we can gauge the error of our approximation by evaluating the dynamics on the approximation, F(e{n}). 
Since the vector field vanishes on the equilibrium, the better e{n} approximates the equilibrium, the smaller the 
vector F(e{n}) becomes.

It is worth noting that even though our method shares some similarities with the Master Stability Function8, 
there are a couple of significant differences that prevent the application of the latter. Firstly we assume that the 
equation x f x( ) =  has an equilibrium and secondly in our case the interaction term a g x x( , )j

N
ji i j∑  does not vanish 

when xi = xj for every j.

Algorithm complexity. Every step of our method requires O(N) operations. The only exception is the com-
putation of bound that require O(N2) operation in the worst case, but required only O(N) operations for the 
examples considered here. If we want to solve the system numerically we need (Nω), where ω usually has value 3 
or 2.807. For more information see Section I-G of the SI.

Resilience estimation. The resulting framework is a robust and accurate way of measuring the networked 
dynamics and resilience function at each node, with the ability to identify vulnerable nodes. We can generally 
predict the resilience function with up to 98% accuracy after s ≥ 2 steps of estimation. Furthermore, it mathe-
matically links topological measures and non-linear dynamics (relationship shown in Fig. 1i-b). We demonstrate 
its capability through commonly studied ecological systems, subject to the standard perturbation models of: 
(i) node loss, (ii) link loss, and (iii) weight loss. We expect this new and transformative framework will map to 
existing application domain knowledge and inform the design and operations in a wide range of domains. The 
resulting framework is a robust and accurate way of measuring the networked dynamics and resilience function 
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at each node, with the ability to identify vulnerable nodes. We can generally predict the resilience function with 
up to 98% accuracy after s ≥ 2 steps of estimation. Furthermore, it mathematically links topological measures and 
non-linear dynamics (relationship shown in Fig. 1). We demonstrate its capability through commonly studied 
ecological systems, subject to the standard perturbation models of: (i) node loss, (ii) link loss, and (iii) weight 
loss. We expect this new and transformative framework will map to existing application domain knowledge and 
inform the design and operations in a wide range of domains.

Results
Node level resilience. The key benefit of our proposed framework is the ability to identify vulnerable nodes 
that are at risk of losing resilience. This is done so by examining the impact of perturbations on the effective resil-
ience of the whole network via the mean field approach10, and then sequentially inferring the node level impact.

Here, our results in Fig. 2i show that a parent network (case a) can have a similar network-level effective 
dynamics after perturbation. In this example we consider both a random link removal (case b) and a targeted 
link removal (case c). We see that the network’s mean dynamic response is similar (small differences highlighted 
in black box). However, when we look at an individual node’s dynamic response (node 4 in Fig. 2ii), we observe 
2 different effects. First, we see that node 4 recovers its desirable functionality (case a and b) with a longer delay. 
Second, we see that when targeted link removal (case c) is performed, node 4 never recovers (zoom in shows it 
collapses to a low equilibrium value).

These results highlight a shortfall in current approaches that only estimate network-level effective dynam-
ics10–12,15, whereby all 3 cases have near identical mean field values and as such yield similar network-level dynam-
ics. That means practitioners are unable to identify vulnerabilities at the node level and gain more insight or direct 
interventions.

Examining the node level results, Fig. 2iii shows the rate dynamics. Again, a similar network level behaviour 
exists before and after perturbations. However, at the node 4 level, we can see how targeted link removal can shift 
it from resilient with a small margin to not resilient. The dynamics used in Fig. 2 are: = − −( )f x x x( ) 1 ( 1)i

x
i5

i , 
and =

+( )g x x( , )i j
x

x2 1
i

j

2
, and the estimation steps used is s = 1 (2 steps). Later in the paper, we will present more 

complex dynamical systems, where the results are less intuitive. For now, to motivate readers, we present 2 applied 
case studies motivated by examples given in9,10.

Case study: ecological network. In Fig. 3, we use a well studied case of pollinator networks16. The abun-
dance of species i, xi is given by: 

dx
dt

B x x
K

x
C

a
x x

D E x H x
1 1 ,

(7)
i

i i
i i

j
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i j
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 +

+ +

where with reference to Eq. 2, f(.) is a logistic growth equation balancing the carrying capacity Ki with the Allee 
effect (low abundance xi < Ci leads to population decline), g(.) in Eq. 2 is a coupling function with saturation, and 
Bi is a constant migration rate from other ecosystems. For simplicity, we use homogeneous parameters: B = 0.1, 
C = 1, K = 5, D = 5, E = 0.9, H = 0.1. For topological generality in all our case studies, we used random graphs 
and in this case it is a Erdős-Rényi graph with N = 30 nodes and a connectivity factor of p = 0.5. Other random 
graphs exhibit similar results and are not presented here. In this case study, we define system resilience by the 
ability of the system to recover all the populations after extinction. This is possible because we assume that seeds 
can come to the geographic location from nearby locations, where there are still healthy plants. This is the reason 
we define the parameter B to be non-zero. However, in order for this to happen, the system has be in a region of 
the parameter space where there is one stable equilibrium. If there are two stable equilibria, the system will be 
trapped in the one with low population density, thus cannot recover. Similarly we can also define node resilience 
by the ability of a species to recover its population after near extinction. The specific dynamics used here imply 
that as long as a node is connected to another healthy one, it is resilient, see II-A1 in SI for an explanation why 
this is the case.

In Fig. 3 we show what happens when a network become less connected in three different ways: (i) by remov-
ing nodes, (ii) by removing edges and (iii) by reducing globally the weight. The results shown are 20 random 
trajectories for one Erdös-Rényi graph. In the SI we give similar results for Barabasi-Albert and Watts-Strogatz 
graphs.

The results show that outside the resilience loss regime (red region), we are able to predict well the effect of the 
different perturbations, with less than 2–4% error with estimation steps s = 3 and an initial mean field approxima-
tion of wav. From the results, we can see that due to the Allee effect, the collapse in abundance in every species is 
dramatic after a certain perturbation level. We are able to create upper- and lower-bounds for the dynamics, such 
that we can estimate the size of the uncertainty region. We can see that within the uncertainty region, the error 
can be arbitrarily large - highlighting unpredictable behaviour during resilience loss. The impact of this work is 
that we can clearly predict the onset of resilience loss for different measurable perturbation dynamics. We can see 
the impact of changing either specific species parameters (e.g. carrying capacity or colony threshold) and overall 
spatial network level connectivity on the resilience profile of both the whole ecosystem and the specific species.

Case study: biological network. In Fig. 4, we show the corresponding results using a well studied case of 
gene regulatory networks governed by the Michaelis-Menten Eq.17, given by: 

https://doi.org/10.1038/s41598-020-60501-9


6Scientific RepoRtS |         (2020) 10:3599  | https://doi.org/10.1038/s41598-020-60501-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2. Similar Network Dynamics Hide Different Node Dynamics. (i) Similar Network Level Dynamic 
- (a) the parent network can have a link removed either (b) randomly or (c) targeted to cause local resilience 
loss at the node level. At the network level, the effective behaviour10 is similar: demonstrating that the whole 
system’s mean behaviour can recover. (ii) Different Node Level Dynamic - However, we show that there is a 
loss of resilience in node 4 for case (c), but not for case (a,b). Whilst this detail is lost in the network level mean 
behaviour, it can be predicted using our proposed framework. (iii) Different Node Level Rate Dynamics - This 
shows that whilst we retain a similar resilient profile across the network across all cases, we can clearly see that 
node 4 is marginally above resilience in the parent network, remains resilient after random link removal, but 
looses resilience after targeted link removal.

https://doi.org/10.1038/s41598-020-60501-9
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where with reference to Eq. 2, f(.) is a degradation (a = 1) or dimerization (a = 2) effect, and g(.) in Eq. 2 is genetic 
activation, where the Hill coefficient h describes the level of cooperation in gene regulation. Using a = 1, h = 2, 
we find that there is a more gradual loss of resilience than the pollinator network.

For this system resilience is defined differently. If activity in this system ceases, then the cells die and as a result 
there is no possibility of recovery. This is the reason that for the dynamical system the state where every variable is 
equal to 0 is always a stable equilibrium. This means that we define resilience to be the ability of the system to stay 
alive and recover from a mild slow down of activity. We say that the system loses resilience if it move to a region of 
the parameter space where 0 is the only stable equilibrium, since if this happens all activity halts.

We show that outside the resilience loss regime (red region), we are able to predict well the effect of perturba-
tions, with an initial error of less than 2% (rising gradually), with estimation steps s = 0 (1 initial mean field step, 
because the dynamics are trivial) and the initial mean field approximation of w w

w
in out  used in10. We are also able to 

create upper- and lower-bounds for the dynamics, such that we can estimate the size of the uncertainty region. 

Figure 3. Resilience Function in Ecological Network (Pollinator). We disrupt the network by making it less 
connected in three different ways: (a) The first row shows the results for random node removal, 20 trajectories 
are shown. Numerical simulation of the equilibrium is shown in the first figure and 3-step approximation with 
our method is shown in second. In both figures the theoretical bounds are plotted in black. The third figure 
shows the simulation plotted against the approximation and the last figure shows the absolute error of the 
two. (b) The second row shows the results for random link removal, 20 trajectories are shown. Similarly to the 
previous case, numerical simulation of the equilibrium is shown in the first figure and 3-step approximation 
with our method is shown in second, with the bounds in black. The third and the fourth figures show the 
simulation plotted against the approximation and the absolute error of the two respectively. (c) The third row 
shows the results for uniform coupling weight loss. The same information as before is shown in the figures. In all 
three cases we see that the bounds predict the region where the bifurcation happens and the error is very small 
outside this region.
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This case study demonstrates that when the dynamics are relatively trivial (no xi in coupling dynamics g(.)), we can 
predict the gradual resilience loss very well. Later in the next section, we will show how a critical resilience func-
tion can be used to identify the most vulnerable nodes and how for non-trivial cases, the resulting resilience 
functions can be non-intuitive.

Resilience bounds and critical resilience value. The crux of our work is to tractably analyze node level 
resilience and use this to identify which nodes are at risk of loosing resilience. In Fig. 5, we use the pollinator 
dynamics (see Eq. 7) to demonstrate how to estimate the upper- and lower-bounds of the resilience function and 
identify vulnerable nodes. All the resilience behaviour at each node (e.g. loss of performance metric x as a func-
tion of link removal L) is bounded by the theoretical bounds.

The bound solutions are subject to the real data available on both the topology (wi) and the equilibrium 
estimation en. When the resilience bounds collapse, we can use their wav values to map the uncertainty regime 
to other relationship plots. One such plot is the criticality function. Here, we define the critical resilience wcrit as 
the value by which each node must satisfy wi > wcrit in order to stay resilient. This condition enables us to iden-
tify which nodes close to losing resilience - see Fig. 2iii, despite being reasonably well connected, and use future 
knowledge of connectivity changes to drive forecasting of resilience loss at the node level.

Figure 4. Resilience Function in Biological Network (Gene Regulation). Similarly to the Ecological Network 
case, We disrupt the network by making it less connected in the same three ways: (a) The first row shows the 
results for random node removal, 20 trajectories are shown. The first figure shows the numerical simulation 
of the equilibrium and the second the 1-step approximation with our method. In both figures the theoretical 
bounds are plotted in black. The simulation plotted against the approximation is shown in the third figure 
and the last figure shows the absolute error of the two. (b) The second row shows the results for random link 
removal, 20 trajectories are shown. Similarly to the previous case, numerical simulation of the equilibrium is 
shown in the first figure and 1-step approximation with our method is shown in second, with the bounds in 
black. The third and the fourth figures show the simulation plotted against the approximation and the absolute 
error of the two respectively. (c) The third row shows the results for uniform coupling weight loss. The same 
information as before is shown in the figures. Similarly to the Ecological Network case, in all three cases we see 
that the bounds predict the region where the bifurcation happens and the error is very small outside this region.

https://doi.org/10.1038/s41598-020-60501-9
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Network rewiring and unwiring. An important notion for dynamical systems on graphs is the critical 
weight of a node. Given the dynamics, the critical weight is the minimum weighted degree a node needs in order 
to be resilient. This is a function of the average weight of the graph, see the SI for the exact derivation. In the case 
of pollinator dynamics, the higher the average weight is, the higher the mean field solution is. With high mean 
field solution a node can be resilient with low weighted degree. So we see that intuitively the critical weight is a 
non-decreasing function of the average weight.

However, this does not happen in every case. We now show that for the dynamics f(xi) = 1/10 + xi(1 − xi)
(xi/5 − 1) and ( ) ( )g x x x x x( , ) 15 / 1i j i j j

2 2= + , changes to the coupling dynamics in one part of the network can 

Figure 5. Critical Resilience Value Identifies Vulnerable Nodes. (i) Resilience Bounds - Bounds on resilience 
loss yield theoretical prediction envelope. The bounds explicitly map to average weighted degree values (wav), 
which map to the critical resilience value plot in (ii). Uncertainty in behaviour increases during critical collapse 
phase. (ii) Criticality Function defines resilience regimes mapping network properties (average weighted 
degree wav) to local node properties (critical resilience value wcrit). When wi > wcrit, the node is resilient, and 
when below it is not. This is a way to identify which nodes are likely to be vulnerable to a loss of resilience. 
(iii) Impact - This shows that nodes do not have to be removed to lose resilience. By being able to identify and 
forecast which nodes are at risk of resilience loss as a function of parameters (e.g. declining interactions w over 
time), we can target interventions for different application contexts.
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cause counter-intuitive changes to the resilience in another part of the network. In this case, increasing the con-
nectivity of one part of the network can have opposite effects on the resilience of other nodes, depending on their 
local connectivity and global network topology.

Intuitive rewiring to restore resilience. In Fig. 6i, we consider a parent network (case a), whereby node 11 has 
already lost resilience - see dynamics x(t). In Fig. 6ii, the position of node 11 on the criticality function is labelled 
and is in a not resilient regime. When we perform targeted rewiring (case b), node 11 is connected to node 26 and 
its dynamic response recovers. This is intuitive, because rewiring improves its local weighted degree w11 > wcrit 
and shifts the position upwards into a resilient regime.

Figure 6. Network Rewiring & Unwiring to Change Resilience. (i) (a) parent network’s node 11 has failed, 
(b) targeted rewiring by adding an edge allows node 11 to recover, (c) targeted unwiring of other parts of the 
network allows node 11 to recover. (ii) criticality function with inflection point, showing that rewiring/unwiring 
one part of the network has different effects on the resilience for other parts of the network. In our example, 
the parent network’s node 11 moved from a not resilient regime (a) to a resilient regime by increasing its own 
connectivity (b) or unwiring other network parts (c).
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Intuitive unwiring to restore resilience. An alternative and non-intuitive way of restoring resilience to node 11 is 
to unwire a distant part of the network. When we perform targeted link removal (case c), this reduces the average 
weighted degree wav such that it shifts its position of node 11 on the criticality function leftwards into a resilient 
regime (case c).

In summary, it is entirely plausible to have a system whereby its dynamics enables both intuitive (e.g. local 
rewiring boosts resilience) and counter-intuitive results (e.g. distant unwiring boosts resilience). In such cases, 
making a small change in one part of the network can dramatically improve resilience for some nodes, whilst 
reducing resilience for others, depending on where they are with respect to critical inflection point in Fig. 6ii. 
The fact that local changes can affect resilience in a completely different part of the network deserves attention 
and further research. Suffice to say, without a fundamental understanding of the criticality function through our 
proposed sequential heterogeneous mean field approach, we cannot determine the impact of wiring and unwiring 
at the node level.

Discussion and Limitations
A gap in understanding exists between individual dynamics and the coupled dynamics in a large-scale networked 
complex system. Here, we present a framework for tractably analyzing the resilience of individual nodes as a func-
tion of the individual dynamics and the network property. We show that our method can be used to: 

 (1) Estimate the equilibrium behaviour outside the critical region. Our methods gives an accurate approxima-
tion of the equilibrium when the system is not close to the critical region.

 (2) Estimate the critical region as a function of the perturbation and identify which nodes are most vulnerable 
to loss of resilience. The collapse of the lower bound indicates that there exist nodes that are about to lose 
resilience. The approximation correctly predicts the order in which the vertices lose resilience.

 (3) Predict the effect of changing the network on the resilience of nodes. As shown in Section II-E, we were able to 
predict a counter-intuitive behaviour of a system.

Whilst our baseline result is intuitive (e.g. the most vulnerable nodes are poorly connected ones close to the 
critical resilience value wcrit), quantifying this value as a function of the dynamics enables us to prioritize actions 
more effectively and predict resilience loss more accurately. Conversely, we may also discover hidden cascade 
effects, whereby disconnecting a weakly connected node can lead to improvement in other nodes. This is useful 
for analyzing recent claims on eradicating the malaria mosquito because it is not a significant diet for predators 
(e.g. weak basal species18). This maybe risky, because we do not know the underlying dynamics nor the resilience 
margins in all connected species in the food web.

It is also useful to discuss when our estimation algorithm doesn’t work. As with10, the estimation produces 
increasing errors with (1) increasing degree correlation (assortiveness). This is due to the fact that the neighbours 
a given vertex has depends on its degree, which our approximation of the effect these neighbours have inaccurate. 
Putting this caveat aside, in general, the node-level precision methods developed here will enable practitioners 
in ecology, infrastructure, and other application areas to prioritize protection and intervention resources, such as 
maintenance, preservation, rewiring, and upgrades. Future work will extend this research to consider both local19 
and global20,21 optimal control of complex network dynamics.
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