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Factors influencing the accuracy for 
tissue classification in multi spectral 
in-vivo endoscopy for the upper 
gastro-internal tract
Martin Hohmann1,2*, Heinz Albrecht3, Benjamin Lengenfelder1,2, Florian Klämpfl  1,2 & 
Michael Schmidt1,2

Hyper spectral imaging is a possible way for disease detection. However, for carcinoma detection most 
of the results are ex-vivo. However, in-vivo results of endoscopic studies still show fairly low accuracies 
in contrast to the good results of many ex-vivo studies. To overcome this problem and to provide a 
reasonable explanation, Monte-Carlo simulations of photon trajectories are proposed as a tool to 
generate multi spectral images including inter patient variations to simulate 40 patients. Furthermore, 
these simulations have the huge advantage that the position of the carcinoma is known. Due to 
this, the effect of mislabelled data can be studied. As shown in this study, a percentage of 30–35% of 
mislabelled data might lead to significant decrease of the accuracy from around 90% to around 70–75%. 
Therefore, the main focus of hyper spectral imaging has to be the exact characterization of the training 
data in the future.

Gastric cancer is the second most frequent cause of cancer related deaths worldwide1. Despite a wide development 
of new technologies in the recent years, high definition white light endoscopy (HD-WLE) is still considered as 
state of the art by official endoscopy guidelines. One of the possible alternatives is virtual chromoendoscopy2 for 
which meta analyses3 prefer this method above all others.

Moreover in their review, Swager et al.4 concluded that spectroscopic quantitative measurements of tissue 
need further investigation. It is expected that they may improve the methodology of virtual chromoendoscopy 
further. The high accuracy of virtual chromoendoscopy provides a hint that extracted fine spectral features allow 
a better accuracy than normal HD-WLE.

One way of spectroscopic measurement is multi/hyper spectral imaging (MSI/HSI). So far, both have been 
proven successful in finding cancer in different parts of the human body such as: larynx5 with a sensitivity of 
55–87% and specificity of nearly 100%6, cell analysis from cervix7 with a sensitivity ranging from 66 to 100%, 
breast8,9, colon10–17 or oesophagus/stomach18–22. Thereby, the group from Sakaida reached an accuracy of 79% 
in the first study19 and 85% in their second study20 in an ex-vivo setting. However, the transfer of these results to 
in-vivo by our previous publications showed significant worse results. An accuracy of 64% is reached in the first 
study21 and an accuracy of 68% in the second study22. These improvements could be reached by using elaborated 
methods for data analysis. In summary, the in-vivo results22 are outperformed by around 20 per cent points by the 
good ex-vivo classification results20.

To overcome this issue, this study tries to find the reason which might explain the limited quality of in-vivo 
multi/hyper spectral classification results with the focus on endoscopic problems. For this, multi spectral images 
are simulated by the means of Monte-Carlo-Simulations (MCS). The huge advantage of using simulations is the 
fact that in comparison to in-vivo experiments the precise margin of the carcinoma is known. Therefore, it can 
be tested what effect the wrong margin has on the final classification results. In comparison in in-vivo cases the 
margin of the carcinoma is not precisely known23. Therefore, a certain part of the data will be labelled wrongly. 
Moreover, the in-vivo data set does not provide a controlled environment.
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Materials and methods
Parameter for the Monte Carlo simulation. To generate multi spectral images, an own graphical-pro-
cessing-unit (GPU)-based MCS-software is used. The software was validated successfully against the diffusion 
approximation and Monte-Carlo-extreme (MCX)24. One graph for validation is shown in the attachment in figure 
A. In general, the tissue inhomogeneities are disregarded by the MCS.

For the simulation, a carcinoma in oesophageal tissue is simulated due to the fact that the optical properties 
(μa, μs or g) of these tissue types is known. The optical properties are taken from the study from Holmer et al.25 
instead of the own optical properties26. The data from Holmer et al.25 is used due to the fact that Holmer et al.25 
measured the optical properties from carcinoma and from healthy oesophagus. However, there is a high chance 
that the measurements from Holmer et al.25 have a systematic error as shown by Hohmann et al.26. Despite the 
fact that they use cryo-homogenisation, this should not influence the optical properties27. Thus, the source of the 
potential error cannot be explained. Nevertheless, it can be expected that healthy tissue and the carcinoma tissue 
have a similar systematic error. Therefore, it makes more sense to use the dataset from Holmer et al.25 since at least 
the difference between both tissue types might be realistic.

To derive the optical properties and include inter patient variations, the following strategy is chosen: First, a 
centre value is calculated and, second, the variations are derived. The centre value of the optical properties are 
derived by averaging the optical properties for each spectral bandwidth, using the spectra of the illumination 
source as weight from our older clinical study for carcinomas in the stomach21. This is done for each wavelength 
band to ensure that values match our the previous publication21. By integrating the optical properties abbrevi-
ated with OP times the normalized intensity (I) of the light source, the final optical properties are calculated as 
weighted mean: 
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 Thereby, λ is the wavelength and λb and λa are the boundaries at which the intensity is zero. In total, the following 
seven centre wavelengths are simulated: 396, 437, 474, 511, 549, 574 and 637 nm.

The variation of the optical properties is taken from the standard deviations from Holmer et al.25 as it is the 
only data available. Due to the fact that Holmer et al.25 show only three values for the standard deviation, the 
missing data points of the standard deviation are interpolated. First, the relative standard deviation is calculated. 
A linear fit is used to generate the data for the wavelengths used in this study. This step is done as the data is 
required. An optimal solution would be to switch to Bayesian statistics to generate a-posteriori information as we 
showed it for diffuse reflectance spectroscopy28.

For the simulation, it is assumed that most of the standard deviation of the optical properties is caused by the 
inter patient variations from the study from Holmer et al.25 and not from random variations of the measuring 
procedure. Due to the fact that they dissociated the oesophagus, the intra patient variations should be much lower 
than they are normally.

The inter patient variations are derived by using a relative standard deviation from the mean values and var-
ying it with a Gaussian distribution with the same full width at half maximium (FWHM) as the relative standard 
deviation. It should be noted that this assumption might not be true because most likely the distribution of the 
optical properties is not Gaussian distributed. However due to the fact that Holmer et al.25 assumed the Gaussian 
distribution, the same assumption has to be done in this study. Furthermore, it is expected that the variation of 
μa, μs and g might not be independent from each other. However to date, there is no knowledge of the dependent 
behaviour and therefore this effect has to be neglected.

For the simulation, the variations of the optical properties cannot be seen as wavelength independent. For 
example, a variation of the scattering for blue light is not independent of a variation of the scattering for red light. 
Normally, a change of scattering in one wavelength range implies a change of the scattering in another wavelength 
range. However, as the functional dependence between different wavelengths is not known, an additional random 
fluctuation should be considered to allow wavelength dependencies. For the scattering, this might be caused by 
different sizes of the scatterers.

As the functional dependencies are not known, a more practical approach is chosen. The effect of the same 
relative variations across all wavelengths and a completely random fluctuation is considered. The same relative 
variation of the scattering coefficient and/or the g-factor would lead to a different penetration depths and the 
tissue would appear brighter or darker without major changes of the tissue colour. The same relative variation of 
the absorption coefficient across all wavelengths would have a similar effect compared to the scattering. However, 
the largest difference would be for the wavelengths with a high absorption coefficient. As in the tissue, blood as 
red absorber is present, the tissue would appear more or less reddish and, therefore, the amount of blood in the 
tissue would be varied with this. Both variations are realistic and definitely play a major role in the inter patient 
variations.

In contrast, if the optical properties are varied randomly for each wavelength, the colour of the tissue would 
change independent which from the three optical properties is varied. This effect happens only slightly in healthy 
tissue as for most healthy tissue the colours are similar. But they are not the same. However for cancerous tissue, 
this effect might play a bigger role due to the fact that in the upper gastro-intestinal tract, carcinomas might 
appear reddish to discoloured19.

To simulate both effects, for healthy tissue 80% of the variation is assumed to occur due to the same rela-
tive variations across all wavelengths. This effect should not alter the colour significantly nevertheless it should 
allow small fluctuations between the patients. For the cancerous tissue, only half of the variations is assumed to 
occur due to the same relative variations across all wavelengths. This allows the the appearance of discoloured 
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carcinomas. However, it should be noted that there is no way available currently to derive these numbers with a 
higher precision than with educated guessing. Nevertheless, this effect should be considered as carcinomas might 
appear reddish to discoloured19 and healthy tissue appears more similar between patients. Box plots of the final 
optical properties are shown in the attachment B, C and D.

After the optical properties are set, the geometric set-up is the next thing to consider. The set-up for the MCS 
is illustrated in Fig. 1. The upper surface is divided into nine equally sized squares. This is done as only photons 
from the inner square are considered for detection. Furthermore, only in the centre square the carcinoma is 
placed. Thus, this sketch in Fig. 1 shows the inner square. The whole set-up has a volume of 15 × 15 × 15 mm3 
as bulk tissue. The simulation volume is chosen to be small for two reasons: First to speed up the simulation 
process. Second, there is an overlap area at boundary at the carcinoma where its effect on the back reflection 
fades out more the further away you are from boundary. For for bigger carcinomas, the optical overlap area 
between healthy and cancerous area would be relatively smaller. Therefore the effect of mislabelling would be 
much stronger. Thus, smaller carcinomas are chosen. Moreover, for small carcinomas mislabelling is more likely. 
Only a single layer structure is simulated due to the fact that Holmer et al.25 dissociated the oesophagus before 
performing their measurement.

The simulation volume includes two blood vessels as cylinders and the cancerous tissue as ellipsoid. Two 
blood vessels are added to have a little bit of inhomogeneities in the tissue. The two blood vessels have a diameter 
of 10 microns. One vessel is 0.25 mm below the centre of the carcinoma and the second one is placed 0.3 mm 
below the surface. The carcinoma has a diameter of 1.5, 2.0 and 0.1 mm in x, y and z-direction. The position of 
the centre is 6.5, 7.5 and 0.4 mm from the left upper edge. The tissue is simulated with semi-infinite boundary 
conditions. Hence, Fresnel reflection is only taken into account on the top surface. The simulation stops when 
131’072’000 photons reach the detector. Less than 5% of the photons reach the detector and therefore at least 3 
billion photons have to be simulated.

For the simulation, close imaging is simulated. Even if in in-vivo situation the imaging is often not perpen-
dicular, this set-up is chosen due to three reasons: First, it is easier to simulate. Second, if a tilted simulation is 
chosen, there are too many possible ways to choose from. This would make it difficult to compare if different 
people show different angles. Third, the imaging is done with a small distance between endoscope and surface. In 
this case, it is also in in-vivo situations possible to have nearly perpendicular imaging. The light source emulates 
an endoscopic light source with homogeneous intensity distribution on the surface. The light in the centre hits the 
surface perpendicular and the light in the outer part with an angle of 30 degrees. Hence, the light source is a point 
source with a distance of about 1.7 mm to the surface. For the detection the surface is divided into nine squares 
with equal size. The photons are only taken from the central square to minimize boundary effects from the finite 
simulation volume. There are no other photons which stray in the detector due to the fact that only the photons 
from this central square are checked if they can reach the detector. All others are immediately terminated. The 
surface of the central square is divided into 301 times 301 pixels which is imaged on the detector.

Figure 1. Set-up of the Monte-Carlo simulations. Due to the fact that the upper surface is divided into nine 
equally sized squares, this sketch shows the inner square. Position of the vessels and the carcinomas are 
symbolic to the real ones for better visibility. Also their size increased for the same reason.

https://doi.org/10.1038/s41598-020-60389-5


4Scientific RepoRtS |         (2020) 10:3546  | https://doi.org/10.1038/s41598-020-60389-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

For the 131’072’000 photon, 1446 photons arrive in average per pixel. Hence, the resulting noise is expected 
to be high. The noise can be estimated by the Binomial distribution of the photons. Equation 2 shows the formula 
to calculate the standard deviation if it is assumed that all pixels have the same probability that a photon arrives: 

= ⋅ ⋅ −std n p p(1 ) , (2)

where n is the total amount of photons (n = 131’072’000) and p is the probability for hitting a single detector 
which is p = 1.1037 ⋅ 10−5. Thus, the resulting standard deviation is 38 intensity values for each detector, result-
ing in an average noise of about 3% of the signal. Therefore, a further noise reduction step is required. For the 
noise reduction, a seven times seven pixel wide Gaussian filter with a FWHM of 2 pixel is used. The noise can 
be estimated in the same way as before but with 49 times less pixels. This results in an average signal of sig-
nal = (70890 ± 270) photons, reducing the noise to around 0.4%. However due the usage of the Gaussian filter, 
the noise is expected to be higher. Stronger noise reduction or more photons are not needed due to the fact that 
the noise level is similar or even better than in our previous in-vivo study21. Using the Gaussian filtering instead 
of decreasing the spatial resolution of the detector has two advantages: First, the resolution is similar to at least 
older endoscopes. Second, the later introduced shifts of the carcinoma can be done with the necessary preci-
sion. Reducing the resolution by the same factor would lead to a pixel size of 43 times 43 pixels. This is too less 
to adequately do the later calculations. With the finalized set-up of the Monte-Carlo simulation 40 patients are 
simulated and for each patient one endoscopic image is generated. Each patient has a randomly selected different 
set of optical properties for the carcinoma and the healthy tissue.

Parameter difference between real carcinoma and carcinoma used for training. In this study, the 
effect of the mismatch between the real carcinoma and the carcinoma used for training is calculated for three dif-
ferent kinds of mismatch. Figure 2 shows an example of the three kinds of mismatch that are investigated in this 
study. The red ellipse shows the margin of the carcinoma and the blue ellipse shows the margin of the carcinoma 
which is used for the training of the classifier. Furthermore Table 1 shows an overview of the variations between 
the carcinoma used for training and the real one.

First, the effect of the shift between the real carcinoma and the one used for training is tested as symbolized 
in Fig. 2 left. The carcinomas are shifted in y-direction in a way that the overlapping area between the real carci-
noma and the one used for the training of the classifiers is varied from 100 to 50% in steps of five per cent points. 
This simulates the situation when that part of the carcinoma is found while part of the healthy tissue is seen as 
carcinoma.

Second, the effect of the relative size of the carcinoma used for training and the real carcinoma is tested as 
symbolized in Fig. 2 middle. The size of the carcinoma used for training is varied from 0.25 times the area of the 
real carcinoma to 1.75 times the size of the real carcinoma in steps of 0.25. This simulates that too much of healthy 
tissue is seen as cancerous or if not the whole cancerous area can be detected.

Figure 2. Different models of how to vary the carcinoma data which is used for training. The images represent 
the final generate image (topview). The red ellipse shows the margin of the carcinoma and the blue ellipse 
shows the margin of the carcinoma which is used for the training of the classifier. Left: Variation of the position, 
Middle: Variation of the size, Right: Random variation of size and position.

Varied Parameter (Unit) Minimum Maximum Step size

Position (one minus area overlap in%) 0% 50% 5%

Size (size of the real carcinoma in%) 25% 175% 25%

Position and size randomly (size) 25% 175%

Position and size randomly (position in radius carcinoma) 0 1.25

Table 1. Used variations between the real carcinoma and the carcinoma used for training. For the last line, both 
parameters are varied randomly at the same time.
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Third, the random combination of both previous effects is studied as symbolized in Fig. 2 right. In this part, a 
maximal variation is set. This maximal difference of the area is 0.25 or 1.75 times the area of the real carcinoma. 
The maximal shift of the carcinoma is 1.25 times the radius of the original carcinoma. For selecting a value, a 
uniform random number is chosen between the minimum and the maximum difference from the real carcinoma. 
Before the random number determines the position the maximal shift and size variations are limited from 0 to 
100% of the maximal variation in steps of 10 per cent points. Hence, the strength of the random overlap can be 
varied. For the random combination every patient has a different position of the carcinoma used for training.

The last studied effect is expected to be the most realistic, as sometimes only random parts of the carcinoma 
can be labelled correctly or way too much of the tissue might be labelled as cancerous. Moreover, for this study 
it is the most realistic setting due to the fact that not all patients have the same mislabelling. The labelling differs 
from patient to patient. Sometimes the margin of the carcinoma is pretty good, sometimes only a part of the car-
cinoma is found and sometimes a big chuck of healthy tissue is seen as cancerous.

However for the third mismatch effect, the real overlap is unknown compared to the other two effects. To 
estimate the overlap, an average overlap area is calculated by choosing 1000 times a random combination of size 
and position. However, two different kinds of overlap have to be considered. First, the amount of the original car-
cinoma which is covered by the one used for training and second the amount of the carcinoma used for training 
which contains the actual carcinoma. Both parameter describe the same area. Nevertheless, they describe it from 
a different perspective. The parameters differ when the size of the carcinoma used for training differs. The effect 
can be seen in Fig. 2 middle and right. For example in Fig. 2 middle the amount of the original carcinoma which 
is covered by the one used for training is around 30% while the amount of the carcinoma used for training which 
contains the actual carcinoma is 100%.

 Figure 3 shows both overlaps for different percentage of the maximal variation. It can be seen that both vari-
ations differ and therefore only the relative maximal variation will be used as variable. On average, the amount of 
real carcinoma that is covered is higher than the amount of carcinoma used for training which is actually the real 
carcinoma. Both graphs drop from 95% overlap to 60–65% overlap. This means even in the worst case, in average 
around 60–65% of the carcinomas are correctly used for the training. This number seems to be realistic or even 
underestimates the error as even in the case of correct markings there might be a more than 60% mislabelled area 
(Fig. 3 from Yoshinaga et al.23).

Statistical data evaluation. The statistical data analysis is done the same way as in our previous in-vivo 
study21. The data analysis is done pixel based. For training first, the principal component analysis (PCA) is used 
for feature reduction and the amount of used features is selected in a way that 99% of the variance is used for the 
analysis. For the training only, one per cent of the data is used to speed up the training process. The data is selected 
randomly. For classification, RobustBoost (RB), support vector machine (SVM) with a linear and a Gaussian ker-
nel and random forest walk (RFW) are used. The evaluation of the classifiers is done by the leave-one-out method. 
Therefore, n-1 patients are used for training the left out one is used for testing (n=40). This is done for all possible 
combinations.

In general, terms such as accuracy are used to measure how close the data is to the training labels. Additionally 
to this standard way, it is used to compare the classification results to the real carcinoma. This subdivision is nec-
essary as the effect of mislabelling is studied. Therefore, the results have to be compared to the real data set and 
the one used for training which includes mislabelled data points. For the evaluation of the results the accuracy2 
(ACC2) and the Matthews correlation coefficient (MCC)29 are used. This way of calculating the ACC2 is robust 
against the case that the dataset is not symmetric. However, it can be interpreted similar to the standard accuracy. 
The MCC is chosen due to the fact that it is the best available single value to characterize the classification in a 
single number30. The ACC2 is calculated as follows: 

Figure 3. Overlap and the standard error between the real carcinoma and the one used for training. The red 
graph shows the amount of carcinoma used for training which is actually real carcinoma and the blue graph 
shows the amount of real carcinoma covered by the one used for training.
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where TP is the amount of true positives, TN is the amount of true negatives, FP is the amount of false positives 
and FN is the amount of false negatives. The MCC is calculated as follows29: 
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It should be noted that the MCC scales between  −1 and 1 and a value of zero means the classification does not 
work. This result corresponds to ACC2=50%. Both measures, the ACC2 as well as the MCC are calculated for the 
position of the original carcinoma as well as the carcinoma used for training.

Results and discussion
 Figure 4 shows an example for a simulated multi spectral image. The bright part shows the carcinoma. It can be 
seen that the contrast varies for different wavelengths. Additionally, the blood vessels are only visible for 511–
573 nm due to the fact, that for these wavelengths the penetration depth of the light is big enough and further-
more the absorption of the haemoglobin is high enough to generate a contrast.

 Figure 5 shows the effect of the shift of the carcinoma used for training in comparison to the real one. The 
results for zero shift are similar to the one with a low shift. For all cases, the ACC2 as well as the MCC drop for 
higher shifts. The ACC2 drops from around 85% to 60–70%, depending on the classifier. The MCC drops from 0.7 
to 0.2–0.5 depending on the classifier. For both measures, the real carcinomas are detected worse than the ones 
used for training. Thus, it might happen in real scenarios that the classifier might be trained on the wrong data 
set. However, this effect is especially strong in this study due to the usage of small carcinomas for the simulation. 
For bigger carcinomas, the intermediate area between cancerous and healthy tissue in which the image is effected 
by both tissue types is relatively smaller. However for early stage carcinomas, it might still play a role in realistic 
cases.

Moreover, on RFW and SVM with a Gaussian kernel there is the lowest effect due to the mislabelling. However 
in the previous in-vivo study21, SVM with linear kernel and RB showed the best results. These results here only 
describe a constant shift which is not realistic. Despite this, RB seems to consistently find the real carcinoma bet-
ter than the one used for training for high shifts. Thus, RB should definitely be considered further. Similar results 
were shown in our previous in-vivo study21 for carcinomas in the stomach. In all cases, the real carcinoma is found 
best if the size used for training is chosen correctly or a little bit bigger. This effect happens due to the fact that the 
back reflectance outside the carcinoma is still partly effected by the carcinoma due to the scattering of the tissue 
due to the overlap area. As a conclusion for realistic scenarios, it seems to be beneficial to select a little bit higher 
margin of the carcinoma. Despite the fact that a too big margin might further improve the results of the ACC2 

Figure 4. Simulated example image for one patient for six wavelengths. The red ellipses show the position of the 
carcinoma.
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and MCC for the carcinoma used for training, the real carcinoma is found worse. Thus, the carcinoma margin 
should not be selected too big despite the improvement of the accuracy. For this case, all classifiers show a similar 
behaviour. RFW again shows the best results.

Figure 6 shows the effect of choosing a different size of the carcinoma used for training in comparison to the 
real one. Figure 7 shows the effect of the random variation of the size and position of the carcinoma. The results 
for zero shift are similar to the one with a low shift. According to Fig. 3 the maximal relative change is an average 
overlap of around 60%. Both measures show a decrease of accuracy for stronger mislabelling. The ACC2 drops 
from 80–85% to 65–70% and the MCC drops from 0.6–0.7 to 0.3–0.4. For around 70% average overlap, the results 
drop significantly. Without taking mucus or inflammation into account it is possible that the maximal accuracy 
which can be reached currently is around 70%. Thus for further endoscopic in-vivo imaging, the margin has to 
be found more precise to allow better results. Up to now, there are two solutions: First, Goto et al.20 used ex-vivo 
oesophagus and did regular biopsies across the whole oesophagus. With this good classification results could be 

Figure 5. ACC2 and MCC as function of the overlap between the real carcinoma and the one used for training 
where zero means 100% overlap and 0.5 represents 50% overlap. The red lines represent the detection of the 
shifted carcinoma and the blue lines that of the real carcinoma.

Figure 6. ACC2 and MCC as function of the relative size of carcinoma used for training in comparison to 
the real one. The red lines represent the detection of the shifted carcinoma and the blue lines that of the real 
carcinoma. PCA is used for feature selection.

Figure 7. ACC2 and MCC as function of the average overlap shown as percentage of the maximal shift and size 
variation. The red lines represent the detection of the shifted carcinoma and the blue lines of the real carcinoma. 
PCA is used for feature selection.
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reached. Second, Liu et al.31 used the complete endoscopic image and the classifier just decided if there is a car-
cinoma somewhere present in the image. However, they could not show where it is. Again RFW and SVM with 
Gaussian kernel show the best results. As for the examples before, RB shows better results for the real carcinoma 
than for the one used for training for the cases of high mismatch.

Conclusion
In this study, it could be shown that there might be a maximal accuracy for automated classification of 
in-vivo endoscopic multi and potentially hyper spectral images. Despite the fact that the analysis is done for 
multi-spectral images, the same mislabelling happens for hyper spectral images and thus the results might be 
transferable. Finer spectral features found by hyper spectral imaging might simplify the discrimination. However, 
the main absorbers in the UV/VIS/NIR-range such as haemoglobin, fat, water, melanin, proteins have a wide 
spectral range without narrow spectral features. Hence, hyper spectral imaging is likely to see the same effect. The 
expected maximal accuracy for in-vivo endoscopy is around 70% for a pixel per pixel analysis. To our view, the 
improvement of this require better knowledge of the margin of the carcinoma which is difficult for in-vivo studies. 
Thus, a very precise optical biopsy technique might enable better classification results.

As a further result some practical conclusions can also be done for in-vivo endoscopic classification problems 
in future: First, while a large marging around the carcinoma increases the classification results of the carcino-
mas which are used for labelling, the real carcinomas might be found worse. Thus, the margin for classification 
should only be increased a little bit. As an unexpected result, it can be even seen that RB has the highest MCC 
for the maximal variation. The MCC for the real carcinoma even outperforms all other classifiers. If this study 
would not be a simulative study, RB might be rejected for its low MCC. However, the knowledge of the position 
of the real carcinoma allows to show that is actually finds the real carcinoma. Therefore, in future RB should be 
included in in-vivo endoscopic classification problems and it should be look if the false positives from it are actu-
ally carcinomas.

Despite this conclusions, it should be said that this studies has currently a few drawbacks. First, the optical 
properties, which are used for the MCS, might might have an systematic error. Second for the deviation of the 
optical properties, a lot things have to be assumed as the required information is not available: e.g. the distribution 
of the optical properties is assumed to be Gaussian distributed. However from the values from Holmer et al.25, 
it can be seen that they are not Gaussian distributed due to the fact the presented standard deviation is nearly 
as large as the value itself. At the same time, negative absorption and scattering coefficients are not possible for 
standard tissue. The effect of the assumptions is difficult to assess as the overall variation can be over or underes-
timated. For assessing the influence, a posteriori information of the optical properties are needed. Without this, 
even educating guessing is difficult. For the MCS, the comparable simple geometric set-up might influence the 
results. Moreover, tissue inhomogenities are not regarded. However, with the help of MCX it should be possible 
to simulate random spatial variations (tissue inhomogenities).

The results might be even transferable to in-vivo spectroscopic data sets. For the oral cavity the sensitivity 
and specificity vary from around 65% to 100%32. For colon, the results strongly depend on the wavelength17 for 
ex-vivo tissue. An accuracy of 74% is reached for the visible light and an accuracy of 80% for NIR and accuracy 
of 91% for the combined data set. This leads to the conclusion that the limit of accuracy might also be due to the 
used spectral band. However, for the upper GI an accuracy of 85% could be reached by Goto et al.20 for an ex-vivo 
analysis from 400 to 800 nm. Thus, this conclusion cannot be done at the current state. Therefore, the lower accu-
racy of 68% in our older study22 might be caused by the in-vivo setting.

This is also a reason that current systems such as multi spectral light scattering devices33 are only tested on 
the biopsies. Even if the results in this study seem to be obvious, they still show that the multi spectral imaging 
process can be simulated by the means of MCS. Moreover with the usage of Bayesian statistics and the resulting 
a-posteriori probabilities as shown for diffuse reflection spectroscopy28, inter-patient variations might be simula-
tions by means of MCS in the future for early studies of new optical approaches. Nevertheless, the next step would 
be animal studies to verify this study due to the fact that the animals can be dissected after the endoscopic proce-
dure. With a successful verification of this method, MCS could be used to estimate the possible accuracy in future.
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