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Spatial modeling of prostate cancer 
metabolic gene expression reveals 
extensive heterogeneity and 
selective vulnerabilities
Yuliang Wang1,2*, Shuyi Ma3 & Walter L. Ruzzo2,4,5

Spatial heterogeneity is a fundamental feature of the tumor microenvironment (TME), and tackling 
spatial heterogeneity in neoplastic metabolic aberrations is critical for tumor treatment. Genome-
scale metabolic network models have been used successfully to simulate cancer metabolic networks. 
However, most models use bulk gene expression data of entire tumor biopsies, ignoring spatial 
heterogeneity in the TME. To account for spatial heterogeneity, we performed spatially-resolved 
metabolic network modeling of the prostate cancer microenvironment. We discovered novel malignant-
cell-specific metabolic vulnerabilities targetable by small molecule compounds. We predicted that 
inhibiting the fatty acid desaturase SCD1 may selectively kill cancer cells based on our discovery of 
spatial separation of fatty acid synthesis and desaturation. We also uncovered higher prostaglandin 
metabolic gene expression in the tumor, relative to the surrounding tissue. Therefore, we predicted 
that inhibiting the prostaglandin transporter SLCO2A1 may selectively kill cancer cells. Importantly, 
SCD1 and SLCO2A1 have been previously shown to be potently and selectively inhibited by compounds 
such as CAY10566 and suramin, respectively. We also uncovered cancer-selective metabolic liabilities 
in central carbon, amino acid, and lipid metabolism. Our novel cancer-specific predictions provide new 
opportunities to develop selective drug targets for prostate cancer and other cancers where spatial 
transcriptomics datasets are available.

Cancer cells reprogram their metabolism to fulfill the energetic and biosynthetic needs of proliferation, invasion 
and migration1. This is exemplified in prostate cancer, the second most common cancer in American men after 
melanoma2. Previous studies have uncovered profound metabolic dysregulation in multiple pathways, particu-
larly in fatty acid and lipid metabolism3,4. Discovering novel cancer-specific metabolic aberrations has significant 
translational applications, because cancer-associated metabolic dysfunctions can be exploited to advance cancer 
detection (e.g., 18F-FDG (Fludeoxyglucose) imaging based on elevated glycolysis in cancer5) and treatment (e.g., 
L-asparaginase in treating acute lymphoblastic leukemia6).

Cancer metabolic reprograming is profoundly impacted by spatial heterogeneity, a fundamental feature of 
the tumor microenvironment (TME)7. Heterogeneous distributions of blood vessels and stromal tissues create 
uneven spatial gradients of nutrients and metabolic byproducts, which significantly shape the phenotypes of 
many cell types in the TME8. Recent technologies, such as spatial transcriptomics9,10 and Slide-seq11 have enabled 
transcriptomic profiling of hundreds of locations within tissue sections with high spatial resolution (2–100 μm), 
and have been used to study multiple types of malignancies, including prostate cancer, breast cancer, pancreatic 
cancer, and melanoma9,10,12–14. These spatially-resolved datasets provide novel opportunities to dissect spatial 
metabolic heterogeneity in the TME and uncover novel tumor-specific metabolic vulnerabilities. However, due 
to the complexity of the cancer metabolic landscape15, uncovering the mechanistic connections of many spa-
tially heterogeneous metabolic enzymes and evaluating their effects on cancer proliferation has been a significant 
challenge.
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Genome-scale metabolic models (GEMs) are a computational framework that connect the thousands of 
metabolic enzymes, transporters and metabolites into a computable model. GEMs enable systematic in silico 
simulation of how metabolic perturbations affect cellular phenotypes such as growth and energy production. 
GEMs have been used to develop new strategies to selectively target cancer metabolism16,17, including in prostate 
cancer18. However, current cancer GEMs are mostly based on bulk transcriptomics data that do not capture the 
spatial or cellular heterogeneity of the tumor microenvironment (TME).

To characterize cancer-specific metabolic vulnerabilities, we have developed a novel pipeline to build spatially 
resolved metabolic network models for prostate cancer using publicly available spatial transcriptomics data12. 
We identified metabolic genes and pathways with distinct spatial expression patterns that differ across separate 
tissue sections of the same primary tumor. This suggests that under a set of common hallmarks of cancer metab-
olism, tumor cells develop diverse survival strategies adapted to their local microenvironments. We also found 
malignant-cell-specific metabolic vulnerabilities by systematic in silico simulation, many of which have strong 
literature support. These genes can be targeted by potent and selective small molecule chemical compounds, some 
of which are already FDA-approved. This study demonstrated that spatially-resolved metabolic network models 
can generate mechanistic and clinically relevant insights into the metabolic complexities in the TME. The com-
putational approach developed in this study represents an important first step to understand and untangle spatial 
metabolic heterogeneity. As spatial transcriptomics becomes increasingly used to characterize molecular heter-
ogeneity in the tumor microenvironment of multiple types of cancer9,10,12–14, we expect that our novel modeling 
pipeline will provide a useful tool set to inform contextualization and interpretation of these complex datasets.

Results
intra-tumor heterogeneity of spatially variable metabolic genes and pathways. We focused our 
analysis on previously published spatial transcriptomics data for three tumor tissue sections (numbered 1.2, 2.4 
and 3.3) from the same primary tumor of a prostate cancer patient12. Transcriptome-wide data (3000 expressed 
genes per location on average) were available for hundreds of locations within each of the three tissue sections. 
The malignant regions as outlined in Berglund et al.12 are circled in (Fig. 1A). These outlines were inferred from 
spatial transcriptomics data using a factor analysis method and confirmed by immunohistochemical staining12. 
We identified spatially variable (SV) genes using the spatialDE method19. SV genes show differential expression 
that significantly co-varies with spatial coordinates (i.e., adjacent locations have similar expression levels but 
distal locations have different expression). Figure 1B shows two examples. ACSL5 is spatially variable in tissue 
section 1.2 (highly expressed mainly in the tumor), while LRP1 is not (erratically expressed across the entire 
section). Compared to the analysis done in the Berglund et al. study, spatialDE was more tailored for identifying 
specific genes with significant spatial variation.

We also compared SV genes (i.e., those identified by spatialDE) to genes identified by t-test as differentially 
expressed between tumor vs. non-tumor regions (defined in Fig. 1A). Genes uniquely discovered by spatialDE 
tend to have a spatially clustered structure (i.e., spatial continuity, left panels of Fig. 1C,D). On the other hand, 
differentially expressed genes uniquely found by t-test tend to lack spatial continuity and show scattered expres-
sion (right panels of Fig. 1C,D). Thus, we used spatialDE throughout the following analysis. It is worth noting, 
however, that many SV genes are not captured by t-test (Fig. S1A) and that SV genes need not to be restricted 
to tumor vs. normal comparison a priori; e.g., COX7A2 is expressed in both tumor and prostate intraepithelial 
neoplasia (PIN) regions and depleted in normal prostate gland (Figs. 1C and 2A).

Interestingly, most SV genes are unique to each tissue section (Fig. 1E), potentially because tumor cells from 
different regions of the prostate developed distinct survival strategies. Only one gene–Acid Phosphatase, Prostate 
(ACPP)–is spatially variable in all three tissue sections. ACPP is a known prostate cancer marker20, but spatial 
transcriptomics data suggest that ACPP is only enriched in the tumor region in section 3.3. It is enriched in 
non-tumor regions in section 1.2 and 2.4. (Fig. S1B). This highlights the spatially heterogeneous expression pat-
tern of this known marker gene that would have been missed by bulk averaging of the whole biopsy.

Metabolic pathway enrichment analysis also showed that SV genes are enriched in arachidonic (i.e., eicosa-
noid) and fatty acid metabolism in section 1.2, while SV genes are enriched in glycolysis and OXPHOS in section 
3.3 (Fig. 1F). Notably, the mean expression profiles of SV genes in glycolysis and OXPHOS are both high in the 
region surrounding the malignancy, and low in the malignant region itself (Figure S1C,D). This is consistent with 
previous findings that, unlike other cancer types, early stage primary prostate cancer is known to not exhibit ele-
vated glucose consumption (i.e., does not exhibit the Warburg effect)3. Our analysis further showed that certain 
primary prostate cancer cells have lower glycolysis and OXPHOS activities than their adjacent normal tissues, and 
thus may not respond as effectively to glycolysis or OXPHOS inhibitors. However, as prostate cancer cells become 
more invasive and metastatic at later stages, the glycolysis pathway is up-regulated3,21.

Our analysis also revealed interesting spatial patterns of reactive oxygen species (ROS) gene expression. SOD2 
(superoxide dismutase 2), which protects mitochondria from reactive oxygen species, including those generated 
by OXPHOS complexes22, has a spatial pattern that is opposite of OXPHOS genes in section 3.3 (Fig. S1D,E). 
This suggests that certain prostate cancer cells are under higher ROS stress despite lower OXPHOS activity, and 
thus require higher expression of SOD2. Therefore, targeting the ROS detoxification machinery may selectively 
kill these cancer cells. On the other hand, SOD3, which is an extracellular superoxide dismutase, has the same 
spatial distribution as OXPHOS expression (i.e., lower in tumor region, higher in adjacent non-tumor region, 
Fig. S1D,E). This agrees with previous reports showing that loss of SOD3 expression has been shown to promote 
cancer cell migration and invasion, including in prostate cancer23, and increasing SOD3 expression has been 
shown to improves tumor response to chemotherapy by regulating endothelial cell structure and function24. Thus, 
spatially resolved transcriptomics data can be used to guide whether patients will respond to drugs that increase 
SOD3 levels (e.g., by the FDA-approved drug Lovastatin) and synergize with chemotherapy24.
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Taken together, the data suggest that there is significant spatial heterogeneity of metabolic gene expression 
within the same tumor biopsy, and such spatial metabolic heterogeneity can be exploited to guide targeted 
therapy.

intra-biopsy tumor metabolic heterogeneity presents new selective metabolic targets in 
cysteine and succinate metabolism. To further elucidate the spatial patterns of metabolic gene expres-
sion, and identify opportunities to selectively target metabolic aberrations in malignant cells, we built spatially 
resolved metabolic network models of each tumor and no-tumor region in each tissue section using the mCADRE 

Figure 1. Spatially variable metabolic gene expression across three tissue sections of a prostate cancer patient. 
(A) Overview of the previously published spatial transcriptomics dataset used in the study. The malignant 
region is circled in each tissue section. Each spot in a biopsy is 100 μm diameter; adjacent spots are 200 μm 
center-to-center. (B) Example of a spatially variable gene, ACSL5; and a gene that is not spatially variable, LRP1. 
Each dot represents a different locus at which gene expression was profiled. The colors correspond to the log2 
transformation of normalized expression values across each tissue section. Red color denotes higher expression; 
blue denotes lower expression. (C,D) Compared to t-test, spatially variables genes found by spatialDE tend 
to have spatial continuity. (C) Examples in section 1.2, COX7A2 is only found by spatialDE, while CYP51A1 
is only found by t–test. (D) examples in section 2.4. ACSL3 is only found by spatialDE, while HSD17B8 is 
only found by t-test. (E) Venn diagram of spatially variable genes in three tissue sections. Majority of spatially 
variable genes are specific to a tissue section. (F) Metabolic pathway enrichment of spatially variable genes in 
each tissue section. Color indicates negative log10 of enrichment p-value. There are 64 metabolic pathways in 
total. The four pathways with significant enrichment in at least one tissue section are shown.
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algorithm25. mCADRE infers a tissue-specific metabolic sub-network based on context-specific transcriptomic 
data and the input generic human metabolic network. It has been independently validated as achieving high 
accuracy in predicting lethal cancer metabolic genes26.

Figure 2. Spatially resolved-metabolic network models for tissue section 1.2 and mechanistic predictions. (A) 
Number of overlapping reactions for each region-specific metabolic network model. Mean expression profiles 
across locations circled for each region are used to build the models, via the mCADRE algorithm. mCADRE 
extracts a tissue-specific sub-network from the input generic human metabolic network model based context-
specific transcriptomic data25. Locations not outlined as tumor, normal or PIN (prostatic intraepithelial 
neoplasia) are enriched for stromal markers, based on12. SPINK1 and NPY gene expression mark malignant 
cells and PIN respectively. (B) Model predicts that disrupting cysteine transport via SLC3A2 and SLC7A11 is 
selectively lethal in tumor region because de novo synthesis via the CBS gene is depleted in the tumor region. 
Left: metabolic pathway diagram. Each rectangle represents a metabolite. Each arrow represents a reaction or 
transport (black arrow: reaction is present in the tumor; gray arrow: reaction is absent from the tumor). The 
name of each reaction is labeled above the corresponding arrow, and CBS is highlighted in blue. The dashed arc 
represents the plasma membrane. Right: log2 transformation of normalized expression values of CBS across 
the tissue section. Red means higher expression; blue/white means low or no expression. (C) Model predicts 
that disrupting succinate utilization via heme synthesis and degradation is lethal in tumor region because 
fumarate hydratase is depleted in the tumor region. Left: metabolic pathway diagram. Each rectangle represents 
a metabolite. Each arrow represents a reaction or transport (black arrow: reaction is expressed in tumor; grey 
arrow: reaction is absent in tumor), the name of each reaction is labeled above the corresponding arrow. Middle: 
log2 transformation of normalized expression values of FH across the tissue section. Right: Mean expression of 
FH in non-tumor and tumor region. Error bar represents standard error of the mean.
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After identifying what metabolic genes are spatially variable, we further identified where these SV metabolic 
genes are expressed. Cancer, prostate intraepithelial neoplasia (PIN), and normal prostate gland regions are out-
lined based on computational inference and IHC staining in Berglund et al.12. We built a genome-scale meta-
bolic network model (GEM) for each region (Fig. 2A), and systematically simulated how knocking down each 
metabolic gene affects proliferation. We identified 16 genes whose in silico knockdowns are selectively lethal for 
malignant cells using the tumor-specific model but are missed by a model built using the mean transcriptome of 
all spatial locations within the tissue section (i.e., “pseudo-bulk data”, Table 1). Malignant-, normal-specific and 
“pseudo-bulk” GEMs provide potential mechanistic explanations for why these genes may be selectively lethal in 
malignant cells. Figure 2B,C provide two such examples discussed below.

Cysteine. Our metabolic model simulations predict that malignant cells are selectively vulnerable to the knock-
down of the cysteine transporter complex that consists of the transporters SLC3A2 and SLC7A11, because the 
enzyme for cysteine de novo biosynthesis, cystathionine-beta-synthase (CBS), is selectively depleted in malignant 
cells (Fig. 2B, CBS expression; Figure S2A, bar plot of CBS-expressing, i.e., expression level >0, locations in 
tumor and non-tumor regions). Cysteine depletion by inhibiting the cysteine-glutamate antiporter xCT using 
Sulfasalazine (SSZ) has been previously shown to markedly inhibit the proliferation of prostate cancer cell lines 
DU-145 and PC-3 in vitro27. Our models suggest that cysteine depletion can also selectively affect malignant cell 
growth in vivo due to loss of de novo synthesis. Since SSZ is already approved by the FDA to treat rheumatoid 
arthritis, ulcerative colitis, and Crohn’s disease, it is attractive to re-purpose it for prostate cancer treatment. SSZ 
may be more effective in androgen-independent prostate cancer cells where CBS expression is lower28.

Succinate. Succinate is a key intermediate in the TCA cycle. Our model predicts that malignant cells are selec-
tively vulnerable to the inhibition of the heme synthesis pathway because fumarate hydratase and succinate 
dehydrogenase are selectively depleted in malignant cells (Figs. 2C and S2B). Fumarate hydratase and succi-
nate dehydrogenase are known tumor suppressors29. It has been previously shown that inhibiting heme synthe-
sis is selectively lethal to renal clear cell carcinoma with fumarate hydratase mutation17. Our model suggests 
that this synthetic lethal interaction may also be exploited in prostate cancer. This is especially interesting given 
that somatic mutations in fumarate hydratase have been reported in a small subset of prostate cancer patients30. 
Succinate metabolism is also spatially variable in tissue section 2.4. Our model also predicts that GTP-specific beta 
subunit of succinyl-CoA synthetase (SUCLG2) is selectively lethal in malignant prostate cancer cells because the 
alternative route via ATP-specific succinyl-CoA synthetase (SUCLA2) is absent in the malignant model (Fig. S2C). 
SUCLA2 has been previously reported to be significantly down-regulated in prostate cancer31. Our model pre-
dicts that SUCLA2 down-regulation creates a selective vulnerability to SUCLG2 knockdown in malignant cells.

These results demonstrated that metabolic network models based on spatial transcriptomics data can reveal 
novel selective metabolic vulnerabilities that are missed by models based on bulk gene expression data from entire 
tissue biopsies.

Genes lethal in tumor 
not in bulk model Pathways

Alternative gene not 
in tumor model

CPOX Heme synthesis

FH

HMBS Heme synthesis

ABCC1 Heme synthesis

PPOX Heme synthesis

UGDH Heme synthesis

UROD Heme synthesis

UROS Heme synthesis

SLC35D1 Heme synthesis

UGT1A8 Heme synthesis

SLC3A2 Cysteine metabolism
CBS

SLC7A11 Cysteine metabolism

AACS Acetyl-Acetate-CoA ACAT2

SLC6A14 Tryptophan transport SLC16A10

SLC6A12 Glycine betaine transport BHMT

FASN De novo fatty acid synthesis
ADK1

SLC25A1 De novo fatty acid synthesis

Table 1. 16 metabolic genes predicted to be selectively lethal based on tumor-specific model but missed by the 
pseudo-bulk model for prostate cancer tissue section 1.2. Column 1 lists genes specifically lethal in the tumor-
specific model but not the pseudo-bulk model built with mean expression across all spatial locations. Column 
2 lists the pathways of genes in column 1. Column 3 lists genes that are not present in the tumor-specific model 
but present in the bulk model and underlie the differential lethality of genes in column 1 (i.e., genes in column 3 
provide an alternative metabolic path).
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Spatial heterogeneity of fatty acid metabolism in the tumor microenvironment presents new 
selective targets. Spatially variable genes in tissue section 1.2 are enriched for fatty acid (FA) and ara-
chidonic acid metabolism (Fig. 1F). Furthermore, our tumor-specific model also predicts that perturbations in 
multiple genes of the fatty acid synthesis pathway are selectively lethal in malignant cells (Table 1). Given that 
dysregulation of lipid and fatty acid metabolism is a major feature of prostate cancer4,32, we further explore spatial 
heterogeneity of FA and lipid metabolism using spatially-resolved metabolic network models.

Cholesterol synthesis. Acetoacetate-CoA is a precursor for cholesterol synthesis, an essential component of cel-
lular membranes. Our model predicts that Acetoacetyl-CoA Synthetase (AACS) depletion is selectively lethal to 
malignant cells because the alternative route for Acetoacetate-CoA synthesis, Acetyl-CoA Acetyltransferase 2 
(ACAT2) is selectively depleted in the tumor region (Fig. 3A). ACAT2 is known to be down-regulated in prostate 
cancer33. This selective prediction is missed by the pseudo-bulk model.

Fatty acid metabolism. We found that hypoxia potentially explains the spatially distinct distributions of fatty 
acid metabolic genes. Metabolic genes in lipolysis (LIPF), and fatty acid synthesis (ACSL5) are selectively 
expressed in the malignant region (Figs. 3B and S3A,B). Recent studies showed that prostate cancer cells show 
elevated uptake of extracellular fatty acids4,32. Our analyses suggest that free fatty acids generated by lipolysis via 
LIPF can be a potential source of extracellular free fatty acids. In contrast to tumor-enriched lipolysis and fatty 
acid synthesis enzymes that do not require oxygen, fatty acid metabolic genes that require molecular oxygen are 
depleted in the tumor region, including fatty acid desaturation (SCD, FADS2) and oxidation (ACSL1) (Figs. 3C 
& S3C). Although ACSL1 and ACSL5 are isozymes with similar catalytic function, genetic knockout studies in 
mice showed that ACSL5 has a major role in fatty acid biosynthesis and deposition, while ACSL1’s function is 
mostly involved in fatty acid oxidation34. A metabolic model based on bulk gene expression data would incor-
rectly assume that both enzymes are expressed by malignant cells, thus over-estimating the metabolic capabilities 
of malignant cells.

We identified additional selective metabolic liabilities that are driven by malignant cells’ dependence on de 
novo fatty acid synthesis, by maximizing metabolic flux through the tumor-enriched ACSL5 reaction in our 
model (Fig. 3D). Reassuringly, we recovered several genes involved in de novo fatty acid synthesis, specifically 
citrate synthase (CS), mitochondrial citrate transporter (SLC25A1), ATP citrate lyase (ACLY), and fatty acid 
synthase (FASN). We also identified additional selective liabilities, specifically, ACSL1, cytosolic malic dehydro-
genase (MDH1), carbonic anhydrase, and stearoyl CoA desaturase (SCD). ACSL1 has been previously shown 
to be important for biosynthesis of C16:0-, C18:0-, C18:1- and C18:2-CoA, triglycerides and lipid in prostate 
cancer cells and ACSL1 knockdown inhibited prostate cancer cell proliferation and migration in vitro and in 
vivo35. In addition to knockdown, ACSL1 can also be pharmacologically inhibited by small molecules Triacsin 
C36. Carbonic anhydrase has been previously reported to be important for de novo lipogenesis37. SCD1 produces 
monounsaturated fatty acids from saturated fatty acids, and has been shown to be important for cancer initiation, 
proliferation, and metastasis in many types of cancer, including prostate cancer, and can be inhibited using small 
molecules such as CAY10566 and TOFA38–40. Thus, the role of ACSL1, carbonic anhydrase, and SCD1 in cancer 
are all supported by literature. Although MDH1 inactivation inhibits pancreatic cancer growth by suppressing 
glutamine metabolism41, the role of MDH1 in de novo fatty acid synthesis has not been previously studied, and 
may be a potential new target to manipulate fatty acid metabolism for prostate cancer treatment.

Spatial patterns of arachidonic acid metabolism. Arachidonic acid is the starting point for the syn-
thesis of prostaglandins and leukotrienes, both of which have immunomodulatory functions42. We identified 
enzymes in arachidonic acid metabolism that show spatially distinct expression patterns, as well as selective tar-
gets to disrupt prostaglandin synthesis from arachidonic acids (Fig. 4). PTGDS (Prostaglandin D2 Synthase) and 
HPGD (15-Hydroxyprostaglandin Dehydrogenase) are enriched in the tumor region, while MGST3 (Microsomal 
Glutathione S-Transferase 3) is depleted in the tumor region in tissue section 1.2 (Figs. 4A and S4A). The reaction 
network formed by these enzymes is depicted in Fig. 4A. HPGD, MGST3 and other arachidonic acid metabolic 
genes also show spatially distinct expression patterns in other tissue sections (Fig. S4B,C).

Previous analyses have shown that arachidonic metabolism is dysregulated in multiple types of cancer25,43, 
and inhibition of key arachidonic metabolic genes results in massive apoptosis in prostate cancer cells44. The dis-
tinct spatial expression patterns of arachidonic acid metabolism genes imply that different molecular species of 
prostaglandin and leukotrienes are enriched or depleted in the malignant region. MGST3 is used for the synthesis 
of leukotriene C4, a major mediator of endoplasmic reticulum stress and oxidative DNA damage45. Our analysis 
suggests that leukotriene C4 is depleted in malignant cells. HPGD catabolizes prostaglandin E2 (PGE2) into PGF2. 
Intriguingly, while HPGD has been widely reported as a tumor suppressor in multiple types of cancer46–48, it is 
selectively enriched in the malignant cells of both tissue sections 1.2 and 2.4. HPGD expression is induced by 
androgen and is up-regulated in the androgen-dependent prostate cancer cell line LNCaP49. Because PGE2 has 
angiogenic50 and immunosuppressive functions51, higher HPGD expression indicates that the malignant region 
is depleted of PGE2 and more amenable to cancer immunotherapy.

Since the reaction catalyzed by PTGS1 and 2 (Prostaglandin-Endoperoxide Synthase 1 and 2, commonly 
known as COX-1 and COX-2) is the first step in prostaglandin synthesis and known to be up-regulated in prostate 
cancer52, we used our tumor-specific metabolic network model to simulate additional metabolic liabilities that 
are driven by the PTGS reaction (Fig. 4B). We found that SLCO2A1 is essential for the PTGS reaction. Blocking 
SLCO2A1 has been shown to reduce colon cancer tumorigenesis53. Importantly, SLCO2A1 can be potently and 
selectively inhibited by the FDA approved drug suramin54. Therefore, SLCO2A1 may be an attractive target in 
prostate cancer. Arachidonic acid is required for prostaglandin synthesis. In addition to arachidonic acid uptake, 
our model simulation also revealed that cancer cells can use adrenic acid as an alternative source of arachidonic 
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Figure 3. Fatty metabolism is spatially variable in prostate cancer. Tumor region is circled. (A) Model 
predicted that AACS is lethal in tumor because the alternative route for acetoacetate-CoA synthesis, ACAT2, 
is depleted in tumor region. Left: metabolic pathway diagram. Each rectangle represents a metabolite. Each 
arrow represents a reaction or transport (black arrow: reaction is present in the tumor; gray arrow: reaction 
is absent from the tumor), the name of each reaction is labeled above the corresponding arrow. Right: log2 
transformation of normalized expression values across the tissue section. Red means higher expression; blue/
white means low or no expression. (B) Lipid hydrolysis (via Lipase F) and fatty acid synthesis (via ACSL5) 
is highly enriched in the tumor region. (C) Fatty acid oxidation (via ACSL1) and desaturation (via SCD and 
FADS2) are depleted in tumor region and higher in PIN and normal region. Color denotes log2 transformation 
of normalized expression values of a gene of interest. (D) A schematic of all genes and reactions predicted to be 
essential for metabolic flux through the reaction catalyzed by the tumor-enriched gene ACSL5. Each rectangle 
represents a metabolite. Each arrow represents a reaction or transport, the name of each gene/reaction is 
labeled above the corresponding arrow (gene names: CS, SLC25A1, ACLY, MDH1, FASN, ACSL1, SCD, ACSL4; 
reaction names: carbonic anhydrase, acetyol-CoA carboxylase).
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acid. Our model predicted that adrenic acid can be converted to arachidonic acid via reactions catalyzed by 
ACSL4, ACOX1, and ACAA1 (Fig. 4B). In particular, ACOX1 is selectively up-regulated in HER2-positive sub-
types of breast cancer and is positively associated with shorter survival55 and may be a potential target in prostate 
cancer. In addition to cancer-intrinsic functions, arachidonic acid uptake and synthesis of prostaglandins such as 
PGE2 have immunosuppressive functions51. Because both adrenic acid and arachidonic acid are present in pros-
tate cancer specimens56, the adrenic-to-arachidonic pathway suggests that blocking both arachidonic and adrenic 
uptake may be required to abolish the immunosuppressive effects of PGE2.

Spatial patterns of arginine and urea metabolism. Arginine metabolism is dysregulated in a wide 
range of cancers, and arginase is an attractive drug target57. One product of arginase is urea, and we found that 
the urea transporter SLC14A1 is selectively depleted in the malignant region in both tissue sections 1.2 and 2.4 
(Fig. 5A). More importantly, we also found that SLC14A1 is significantly lower in PIN, prostate cancer in situ and 
metastatic prostate cancer compared to normal prostate by re-analyzing a large set of prostate cancer patients58 
(Fig. 5B). SLC14A1 is also down-regulated in lung, prostate and urothelial cancer59. Arginine catabolism by argin-
ase generates ornithine, a key substrate for polyamine synthesis, which has important signaling functions in 

Figure 4. Arachidonic acid metabolism is spatially variable. (A) Metabolic genes in prostaglandin and 
leukotriene synthesis are spatially variable in tissue section 1.2. While PTGDS and HPGD are enriched in 
tumor region, MGST3 is selectively depleted in tumor region. HPGD is also spatially variable in tissue section 
2.4; PTGS2 (i.e., COX-2) is spatially variable in tissue section 3.3 (Fig. S4B). Top: metabolic pathway diagram. 
Each rectangle represents a metabolite. Each arrow represents a reaction or transport, the name of each reaction 
is labeled above the corresponding arrow. Bottom: Expression level of 3 arachidonic acid metabolism genes. 
Red color denotes higher expression; blue denotes lower expression. (B) Model predicted that SLCO2A1 is 
essential for arachidonic acid metabolism. In addition to arachidonic acid, adrenic acid can also contribute 
to prostaglandin metabolism. Each rectangle represents a metabolite. Each arrow represents a reaction or 
transport, the name of each reaction is labeled above the corresponding arrow. Genes involved in conversion of 
adrenic acid to arachidonic acid is highlighted in red.
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prostate cancer60. Alternatively, arginine is also important for biosynthesis, which creates a competition for pol-
yamine synthesis (Fig. 5C). Through model simulation, we found that increased flux through the urea transport 
reaction leads to decreased growth (Fig. 5D). Thus, down-regulation of urea transport is a strategy by malignant 
cells to use arginine for growth. Therefore, inducing SLC14 A1 expression is a potential strategy to inhibit prostate 

Figure 5. Urea transport is spatially variable in prostate cancer. (A) The urea transporter, SLC14A1, is depleted 
in tumor region and highly expressed in non-malignant region in both tissue section 1.2 and 2.4. Red color 
denotes higher expression; blue denotes lower expression. Tumor regions are outlined. (B) SLC14A1 is also 
down-regulated in another prostate cancer study using laser-capture micro-dissected normal gland, PIN region, 
prostate cancer (PCA) and metastatic prostate cancer (MET-HR). (C) Arginine can be used for growth or 
arginase reaction. While arginase reactions produce an essential substrate of polyamine synthesis (L-ornithine), 
the other product, urea, is transported out of cells by SLC14A1. Each rectangle represents a metabolite. Each 
arrow represents a reaction or transport, the name of each reaction is labeled above the corresponding arrow. 
The dashed arc represents the plasma membrane. (D) Model predicted that higher flux through urea transport 
is correlated with reduced growth rate. x-axis, flux through the urea transport reaction as a percentage of 
maximum feasible flux; y-axis: growth rate as a percentage of maximal growth rate. (E) Model predicted that, at 
maximum urea transport flux, cells need to increase arginine uptake flux by 4–5 fold in order to restore growth 
rate. x-axis, flux through the arginine uptake reaction as a percentage of maximum feasible flux; y-axis: growth 
rate as a percentage of maximal growth rate.
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cancer growth. Indeed, transfection of SLC14A1 into lung cancer cell line H520 inhibited colony formation61. 
Our model simulation also found that, to compensate for increased flux via SLC14A1 and maintain growth rate, 
cells need to increase the uptake of arginine by 4- to 5-fold (Fig. 5E). Thus, our model predicts that induction of 
SLC14A1 expression, combined with arginine depletion may kill cancer cells.

Discussion
The genome-scale metabolic network models of prostate cancer developed by our novel pipeline using 
spatially-resolved transcriptomics data have revealed many new, malignancy-specific metabolic perturbations 
that would have been missed by models based on bulk gene expression data of the whole tissue biopsy. Our model 
predictions span amino acid (cysteine and arginine/urea), fatty acid and lipid (cholesterol, fatty acid synthesis/
oxidation, arachidonic acid) metabolism, and the TCA cycle (succinate). Many of our predictions are supported 
by previous literature, which provides further confidence to explore the novel predictions as potential drug targets 
for prostate cancer. Importantly, many of the metabolic genes predicted to be selectively lethal in prostate cancer 
cells can be targeted by FDA-approved small molecule compounds.

Unlike other solid tumors, primary prostate cancer does not exhibit the classical Warburg effect (i.e., does 
not exhibit elevated glycolysis). Instead, prostate cancer shows elevated de novo fatty acid and lipid synthesis62. 
Recent evidence also demonstrates that extracellular fatty acids are major contributors to lipid synthesis in pros-
tate cancer32. In fact, prostate cancer cells show higher uptake of fatty acids than glucose, especially in metastatic 
and circulating prostate cancer cells63,64. Suppressing fatty acid uptake via CD36 has also been shown to inhibit 
prostate cancer growth4. However, the sources of free fatty acids are not fully characterized. Our modeling analy-
sis suggests that Lipase F (LIPF) can potentially degrade extracellular triglycerides and generate free fatty acids for 
cancer cells to uptake (Fig. 3B). Thus, targeting extracellular lipid degradation may inhibit prostate cancer growth.

In addition to the uptake of extracellular free fatty acid through LIPF and CD36, our model also suggested 
that prostate cancer cells also exhibit elevated de novo fatty acid synthesis. Our analysis finds that ACSL5 gene is 
strongly enriched in one tumor region (section 1.2), and it has been also been found to be over-expressed in other 
prostate cancer65. ACSL5 plays a critical role in lipid droplet formation66, and lipid droplet formation promotes 
prostate cancer aggressiveness67,68. Therefore, targeting ACLS5 may be a potential strategy to inhibit the forma-
tion of lipid droplet formation and prostate cancer cell survival.

Hypoxia is a prominent feature of the tumor microenvironment, and malignant cells adapt their metabolic 
profiles to survive in the hypoxic environment69. Fatty acid desaturation, which requires molecular oxygen, is 
inhibited in hypoxic tumor regions (SCD and FADS2, Fig. 3B). SCD is the best-known route to fatty acid desat-
uration. A recent study found that cancer cells can bypass SCD by using FADS2 for fatty acid desaturation70. 
However, our analysis of the spatial transcriptomics data revealed that both SCD and FADS2 are depleted in the 
malignant region. Inactivation of fatty acid desaturation creates the need to uptake exogeneous unsaturated fatty 
acids in order to maintain correct composition of saturated vs. unsaturated lipids in biological membranes69,71. 
Although exogeneous fatty acid uptake has been shown to be important for prostate cancer4,32, the relative 
importance of exogeneous saturated vs. unsaturated fatty acids has not been examined32. Our model predicts 
that malignant cells will be more sensitive to depletion of exogeneous unsaturated fatty acids due to defective 
endogenous desaturation. Therefore, inhibition of exogeneous fatty acid uptake by targeting CD36 may synergize 
with inhibition of desaturation by targeting SCD (e.g., via small molecules CAY-10566 and TOFA39,40) in killing 
hypoxic cancer cells. Hypoxia also induces lipid droplet formation by up-regulating the expression of fatty acid 
transporters via HIF-1α72.

Besides fatty acid desaturation and lipid droplet formation, our analysis also suggests that the fluctuating 
oxygen levels in the TME73 could also sensitize prostate cancer cells to the inhibition of the mitochondrial citrate 
transporter SLC25 A1 (Fig. 3D). Our model’s prediction of SLC25A1’s essentiality in hypoxic tumor cells is sub-
stantiated by prior findings that SLC25A1 expression is up-regulated when prostate cancer cells are exposed to 
cycling hypoxia/re-oxygenation stress74. Notably, pharmacological inhibition of SLC25A1 sensitizes cancer cells 
to ionizing radiation, cisplatin or EGFR inhibitor treatments in lung cancer74,75. Thus, treating prostate cancer 
cells in a hypoxic TME with the SLC25A1 inhibitor, 1,2,3-benzene-tricarboxylic acid (BTA) could not only yield 
direct tumor-specific killing, but it could also potentiate the activity of concomitant radiation or chemotherapy 
interventions.

Arachidonic acid is a potent signaling lipid, and precursor to the synthesis of a wide range of other signaling 
lipids such as prostaglandins and leukotrienes. Prostaglandin and leukotriene C4 have important functions in 
angiogenesis and immunomodulation. Our analysis showed that malignant cells have elevated synthesis of pros-
taglandins and decreased synthesis of leukotriene C4 (Fig. 4A), which may influence the sensitivity to immuno-
therapy. Elevated prostaglandin synthesis may be targeted by suramin, a FDA-approved drug that potently and 
inhibits the prostaglandin transporter SLCO2A154.

Cancer cells showed elevated dependence on multiple amino acids, including cysteine (Fig. 2B), glutamine, 
aspartate, asparagine and arginine76–78. Arginase breaks down arginine into urea and ornithine. Arginase is an 
important regulator of the immune system79. Arginine deprivation via arginase activation suppresses anti-tumor 
T cell activity, so blocking arginase activity may improve tumor immunotherapy80,81. We showed that the urea 
transporter SLC14A1 is selectively depleted in the malignant region, which is supported by additional tran-
scriptomics data (Fig. 5A,B). While decreased flux through urea transport is beneficial for biomass synthesis 
(Fig. 5C,D), the accumulation of urea may be toxic to cells59.

The spatial locations of cells have profound impacts on their function. In addition to prostate cancer, our mod-
eling approach can be used to study spatial heterogeneity and coordination of metabolic activities in a wide range 
diseases where spatially resolved transcriptomic datasets are currently available, such as breast cancer9, pancreatic 
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cancer14, melanoma13, and amyotrophic lateral sclerosis82. It can also be used to study spatial regulation of normal 
organ physiology in the liver83, heart84,85 and kidney86.

This study has several limitations that need to be addressed in the future. First, the models are based only on 
transcriptomics data, which does not directly reflect metabolic activities. Thus, although we recapitulated known 
metabolic features of prostate cancer, other metabolic dysregulation may be missed. This can be addressed in the 
future as spatially-resolved proteomic87 and metabolomic88 technologies improve and such data can be incorpo-
rated into the metabolic network model. Indeed, new technologies already enable simultaneous measurement of 
spatially-resolved transcriptome and proteome89. Second, due to the relatively small number of expressed genes 
per location (around 3000 genes), we could not build a model for each individual location. Instead, we built 
separate, discrete genome-scale metabolic models for each region (tumor, normal, and PIN) that aggregate tran-
scriptomics data over the spatial locations that span each region. Given that the expression profiles of many 
metabolic genes are likely to exhibit gradient-like patterns that change with the distance to the tumor core and/
or vasculature, we anticipate that models based on our region-specific data aggregation represent useful approx-
imations of the regions’ underlying metabolic states. In the future, we will develop a hierarchical approach that 
adaptively balances spatial resolution with the amount of data to better model metabolic spatial continuity. Lastly, 
this study is based on detailed spatial analysis of three biopsies from one prostate cancer patient. Given the highly 
heterogeneous nature of prostate cancer, analysis of a single individual does not represent a comprehensive survey 
of important selective metabolic target genes. However, many of the metabolic genes we identified as selectively 
lethal based on the prostate cancer spatial transcriptome do have strong functional support from literature (i.e., 
inhibition or induction known to affect cancer proliferation, Table 2). This suggests that the additional novel 
targets we identified may also be involved in prostate cancer. Moreover, many metabolic genes we identified as 
having spatially selective expression pattern also agree with much larger cohorts of laser-capture micro-dissected 
transcriptomes of prostate cancer patients (ACSL565 in Fig. 3, SLC14A158 in Fig. 5, and SUCLA231 in Figure S2C). 
As spatially-resolved transcriptomics technology become even more powerful and accessible to more researchers, 
we anticipate that the computational workflow we developed will be applied on larger cohorts in the future.

Methods
The spatial transcriptomics dataset for prostate cancer12 was downloaded from the Spatial Transcritpomics 
Research website [http://www.spatialtranscriptomicsresearch.org/datasets/]. To identify spatially variable met-
abolic genes, we first extracted metabolic genes based on the latest version of the human metabolic network, 
Recon3D90. We used spatialDE19 to identify spatially variable genes. Briefly, we normalized expression data to 
the total read counts of all genes, removed metabolic genes with low expression, and we used spatialDE to find 
genes whose expression level at two locations depended on the distance between these two locations. spatialDE 
classifies genes into SV or non-SV by fitting two models: one where a gene’s expression covariance depended on 
location, and one without a spatial covariance matrix. If the former model fits better, then a gene is SV.

We used mCADRE25 to build genome-scale metabolic networks for normal, PIN and tumor regions. 
mCADRE has been previously validated as having good performance in predicting lethal metabolic genes in 
cancer26. mCADRE infers a tissue-specific metabolic network using context-specific transcriptomic data and a 
generic human metabolic network model. Some reactions involving multiple enzymes, such as enzyme complex 
formation, require the presence of all constituents, and are limited by the least abundant. By default, mCADRE 
modeled these by taking the min of the expression levels of the constituent genes. Given the sparsity of data (3000 
detected genes per spatial location), taking the min for genes connected by AND (enzyme complexes) will result 
in mostly zeros. Therefore, we modified mCADRE to take the mean instead. Gene-level score was the mean 
expression level of a gene across all locations, not how often it is expressed above 0. Dually, we sum expression 
levels for genes connected by OR. A metabolic reaction is defined as a core reaction if its mean expression is 
above 0.2 across all locations within each region. Remaining reactions are first ranked by their mean expression 
levels across locations, then by their connectivity-based evidence. We removed highly connected metabolites such 
as H2O, ATP, ADP, Pi, NAD, NADH, etc., before calculating reaction connectivity. The COBRA Toolbox91 was 
used for gene knock out simulations.

Model improvements: Recon 192 (and Recon 293, 3D90) all assumed SLC27A5 is the only transporter for ara-
chidonic acid uptake. Latest evidence also demonstrates that SLC27A2 (FATP2) has a major influence for arachi-
donic acid uptake51. Latest evidence also suggests that ACSL4 (not ACSL1) favors arachidonic acid and adrenic 
acid as substrate94. We modified the gene-reaction rules to reflect both findings.

Identified target genes Role Possible drugs Types of cancer

SLC7A11 Inhibition kills cancer Sulfasalazine27 Prostate27

SOD3 Loss of expression promotes cancer Lovastatin24 Prostate23

ACSL1 Inhibition kills cancer Triacsin C36 Prostate35

SCD1 Inhibition kills cancer CAY-10566 and TOFA39,40 Prostate38

SLC25A1 Inhibition kills cancer 1,2,3-benzene-tricarboxylic acid (BTA)74 Prostate74 and lung75

SLCO2A1 Inhibition kills cancer suramin54 Colon53

SLC14A1 Increased expression kills cancer cells Lung61 and urothelial cancers59

Table 2. List of cancer-selective metabolic target genes identified by spatial metabolic analysis with literature 
support for their functional role in prostate or other types of cancer, as well as known inhibitors of these genes.
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Data availability
Prostate cancer spatial transcriptomics data used in this study can be found at: http://www.spatialtranscriptomics 
research.org/datasets/10-1038-s41467-018-04724-5/.

Bulk transcriptomics of prostate cancer samples are from Gene Expression Omnibus (accession number 
GSE6099). R and Matlab codes, as well as spatially resolved metabolic networks for this project are deposited at 
Github (https://github.com/yuliangwang/prostate_cancer_spatial_metabolic_network.git).
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