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Modeling of one-Dimensional 
thermoelastic Dual-phase-Lag Skin 
Tissue Subjected to Different Types 
of thermal Loading
Hamdy M. Youssef  1 & Najat A. Alghamdi2

this work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-
phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness 
and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different 
types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface 
has no temperature increment and traction free. Laplace transform techniques have been used, and its 
inversions have been calculated by using the Tzuo method. The numerical results have been represented 
in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal 
parameter have significant effects on the temperature increment, the strain, the displacement, and the 
stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves 
through the skin tissue.

The essential challenge in thermal therapy is distributing adequate heat to a target tissue without influential sur-
rounding tissues. Medically, various thermal therapies are widespread used to treat disease and injury involving 
skin tissue, where thermally induced within the infected tissue but without affecting the healthy tissue. Thus, 
an urgent need is to figure out how the temperature and stress fields impact the kinetics of thermal treatment. 
Accordingly, accurate predictions of thermal and mechanical responses in biological tissue are essential for 
designing new clinical thermal systems. Some researches explained that tissue deformation due to heating and 
cooling might produce pain sensation1,2.

Thermal analysis of heat transfer through thermoelastic skin tissue is essential for many therapy applications3. 
However, it would be much better if we could understand the biomechanics associated with them before a med-
ical action is applied. One of the hardships in biomechanics is to specify the mechanical properties of materials 
and tissues understudying4. Pennes5 was first recognized the bioheat transfer equation to model the temperature 
in the human forearm, and other researches established bioheat transfer theorems6–8.

It is observed that even a small increment of heat-induced stress can destroy the immune response; protein 
cell organelle structures can be changed, resulting in cell death1. Most studies emphasis on heat conduction9–20, 
while the heating which induced deformation is not considered. Tunc21 solved the bioheat transfer equation 
considering variable blood perfusion values and the temperature field in the context of the Pennes’s model. Xu et 
al.22,23 discussed the heat transfer, thermal damage, and stress due to the heat of the human skin. Shen et al.24 used 
a thermomechanical model to study the thermomechanical interaction of skin tissue at a high temperature. Kim 
et al.25 discussed the thermal and mechanical effects due to pulsed laser absorption in the human skin.

The generalized thermoelastic theories have been applied in solving transient thermal shock problems. Glass 
et al. presented an analytic solution for a linear heat conduction problem in a semi-infinite medium influenced by 
a periodic on-off type heat flux26. Moreover, he studied the non-linear case by adding the effect of surface radia-
tion into an external ambient. Lord and Shulman27 formulated a generalized dynamical theory of thermoelasticity 
with one relaxation time using a form of the heat transport equation. Green and Lindsay have developed a differ-
ent thermoelastic theory by introducing two relaxation time into the constitutive equations28. McBride, Andrew, 
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et al. constructed thermoelastic modeling of the skin at finite deformations29. Li et al. introduced an analytical 
study of transient thermomechanical responses of dual-layer skin tissue with variable thermal conductivity30.

formulation of the problem
Tzou suggested the DPL model solve the problems that occurred in the classical heat flux model as31:

τ τ+ = − ∇ +( )q x t K T x t, ( , ) (1)q T

where T is the absolute temperature, K is the thermal conductivity constant, t is the time variable, and τ τ,q T are 
the phase-lag parameters of the heat flux and the phase-lag of the temperature gradient, respectively. Generally, 
the relaxation times τ τ ≥{ , } 0q T  take minimal values, while in the biological materials, those parameters are 
significant.

The equation of energy conservation of bioheat transfer can be described as31:
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q W C T T Q Q( ) ( ) (2)b b p b met ext

where ρ is the density, Cis the specific heat, Cb and Wb are the specific heat and perfusion rate of blood, respec-
tively. Qmet is the metabolic heat generation, Qext is the external heat source and Tb is the arterial temperature.

The DPL model based on two effects; the heat flux q and the gradient of the temperature ∇T , which modified 
the classical Fourier’s law of heat conduction. It gives the following heat conduction equation.
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Because of the chemical reactions, the metabolic heat source within the tissues is valid, and it is assumed to take 
constant value = .Q W m368 1 /met

3. With zero value, the external heat source will be assumed; thus, =Q 0ext
5,32,33.

Hence, the heat conduction equation takes the form:
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where θ = −T T( )b is the temperature increment.
The equation of motion of a one-dimensional thermoelastic material is30:
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The stress-strain relation in the form:

σ λ µ γθ= + −e( 2 ) (6)

The displacement =u u x t( , ) satisfies the relation:

=
∂
∂

e u
x (7)

We consider that the outer surface of the skin tissue is subjected to thermal loading and traction free while the 
inner surface has no temperature increment and traction free also, which gives

θ θ= =t g t L(0, ) ( ), ( , 0) 0 (8)

and

σ σ= =t L t(0, ) 0, ( , ) 0 (9)

where g t( ) is the thermal loading function on the outer surface of the skin tissue =x 0 as in Fig. 1:
To simplify the governing equations, we will use the following non-dimensional variables Youssef [34]:
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2  is the longitudinal wave speed parameter and η = ρC

K
 is the thermal viscosity parameter.

Hence, we obtain
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Applying Laplace transform which is defined as:
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∞ −f s L f t f t e dt( ) [ ( )] ( ) (13)

st

0

Hence, Eqs. (10)–(12) and (7) take the forms:
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σ β θ= −e (16)3

and
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dx (17)

While applying the Laplace transform, we assumed all the state-functions have zero-initial value as:

θ
θ

= =
∂

∂
=

∂
∂

=x e x x
t

e x
t

( , 0) ( , 0) ( , 0) ( , 0) 0 (18)

After applying the Laplace transform, the boundary conditions (8) and (9) take the forms:
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and
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Eliminating e  between Eqs. (14) and (15), we get

θ− + =� �D D m x s s Q[ ] ( , ) (21)4 2 2

Eliminating θ  between Eqs. (14) and (15), we obtain

− + =D D m e x s[ ] ( , ) 0 (22)4 2

where

Figure 1. The skin tissue model.
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The general solution of the Eq. (17) takes the form
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The general solution of the Eq. (18) takes the form
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where ε ε η η, , ,1 2 1 2 are some constants and ± ±k k,1 2 are the roots of the characteristic equation:
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Applying the boundary conditions in (19) on Eq. (23), hence, we get
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To apply the boundary conditions on (20), we re-write the Eq. (16) as follows:

σ β θ= +e (28)3

Then, the mechanical boundary conditions (20) have been modified as:
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Applying the boundary condition (29) in the Eq. (24), we obtain
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By solving the system of linear Eqs. (26), (27), (30) and (31), we complete the solutions in the Laplace trans-
form domain.

To obtain the complete solutions in the Laplace transform domain, we have to determine the function g t( ), so 
we will consider three types of thermal loading as follows:

1- The thermal shock

θ ν ν= − ≥g t H t t( ) ( ), (32)0

2- Ramp-type heating
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3- Harmonic thermal heat

θ ω= ≥g t t t( ) sin( ), 0 (34)0

where θ > 00  is constant, which gives the strength of the thermal loading, ⁎H( ) is the Heaviside unit step function, 
ν ≥ 0 is the thermal shock parameter, >t 00 is the ramping time parameter, and ω > 0 is the angular thermal 
loading parameter.

Applying Laplace transform to the Eqs. (32)–(34), we obtain
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the numerical Results and Discussions
The Riemann-sum approximation method is used to get the inversion of the Laplace transform. In the Tzou 
method, any function in the Laplace domain can be inverted to the time domain as31.
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where Re is the real part and = −I 1 is the imaginary number unit.
For rapid convergence, several numerical experiments have approved that the value κ satisfies the relation 

κ ≈ .t 4 731.
The values of the relevant thermal parameters which have been used in the present calculations are in Table 1 

as following4,16,19,29,31:
Figures 2–5 represent the temperature increment, the strain, the displacement, and the stress distributions, 

respectively, with respect to dimensionless length =x L with range ≤ ≤ .x0 0 3 when the dimensionless time 
= .t 0 05 and the dimensionless relaxation times τ τ= . = .0 02, 0 04q T  for various values of dimensionless thermal 

shock time parameter υ = . . .(0 0, 0 02, 0 04) and θ = .1 00 .
Figure 2 shows that the thermal shock time parameter has a significant effect on the temperature increment 

distribution. The values of the temperature increment of the three cases are equal to one when =x 0, and the 
values of the temperature increment go to zero at the other end of the skin tissue when =x L which agrees with 
the thermal boundary conditions. The thermal wave has a finite speed of propagation, which agrees with the 

Parameter Unit Skin Tissue

K °W m C/ 0.628

ρ kg m/ 3 1000

ρb kg m/ 3 1060

C °J kg C/ 4187

Cb °J kg C/ 3860

Wb ml Cm/ 0.00187

Tb °C 37

t s 0.05

τq s 0.02

τT s 0.04

Table 1. The material properties of the skin tissue.
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Figure 2. The temperature increment distribution with different values of the thermal shock parameter.
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physical properties of the skin tissue. The value of the temperature increment decreases when the value of the 
thermal shock time parameter increases.

Figure 3 shows that the thermal shock time parameter has a significant effect on the strain distribution. For the 
three cases, the values of strain are equal on the bounding plane =x 0 of the skin tissue . = .e(0, 0 05) 0 00773, and 
the values of the strain go to zero . = .e L( , 0 05) 0 0 at the other end of the skin tissue =x L which agrees with the 
mechanical boundary conditions. The mechanical wave has a finite speed of propagation, which agrees with the 
physical properties of the skin tissue. The absolute value of the strain decreases when the value of the thermal shock 
time parameter increases. The jump points are . . = .υ= .e(0 045, 0 05) 0 007570 0  . . = .υ= .e(0 027, 0 05) 0 007610 02 , 
and . . = .υ= .e(0 009, 0 05) 0 007690 04 .

Figure 5. The stress distribution with different values of the thermal shock parameter.
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Figure 3. The strain distribution with different values of the thermal shock parameter.

Figure 4. The displacement distribution with different values of the thermal shock parameter.
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Figure 4 shows that the thermal shock time parameter has a significant effect on the displacement distribution. 
The values of the displacement are not equal on the bounding plane of the skin tissue . = − .υ= .u(0, 0 05) 0 0003140 0 , 

. = − .υ= .u(0, 0 05) 0 0001830 02 , and . = − .υ= .u(0, 0 05) 0 0000460 04 . The displacement distribution has one peak 
point for each curve, . . = .υ= .u(0 054, 0 05) 0 0004540 0 , . . = .υ= .u(0 036, 0 05) 0 0002360 02 , and u(0.069, 
0.05) =υ= .0 04  0.0000047. The absolute value of the displacement decreases when the value of the thermal shock time 
parameter increases.

Figure 5 shows that the thermal shock time parameter has a significant effect on stress distribution. The values 
of stress are equal to zero on the bounding plane of the skin tissue when =x 0, and the values of the strain go to 
zero at the other end of the skin tissue when =x L which agrees with the mechanical boundary conditions. The 
mechanical wave has a finite speed of propagation, which agrees with the physical properties of the skin tissue. 
The absolute value of the stress decreases when the value of the thermal shock time parameter increases. The jump 
points of the stress distributions are σ . . = .υ= .(0 045, 0 05) 0 001180 0  σ . . = .υ= .(0 024, 0 05) 0 000770 02 , and 
σ . . = .υ= .(0 006, 0 05) 0 000230 04 .

The results which have been shown in Figs. 2–5 agree with the results of the paper30.
Figures 6–9 represent the temperature increment, the strain, the displacement, and the stress distributions, 

respectively, with respect to dimensionless length =x L with range ≤ ≤ .x0 0 3 when the dimensionless time 
= .t 0 05 and the dimensionless relaxation times τ τ= . = .0 02, 0 04q T  for various values of dimensionless 

ramp-type heat parameter = . . .t (0 03, 0 05, 0 07)0 and θ = .1 00  .
Figure 6 shows that the ramp-type heat parameter has a significant effect on the temperature increment distri-

bution. For the two cases >t t0 and =t t0, the temperature increments are equal to one when =x 0 of the skin 
t issue θ θ. = . = .< =(0, 0 05) (0, 0 05) 1 0t t t t0 0

,  while  the temperature increment is  less  than one 
θ . = .>(0, 0 05) 0 7t t0

, which agrees with the thermal boundary condition on this side. The values of the tempera-
ture increment go to zero θ . = .L( , 0 05) 0 0 at the other end of the skin tissue =x L for all the values of the 
ramp-type heat parameter, which agrees with the thermal boundary condition on this side. This figure assures 
that the thermal wave has a finite speed of propagation. The value of the temperature increment decreases when 
the value of the ramp-type heat parameter increases.

Figure 7 shows that the ramp-type heat parameter has a significant effect on the strain distribution. For the two 
curves of the cases >t t0 and =t t0, the values of strain are equal on the bounding plane of the skin tissue 

Figure 6. The temperature increment distribution with different values of ramp time parameter.

Figure 7. The strain distribution with different values of ramp time parameter.
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. = . = .< =e e(0, 0 05) (0, 0 05) 0 00726t t t t0 0
, while for the case <t t0 the value of the strain is different 

. = .>e(0, 0 05) 0 00518t t0
, which agrees with the mechanical boundary condition when =x 0. The values of the 

strain go to zero . = .e L( , 0 05) 0 0 at the other end of the skin tissue =x L which agrees with the mechanical bound-
ary condition on this side. The mechanical wave has a finite speed of propagation, which agrees with the physical 
properties of the skin tissue. The absolute value of the strain decreases when the value of the ramp-type heat param-
eter increases. The jump point occurs only for the curve of the case <t t0  . . = .= .e(0 015, 0 05) 0 00765t 0 30

.
Figure 8 shows that the ramp-type heat parameter has a significant effect on the displacement distribution. The 

values of displacement are not equal on the bounding plane =x 0 of the skin tissue . = − .= .u(0, 0 05) 0 00022t 0 030
, 

Figure 8. The displacement distribution with different values of ramp time parameter.

Figure 10. The temperature increment distribution with different values of the angular thermal parameter.

Figure 9. The stress distribution with different values of ramp time parameter.
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. = − .= .u(0, 0 05) 0 00015t 0 050
, and . = − .= .u(0, 0 05) 0 00010t 0 070

. Each curve of the displacement distribution has 
one peak point which are . . = .= .u(0 048, 0 05) 0 000026t 0 030

, . . = .= .u(0 045, 0 05) 0 000017t 0 050
, and u(0.042, 0.05) 

= .
= .

0 000012
t 0 070

. The absolute value of the displacement decreases when the value of the ramp-type heat param-

eter increases.
Figure 9 shows that the ramp-type heat parameter has a significant effect on stress distribution. The values of 

the stress distribution are equal to zero on the bounding plane =x 0 of the skin tissue, and the values of the stress 
go to zero at the other side of the skin tissue, =x L which agrees with the mechanical boundary conditions on 
both sides. The mechanical wave has a finite speed of propagation, which agrees with the physical properties of 

Figure 11. The strain distribution with different values of the angular thermal parameter.

Figure 12. The displacement distribution with different values of the angular thermal parameter.

Figure 13. The stress distribution with different values of the angular thermal parameter.
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the skin tissue. The absolute value of the stress decreases when the value of the ramp-type heat parameter 
increases. The jump point of the stress distributions is, σ . . = .= .(0 018, 0 05) 0 0005t 0 030

 and the peak points are 
σ . . = − .= .(0 050, 0 05) 0 006t 0 050

, and σ . . = − .= .(0 051, 0 05) 0 004t 0 070
.

Figures 10–13 represent the temperature increment, the strain, the displacement, and the stress distributions, 
respectively, with respect to dimensionless length =x L with range ≤ ≤ .x0 0 3 when the dimensionless time 

= .t 0 05 and the dimensionless relaxation times τ τ= . = .0 02, 0 04q T  for various values of the dimensionless 
angular thermal parameter ω = (10, 15, 20) and θ = .1 00  .

Figure 10 shows that the angular thermal parameter has a significant effect on the temperature increment 
distribution. The three curves have different values on the bounding plane =x 0 of the skin tissue 
θ . = .ω=(0, 0 05) 0 5110 , θ . = .ω=(0, 0 05) 0 8115 , and θ . = .ω=(0, 0 05) 1 1610 , which agrees with the thermal 
boundary condition when on this side. The values of the temperature increment go to zero θ . = .L( , 0 05) 0 0 at 
the other end of the skin tissue =x L for all the values of the angular thermal parameter, which agrees with the 
thermal boundary condition on this side. This figure assures that the thermal wave has a finite speed of propa-
gation. The value of the temperature increment increases when the value of the angular thermal parameter 
increases.

Figure 11 shows that the angular thermal parameter has a significant effect on the strain distribution. The 
values of strain are not equal on the bounding plane =x 0 of the skin tissue . = .ω=e(0, 0 05) 0 003710 , 

. = .ω=e(0, 0 05) 0 006215 , and . = .ω=e(0, 0 05) 0 009220 , which agrees with the mechanical boundary condition. 
The values of the strain go to zero . = .e L( , 0 05) 0 0 at the other end of the skin tissue =x L, which agrees with the 
mechanical boundary condition on this side. The mechanical wave has a finite speed of propagation, which agrees 
with the physical properties of the skin tissue. The absolute value of the strain increases when the value of the 
angular thermal parameter increases. All the peak points occur for the three curves in the same position with the 
same value . . = − .e(0 051, 0 05) 0 00011.

Figure 12 shows that the angular thermal parameter has a significant effect on the displacement distribution. 
The values of displacement are not equal on the bounding plane =x 0 of the skin tissue 

. = − .ω=u(0, 0 05) 0 0000710 , . = − .ω=u(0, 0 05) 0 0001215 , and . = − .ω=u(0, 0 05) 0 0001620 . The displacement 
distribution has one peak point for each curve, . . = .ω=u(0 045, 0 05) 0 00001510 , . . = .ω=u(0 048, 0 05) 0 00001815 , 
and u(0.042, 0.05) =ω=20  0.000019. The absolute value of the displacement increases when the value of the angu-
lar thermal parameter increases.

Figure 13 shows that the angular thermal parameter has a significant effect on stress distribution. The values 
of stress are equal to zero on the bounding plane =x 0 of the skin tissue, and the values of the stress go to zero at 
the other end of the skin tissue =x L, which agrees with the mechanical boundary conditions. The mechanical 
wave has a finite speed of propagation. The absolute value of the stress increases when the value of the angular 
thermal parameter increases. The peak points of the stress distributions are σ . . = − .ω=(0 048, 0 05) 0 002710  
σ . . = − .ω=(0 050, 0 05) 0 004715 , and σ . . = − .ω=(0 051, 0 05) 0 006820 .

conclusion
A mathematical model of skin tissue has been constructing in the context of dual-phase-lag thermoelasticity. The 
bounding surface of the tissue traction free and is subjected to three different types of thermal loading (thermal 
shock, ramp-type heating, and harmonic heating).

The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have 
significant effects on the temperature increment, the strain, the displacement, and the stress distributions. The 
three parameters of the three different types of thermal loading can be used as a controller on the propagation of 
the thermo-mechanical waves through the thermoelastic skin tissues.

The values of the studied functions decrease when the values of the thermal shock time parameter and the 
ramp-type heat parameter increase, and when the value of the angular thermal parameter decreases.

The results of this work, especially the thermal shock loading, agree with the results of the work4,30 and agree 
with the results of many other work rather than skin tissue34,35.
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