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Clustering of Largely Right-
Censored Oropharyngeal Head 
and Neck Cancer Patients for 
Discriminative Groupings to 
Improve Outcome Prediction
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G. Elisabeta Marai3, Clifton Fuller   4, Abdallah S. R. Mohamed   4 & Guadalupe Canahuate1

Clustering is the task of identifying groups of similar subjects according to certain criteria. The AJCC 
staging system can be thought as a clustering mechanism that groups patients based on their disease 
stage. This grouping drives prognosis and influences treatment. The goal of this work is to evaluate the 
efficacy of machine learning algorithms to cluster the patients into discriminative groups to improve 
prognosis for overall survival (OS) and relapse free survival (RFS) outcomes. We apply clustering over 
a retrospectively collected data from 644 head and neck cancer patients including both clinical and 
radiomic features. In order to incorporate outcome information into the clustering process and deal with 
the large proportion of censored samples, the feature space was scaled using the regression coefficients 
fitted using a proxy dependent variable, martingale residuals, instead of follow-up time. Two clusters 
were identified and evaluated using cross validation. The Kaplan Meier (KM) curves between the two 
clusters differ significantly for OS and RFS (p-value < 0.0001). Moreover, there was a relative predictive 
improvement when using the cluster label in addition to the clinical features compared to using only 
clinical features where AUC increased by 5.7% and 13.0% for OS and RFS, respectively.

Every year over 50,000 new cases of head and neck cancers are diagnosed in the United States. This number is 
projected to rise in the future, especially for oropharyngeal cancers, recently been associated with the incidence of 
HPV16 genotype infections1. The American Joint Committee on Cancer (AJCC) and the Union for International 
Cancer Control, maintains an internationally used standardized TNM Staging System. This system serves as a 
way to systematically assess the severity of the cancer on individual subjects2. The vast majority of risk stratifi-
cation of head neck cancer patients uses staging systems that sub classify patients into four or less groups, based 
primarily on committee derived treatment standards and approaches using existing data sets. These consider 
physical examinations, imaging and laboratory tests, pathology and surgical reports, etc. Establishing the AJCC 
stage for a patient considers various important anatomic classifications and other risk factors that contribute to 
the overall assessment such as T, N and M Categories. T Category relates to the extent of the primary tumor, N 
Category relates to the spread to lymph nodes, and M Category indicates the spread outside the T and N related 
areas. These classifications play a critical role in the ultimate diagnosis and prognosis. The ability to more accu-
rately assess the underlying condition such that it improves the prediction on various outcomes is a long-standing 
clinical goal.

In the era of personalized cancer medicine, innovative sources of meaningful data are critically needed. For 
head and neck cancer, radiomics is one such “big data” approach that applies advanced image refining/data char-
acterization algorithms to generate imaging features that may be used to quantitatively classify tumor pheno-
type in a noninvasive manner3. However, given the high number of radiomic features, extracting or identifying 
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meaningful radiomic signatures is an active area of research4–6. Efforts to sub classify patients using novel imaging 
techniques will require infrastructure and conceptual approaches sufficient for incorporating these model param-
eters and thus are a significant unmet need for clinicians and informatics. Combining innovative data sources 
with a multitude of clinical features such as self-reported demographic information (e.g. race, sex, etc.), physician 
assessed categorizations (e.g. T Category, N Category, etc.) and other Electronic Health Record (EHR) data (e.g. 
patients medical history, lab and test results, etc.) is paramount for personalizing treatment. As part of a larger 
effort at implementing precision medicine approaches for oncologic care and head neck radiotherapy, radiomics 
features have demonstrated utility for discrimination of local regional recurrence7; in this effort we have extended 
this approach and shown stability across a series of risk stratification techniques, such as standardized AJCC val-
ues, in order to illustrate the difficulties and potential solutions spaces of incorporating radiomics for predicting 
global oncologic variables.

Machine learning is not new to cancer research. Artificial neural networks (ANNs) and decision trees (DTs) 
have been used in cancer detection and diagnosis for over 30 years8–10 and more recently Random Survival 
Forests11 (RSF) have been introduced. Initially, machine learning methods were used to identify, classify, detect, 
or distinguish tumors and other malignancies. In other words, machine learning was primarily used as an aid to 
cancer diagnosis and detection12. More recently, cancer researchers have applied machine learning towards cancer 
prediction and prognosis. Numerous machine learning (ML) methods have been adapted for survival analysis, 
prognosis, and prediction13–15. Machine learning algorithms are often classified on the basis of the desired out-
come of the algorithm16,17. In supervised learning algorithms, a labeled set of training data or examples is used. 
In unsupervised learning, a set of examples are given, but no labels are provided. Clustering analysis is a type of 
unsupervised learning, where the goal is to find meaningful and or useful groups in the data18. A survey of cluster-
ing algorithms can be found in Xu and colleagues19 and of clustering in high-dimensional data in Kriegel et al.20. 
It is this analysis that we combine with the more traditional supervised methods to effectively capture meaningful 
groups with respect to the outcome. Several other groups of successfully implemented approaches, albeit without 
as elaborate investigation into feature stability and selection models21,22. Aerts et al. have reduced a large-scale 
lung data set with specific radiomics feature which could be cross applied to head neck cancer patients23. The 
same group subsequently led a comparative investigation into various machine learning approaches24. These 
approaches are of significance and informed our current approach, allowing us to provide extension of their 
binary classification with the utilization of survival data. Further, we compare against approaches which interro-
gate the additive value of scalable feature selection against both clinical variables as well as random forest based 
approaches. In this sense our work shows potential scalability to other non-head neck organ sites and serves as 
a workflow template for future prospective efforts designed for repeated classification and model improvement 
over time.

To illustrate the applicability of the proposed approach we consider two outcomes: overall survival (OS), and 
recurrence free survival (RFS) which is a combination of loco-regional (primary site recurrence of tumor or 
recurrence at lymph nodes) and distant control (distant metastases). These outcomes are said to be right-censored 
because for some patients the time-to-event may be unknown. This is the case for patients where the outcome 
has not been observed up to the last known follow-up time. Right-censored data poses challenges to training 
methods, especially those that require a known target. Nevertheless, the patients that have yet to incur an event 
can still provide us some useful information in order to predict the probability of an event occurring at a certain 
time. Survival analysis often attempts to use these right-censored outcomes in a meaningful way rather than 
discarding them.

In this work, the goal is to identify and exploit any underlying latent characteristics that may help stratify the 
feature space meaningfully towards some outcome. The proposed approach combines supervised and unsuper-
vised methods such that ultimately clustering can be used to improve prediction of our outcomes of interest in 
the context of right-censored oropharyngeal head and neck cancer data. Since clustering is agnostic to the out-
come, we first transform our feature space in order to relate the discovery towards the outcome. To achieve this 
the approach is straightforward, we first create a proxy dependent variable, the martingale residuals, then train a 
supervised model (such as linear regression) and ultimately use it’s fitted feature coefficients to scale the feature 
space towards the outcome. We evaluate the resulting groups through model comparisons of using its group label 
as a feature in a Cox Proportional Hazards (Cox) model considering Akaike Information Criterion (AIC) and the 
likelihood ratio test (LRT), and additionally by evaluating Kaplan Meier (KM) curves. Finally, we further evaluate 
the predictive performance against two common techniques in survival analysis, Random Survival Forest (RSF) 
and Cox by comparing on various metrics. These metrics are the area under the curve (AUC), Brier, concordance 
index C-Index) and calibration.

To summarize, the aims of this study are as follows: (1) incorporate outcome information to influence cluster 
analysis; (2) identify discriminative clusters using patient characteristics available at the time of diagnosis and 
radiomic signatures; (3) use the cluster labels to stratify the patients and generate KM curves for each cluster, and 
compare to AJCC stage; and (4) evaluate the predictive performance of including the cluster label as a feature in a 
Cox model and RSF for OS and RFS outcomes.

Methods and Materials
All analyses were conducted using R version 3.4.1 (R Foundation for Statistical Computing, Vienna, Austria). All 
statistical tests are two-sided with statistical significance defined as a p < 0.05.

Data.  Patients were retrieved from an internal University of Texas MD Anderson Cancer Center database after 
getting approved by the University of Texas MD Anderson Cancer Center Institutional review board (IRB). All 
methods for this study were performed in accordance with the University of Texas MD Anderson Cancer Center 
IRB guidelines and regulations. This is a retrospective study approved by IRB, informed consent was waived as it 
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is a retrospective study and in compliance with the Health Insurance Portability and Accountability Act (HIPAA) 
and IRB also approved the waiver of the informed consent.

The dataset consists of 644 of oropharyngeal cancer (OPC) patients who were treated at MD Anderson Cancer 
Center between 2005 and 2013. Following IRB approval, clinical features including age at diagnosis, sex, ethnicity, 
HPV status, smoking status and frequency, subsite of the primary tumor within the oropharynx, T category, N 
category, therapeutic combination and AJCC stage (7th and 8th edition) were extracted from electronic medical 
records. Table 1 shows the demographics of patients for the clinical features and survival outcomes considered. 
Summary measures of the distribution of the followup time and the proportion of censored is given in Table 2. A 
more detailed description of these data can be found in Elhalawani et al.25.

For imaging data, contrast-enhanced computed tomography (CECT) at initial diagnosis -prior to any active 
local or systemic treatment- were exported to a commercially available contouring software (Velocity AI v3.0.1). 

Total Samples: 642
Median or 
Frequency

(25th, 75th centiles) 
or Percent

Missing Frequency 
(Percent)

Female 0

  No 565 88

  Yes 77 12

Age 58 (52.3, 65.3) 2 (0.3)

HPV Status 0

  Negative 50 7.8

  Positive 391 60.9

  Unknown 201 31.3

T Category 0

  T1,T2,Tis,Tx 408 63.6

  T3,T4 234 36.4

N Category 0

  N0, N1 339 52.8

  N2, N3 303 47.2

Smoking Status 0

  Current 139 21.7

  Former 238 37.1

  Never 265 41.3

Smoking Pack Per Year (Current) 35 (20, 50) 13 (2)

Tumor Subsite 0

  BOT 328 51.1

  GPS, NOS, Soft Palate 57 8.9

  Tonsil 257 40

White/Caucasian 0

  No 56 8.7

  Yes 586 91.3

Therapeutic 0

  CC 339 52.8

  IC_and_CC 160 24.8

  IC_and_Radiation 61 9.5

  Radiation 82 12.8

F25.ShapeVolume 7.7 (3.8, 14.8) 84 (13.1)

F29.IntensityDirectLocalRangeMax 1136 (1103, 1195.8) 84 (13.1)

F5.IntensityDirectGlobalMax 1199 (1165, 1341.8) 84 (13.1)

F29.IntensityDirectGlobalMax 1190.5 (1152, 1369.5) 84 (13.1)

AJCC 8th (Imputed with 7th ed) 2 (0.3)

  I 238 37

  II 109 16.9

  III 74 11.5

  IV 221 34.3

Table 1.  Characteristics of study population. Following AJCC standard definitions, T1 - T4: “Size and/
or extent of the primary tumor”, Tx: “Primary tumor cannot be evaluated”, Tis: “Early cancer that has not 
spread to neighboring tissue”, and N0-N4: “Involvement of regional lymph nodes”. BOT: Base of Tongue. 
NOS: Not otherwise specified. GPS: Glossopharyngeal Sulcus. CC: Concurrent Chemotherapy. IC: Induction 
Chemotherapy.
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The volumes of interest (VOIs) including the gross primary tumor volumes (GTVp) were manually segmented 
by a radiation oncologist in 3D fashion, then inspected by a second radiation oncologist. The generated VOIs 
and CT images were exported in the format of DICOM and DICOM-RTSTRUCT to be used for radiomics fea-
tures extraction. The primary tumor volumes (GTVp) were contoured based on the ICRU 62/83 definition26. 
Radiomics analysis was performed using the freely available open source software “Imaging Biomarker Explorer” 
(IBEX), which was developed by the University of Texas MD Anderson Cancer Center and utilizes the Matlab 
platform (Mathworks Inc, Natick, VA). The CT images in the format of DICOM and the GTVp contours in the 
format DICOMRTSTRUCT were imported into IBEX. We extracted features that represent the intensity, shape, 
and texture. The categorization of these features was ranked as first, second, and higher texture features based on 
the applied method from pixel to pixel27.

Data preprocessing.  Missing data were imputed using the Multivariate Imputation by Chained Equations 
(MICE) approach28. This is a standard approach widely used in data analysis. Predictive mean matching (with 
k = 5) was used for the imputation. Imputation of each validation sample was performed individually and only 
considering training after the training had been imputed, per fold. As we are comparing against AJCC stage, the 
2 patients with missing values for it were discarded as were patients with missing response (2 for OS, 6 for RFS) 
times.

Min-Max normalization was used to standardize each attribute’s range into the interval [0, 1]. This was done 
as a pre- processing step for feature selection, model training, and clustering. This prevents features from domi-
nating the dissimilarity value (e.g. Lp-norm) when clustering.

Out of the initial 3831 radiomic features, we removed those with zero variance and those with a correlation 
above 99%. Previous studies have identified tumor volume and intensity as relevant features for local control7. 
Moreover, physicians routinely use imaging for their assessment of the patient’s disease staging. As our goal is 
a data driven approach for patient stratification that improves survival outcome prognosis, we consider both 
clinical and radiomic features for clustering. To further reduce redundancy, we also removed any radiomic fea-
tures that were highly correlated (>80%) to F25.ShapeVolume and F29.IntensityDirectGlobalMean. Finally, the 
RReliefF feature selector was applied over the remaining 542 radiomic features. The Relief family of algorithms 
calculate a feature importance value for each feature by calculating the distance between pairs of near observa-
tions which fall in the same and different classes29. Features with more similar values for observations having the 
same class get higher importance values and likewise features with more different values for observations not 
having the same class get higher importance values. RReliefF calculates feature importance based on a continuous 
outcome, in this case, the martingale residuals resulting from using a Cox model considering the clinical features. 
It achieves this by probabilistically determining whether the instances are different and is based on the relative 
difference between the outcomes.

Feature importance for the Relief algorithms in general is expressed by the following equation:

W A P

P

[ ] (diff value of A near instance with diff prediction)

(diff value of A near instance with same prediction)

= . | .

− . |

The number of iterations for the RReliefF algorithm was set to 1000. A radiomic signature of four features, 
described later in Results, was identified by the feature selection algorithm and included together with the clini-
cal features (given in Table 1) for clustering. Given our evaluation of using the Cox model to assess the ultimate 
clustering, and comparing against this model using the original features, a reduced space of the entire radiomic 
feature space is necessary as otherwise there would be too many parameters for the Cox model to reasonably 
estimate.

Median or 
Frequency

(25th, 75th 
centiles) or Percent

Missing Frequency 
(Percent)

Recurrence Free Survival 6 (0.9)

  Folow-up Time 61.1 (39.7, 96.2)

  Censor Status

   Censored 518 80.7

   Uncensored 118 18.4

  Event Time (Among uncensored observations) 17.5 (9.7, 37)

Overall Survival 2 (0.3)

  Follow-up Time 65.3 (45.6, 98.4)

Censor Status

   Censored 510 79.4

   Uncensored 132 20.6

Event Time (Among uncensored observations) 35.3 (16.5, 64.8)

Table 2.  Outcomes summary.
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Multidimensional clustering.  The clustering method applied in this paper is k-medians30. K-medians, as 
well as k-means, belongs to a family of k-centroid clustering algorithms31. In practice, these methods have proven 
very effective32. These partitioning clustering techniques are very popular, conceptually well understood, and with 
a solid statistical basis30,33,34. We decided to use k-medians given that many of the features are categorical, and the 
use of the median over the mean (as in k-means) is more robust to outliers30.

An iterative approach to performing k-medians is to initially set k samples as the initial cluster centers and 
identify them with an arbitrary label (i.e. initial “centroids”). Then the samples are associated to its nearest clus-
ter as established by the dissimilarity, i.e. Manhattan distance in our implementation. After each iteration the 
centroids for each cluster are re-computed given the medians. Eventually the iterations converge, and these are 
ultimately the cluster labels assigned for k-medians.

In order to reduce the effect of the starting seeds selection and avoid local minima, we use consensus cluster-
ing35 to run k-medians 1000 times with different seeds and kmeans ++ initialization, in order to find consensus 
among the different iterations.

The consensus matrix is defined as:

 = ∑

∑
i j

M i j
I i j

( , )
( , )

( , )
h

h

h
h

( )

( )

Where h is the hth iteration of the chosen clustering algorithm. I and M are N × N matrices. M is the connec-
tivity matrix where a cell is 1 if pair (i,j) appear together, 0 otherwise. And I is the indicator matrix where a cell 
is 1 if pair (i,j) are sampled for an iteration, 0 otherwise. Hierarchical clustering32 is then used on the consensus 
matrix to extract the clusters.

Validation sample assignment of cluster labels is done by computing the Manhattan distance to the centroids 
of the formed clusters and assigning the label of the closest centroid.

Cluster assignment per fold is arbitrary but may relate to the same underlying characteristic. Therefore, in 
order to visualize clusters and assess the cluster label assignment across folds, clusters at every fold are matched 
to fold 1 (arbitrarily selected). That is, if the training labels at a fold correspond with the training labels at fold 1 
more than they don’t then the labels are kept the same, otherwise they are inverted. The validation samples are 
then assigned to these clusters. Given that the labels are arbitrary, this would just provide consistency of label 
assignment.

Novel supervised scaling for clustering.  Clustering without any considerations of the outcome data can 
certainly capture latent characteristics, but nevertheless these may not be related to the outcome of interest.

The challenge then is to incorporate the outcome information in a meaningful way that can help identify 
discriminative groups for a particular outcome. Previous studies have explored using residuals as the dependent 
variable and empirically assessed viability on classification and regression36,37. For largely censored samples, the 
use of residuals has the advantage that each subject would be associated with a residual regardless of its event 
status. This allows us to incorporate all data available into the training process.

Martingale residuals36 in particular can be interpreted as a measure of excess of deaths. Martingale residuals 
are defined as follows:

∫= − Λβ′M t N t Y s e d s( ) ( ) ( ) ( )i i
t

i
Z s

o
0

( )i

Ni(t) indicates the number of observed events at time t for subject. Yi(t) is a 0–1 process indicating whether the 
ith subject is at risk at time t, β is a vector of regression coefficients, Zi(t) is a p dimensional vector of feature pro-
cesses, and Λo is the baseline cumulative hazard function. Residuals are bounded between ∞ and +1.

The Supervised Scaling processing pipeline is illustrated in Fig. 1. First, a null Cox model (i.e., one in which 
no covariates are included) is trained for a particular outcome in order to obtain a proxy dependent variable, the 
martingale residuals (1). Then, these residuals are used to train a linear regression model such that the fitted coef-
ficients are used to scale the feature space (2). This effectively produce features weights associated to the outcome.

Finally, the scaled feature space is clustered using a machine learning algorithm, e.g. consensus clustering over 
1000 runs of k-medians (3). Through the remainder of this paper, scaling or scaled refers to applying these feature 
weights in addition to first standardizing the features with min max normalization. Once we have clustered the 
data with Supervised Scaling, we proceed to use these cluster labels as a feature in the prediction method.

Survival models.  Since Cox proportional hazards (Cox) models are generally used to model survival and 
meaningful comparisons among models with various metrics can be made, we construct several Cox models 
using different features, including the cluster label where indicated, as described below.

•	 AJCC Only - Only 4 AJCC categories are considered in the model.
•	 [Sc.] Cluster Only - only the cluster label as a feature after standardizing and scaling of the feature space.
•	 [Stand.] Cluster Only - only the cluster label as a feature without scaling the feature space (only 

standardization).
•	 Only AJCC & [Sc.] Cluster - Only 4 AJCC categories and scaled feature space cluster labels are considered in 

the model.
•	 Clin. Only - only the clinical features.
•	 Clin & X - Clinical features and, in addition, what X describes (eg. Rad. for the 4 radiomic feature signature, 

[SC.] Cluster Only for the scaled feature space cluster labels, etc).
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In addition to these Cox models, we also evaluated Random Survival Forest (RSF) implemented in the 
randomForest- SRC(v2.7) package38. The number of trees was set to 500. Both the clinical features and the radi-
omic signature were available for the RSF model. The number of variables randomly selected as candidates to split 
a node (mtry) and the number of data points in a terminal node (nodesize) were optimized using a grid search 
and out-of-bag (OOB) error. Variable mtry was varied from 1 to 10, and node size was varied from 1–10 and 10 
to 100 in increments of 5. After training, the optimal values for mtry and nodesize were 5 and 5 for OS, and 2 and 
5 for RFS.

Evaluation metrics.  Log rank test.  The log rank test or chi-square statistic allows us to compare the sur-
vival distribution among groups. The p-value associated compares against the null hypothesis that no group has 
a different survival distribution from the rest (the null distribution of the test statistic is a chi-square distribution 
with n − 1 degrees of freedom).

We consider the following performance measures for evaluating the survival prediction models39 and for 
model comparison:

AIC and AICc.  AIC is a unitless quantity can be used to compare fits between different parametric models using 
the same data40,41. It estimates the Kullback Leibler divergence which means lower values are better for AIC. 

ˆAIC p ln L2 2 ( )= − .
AICc was used to overcome overfitting due to small sample size and its formula is given by: 

= + +
− −

AICc AIC p p
n p
2 2

1

2
.

L̂ is the model evaluated at the most likely set of parameters, n is the number of samples, and p is the number 
of estimate.parameters. An -∆AIC value of at least 3 is considered to be a meaningful difference.

Log-likelihood ratio test (LRT).  The ratio between the log-likelihood of the simpler model to the model with 
more parameters42. The anova.coxph43 function was used for the test.
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The test statistic under the null hypothesis approximates a chi-squared random variable with degrees of freedom 
equal to the difference in the number of parameters of the null vs alternative model.

C-Index.  The C-Index (i.e. probability of concordance) is a unitless quantitative measure of the discriminative 
strength of a model. The C-Index is identical to the area under ROC for binary outcomes44. It is the proportion 
of evaluable predicted pairs with the right survival order over all evaluable pairs. The evaluability of the pairs is 
determined from the censored status of the individuals. A pair in which both subjects are censored is not evalua-
ble, A pair in which one is censored and the other uncensored is evaluable if censored survival time is greater than 
the uncensored survival time45. A pair in which both subjects are uncensored is evaluable.

Calibration.  Nam-D’Agostino calibration test statistic is considered an important validation46 and was com-
puted using deciles of predicted risk The purpose is to assess agreement between the number of individuals that 
are predicted with a certain probability and the actual proportion of individuals47. Under the null hypothesis of a 
well-calibrated model, the test statistic approximately follows a chi-square distribution with 8 degrees of freedom.

Brier.  This measure serves as an indication of overall performance. It is a quadratic scoring rule that ranges from 
a very informative model at 0 to 0.25 for a non-informative model when the probability for the event is 50%39. 

NULL Coxph for
Some Event 

Generate
Martingale
Residuals

Train Linear
Regression with

Martingale Residuals
as Dependent

Scale Training
Dataset with
Coeffiecients

1

2

k-median
clustering

Manhattan

EC - Hierarchichal [Agglomerative w/ Avg Linkage] 

3

An Implementation

Figure 1.  Supervised Scaling Approach. A null Cox model is trained in order to obtain a proxy dependent 
variable (1), e.g. martingale residuals. The fitted coefficients obtained from training a supervised learning 
method, e.g. linear regression, are used to scale our feature space (2). A clustering method is applied over the 
scaled feature space (3). The clustering implementation here shown is consensus clustering over 1k runs of the 
k-median (k = 2) clustering method using different initial seeds and Manhattan distance as the dissimilarity 
measure.
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For evaluating the survival probabilities at 5-years we use inverse probability of censoring weighting to account 
for the censored samples47.

AUC.  The Receiver Operating Characteristic (ROC) curve plots sensitivity against specificity for consecutive 
cutoffs of the survival probability. AUC is the area below this curve.

Adjusted rand index.  This index measures the agreement for every pair between the labels assigned by the AJCC 
stage and the labels of the cluster. The adjusted refers to a correction for chance assignment48.

Results
Two clusters were identified and evaluated using 10-fold cross validation for OS and RFS.

Radiomic feature selection.  The top 4 radiomic features selected from RReliefF for both OS and also for 
RFS were:

•	 F25.ShapeVolume
•	 F29.IntensityDirectLocalRangeMax
•	 F5.IntensityDirectGlobalMax
•	 F29.IntensityDirectGlobalMax

Clustering with supervised scaling.  Figure 2 shows the KM curves for the cluster assignments over the 
validation samples across folds for the OS outcome.

The KM curves for the two clusters differ significantly (p-val < 0.0001). They are also significantly different 
(p-val < 0.01) for RFS. The demographic breakdown per cluster is given in Table 3 for OS and Table 4 for RFS. 
Albeit omitted for conciseness of figures and tables, for standardization only but not scaling, the p-values associ-
ated to the KM curve comparison were not significant for either outcome.

Comparison with AJCC staging system (8th edition).  We compare the KM plots for to AJCC stage 
against the clustering label results mentioned previously as indicated in the same Fig. 2. To aid this comparison, 
Stages I and II were grouped together, likewise Stages III and IV were grouped together. The Adjusted Rand Index 
comparing the 2 clusters in these figures for OS vs the AJCC groupings is 0.193, and 0.104 for RFS. When com-
paring the cluster labels vs. all the 4 stages of AJCC considering the unknown HPV, it is 0.028 for OS and 0.023 for 
RFS. Given that this pairwise agreement measure is low, but we know that both (1) AJCC is clinically informative 
and moreover (2) that the clusters have a strong discrimination on the outcome, in the model comparison we 
compare how adding both the label and the AJCC status affects the model.

Figure 2.  KM Curves for patients with known HPV Status. AJCC (8th edition) KM curves are formed by 
aggregating AJCC stage categories as indicated by legend (Stage I and II vs Stage III and IV). The clustering of 
validation samples across folds likewise is only for known HPV Status in this comparison.
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Model comparisons and prediction.  We compare how meaningfully the cluster labels are by quantita-
tively assessing them (AIC/AICc and LRT) as an additional feature in the Cox model as shown in Table 5. We 
consider the entire dataset and the cluster labels are those assigned to the validation samples at every fold.

This table compares against two baseline models. To facilitate the comparison between the models, the results 
are displayed as the negated difference to these baseline models for AIC and AICc such that negative values 
indicate a worse model and positive values a better one relative to the baseline models. Table 5 compares against 
the baseline models, vs. Clinical considers a Cox model with only the clinical features and vs. NULL against the 

OS Cluster Label Breakdown

Cluster 1 Cluster 2

Median or 
Frequency

(25th, 75th 
centiles) or 
Percent

Missing 
Frequency 
(Percent)

Median or 
Frequency

(25th, 75th 
centiles) or 
Percent

Missing 
Frequency 
(Percent)

Female 0

  No 430 88.1 133 87.5

  Yes 58 11.9 19 12.5

Age 0.5 (0.5, 0.7) 0.6 (0.5, 0.7) 0

HPV Status 0 0

  Negative 29 5.9 21 13.8

  Positive 300 61.5 91 59.9

  Unknown 159 32.6 40 26.3

T Category 0 0

  T1,T2,Tis,Tx 340 69.7 66 43.4

  T3,T4 148 30.3 86 56.6

N Category 0 0

  N0, N1 270 55.3 69 45.4

  N2, N3 218 44.7 83 54.6

Smoking Status 0 0

  Current 105 21.5 32 21.1

  Former 178 36.5 60 39.5

  Never 205 42 60 39.5

Smoking Pack Per Year (Current) 0.3 (0.2, 0.5) 10 (2) 0.3 (0.2, 0.5) 1 (0.7)

Tumor Subsite 0 0

  BOT 245 50.2 82 53.9

  Tonsil 42 8.6 15 9.9

  GPS, NOS, Soft Palate 201 41.2 55 36.2

White/Caucasian 0 0

  No 35 7.2 21 13.8

  Yes 453 92.8 131 86.2

Therapeutic 0 0

  CC 267 54.7 72 47.4

  IC_and_CC 103 21.1 56 36.8

  IC_and_Radiation 52 10.7 8 5.3

  Radiation 66 13.5 16 10.5

F25.ShapeVolume 0 (0, 0.1) 64 (13.1) 0.1 (0, 0.2) 20 (13.2)

F29.IntensityDirectLocalRangeMax 0.2 (0.2, 0.2) 64 (13.1) 0.2 (0.2, 0.3) 20 (13.2)

F5.IntensityDirectGlobalMax 0 (0, 0.1) 64 (13.1) 0.2 (0.1, 0.2) 20 (13.2)

F29.IntensityDirectGlobalMax 0 (0, 0.1) 64 (13.1) 0.2 (0.1, 0.3) 20 (13.2)

AJCC 8th 0

  I 197 40.4 41 27

  II 82 16.8 27 17.8

  III 45 9.2 29 19.1

  IV 164 33.6 55 36.2

OS Survival Time 72.8 (47.8, 100.9) 0 53.7 (35.1, 78.4) 0

OS Event Time (Uncensored) 41 (18.4, 69.2) 0 28.1 (15.3, 51.3) 0

Censored/Uncensored 400/88 82/18 0 108/44 71.1/28.9 0

Table 3.  Demographic breakdown per cluster for OS. Following AJCC standard definitions, T1 - T4: “Size 
and/or extent of the primary tumor”, Tx: “Primary tumor cannot be evaluated”, Tis: “Early cancer that has 
not spread to neighboring tissue”, and N0-N4: “Involvement of regional lymph nodes”. BOT: Base of Tongue. 
NOS: Not otherwise specified. GPS: Glossopharyngeal Sulcus. CC: Concurrent Chemotherapy. IC: Induction 
Chemotherapy.
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null Cox model (Cox model with no covariates). As the clinical features are known features that are relevant to 
prognosis, we also consider this model as a baseline. Moreover, since we know that AJCC is a clinically relevant 
categorization we consider it as a feature against both baseline models and compare it against our quantitative 
approach to categorization.

When considering the clusters formed only through standardization ([Stand.]) of the features, LRT and AIC 
indicate that these labels are not informative as features against either of the baseline models.

RFS Cluster Label Breakdown

Cluster 1 Cluster 2

Median or 
Frequency

(25th, 75th 
centiles) or 
Percent

Missing 
Frequency 
(Percent)

Median or 
Frequency

(25th, 75th 
centiles) or 
Percent

Missing 
Frequency 
(Percent)

Female 0 0

  No 366 88.6 193 86.5

  Yes 47 11.4 30 13.5

Age 0.6 (0.5, 0.7) 0 0.5 (0.5, 0.7) 0

HPV Status 0 0

  Negative 23 5.6 27 12.1

  Positive 262 63.4 127 57

  Unknown 128 31 69 30.9

T Category 0 0

  T1,T2,Tis,Tx 277 67.1 127 57

  T3,T4 136 32.9 96 43

N Category 0 0

  N0, N1 228 55.2 108 48.4

  N2, N3 185 44.8 115 51.6

Smoking Status 0 0

  Current 79 19.1 57 25.6

  Former 154 37.3 83 37.2

  Never 180 43.6 83 37.2

Smoking Pack Per Year (Current) 0.3 (0.2, 0.5) 5 (1.2) 0.3 (0.2, 0.5) 6 (2.7)

Tumor Subsite 0 0

  BOT 214 51.8 112 50.2

  Tonsil 30 7.3 25 11.2

  GPS, NOS, Soft Palate 169 40.9 86 38.6

White/Caucasian 0 0

  No 34 8.2 21 9.4

  Yes 379 91.8 202 90.6

Therapeutic 0 0

  CC 223 54 114 51.1

  IC_and_CC 95 23 63 28.3

  IC_and_Radiation 42 10.2 18 8.1

  Radiation 53 12.8 28 12.6

F25.ShapeVolume 0 (0, 0.1) 57 (13.8) 0.1 (0, 0.1) 26 (11.7)

F29.IntensityDirectLocalRangeMax 0.2 (0.2, 0.2) 57 (13.8) 0.2 (0.2, 0.3) 26 (11.7)

F5.IntensityDirectGlobalMax 0 (0, 0.1) 57 (13.8) 0 (0, 0.2) 26 (11.7)

F29.IntensityDirectGlobalMax 0 (0, 0.1) 57 (13.8) 0.1 (0, 0.2) 26 (11.7)

AJCC 8th 0 0

  I 164 39.7 73 32.7

  II 75 18.2 33 14.8

  III 41 9.9 33 14.8

  IV 133 32.2 84 37.7

RFS Survival Time 62.7 (40.8, 96.8) 0 58.9 (32.6, 94.3) 0

RFS Event Time (Uncensored) 17.4 (10.8, 39.4) 0 17.6 (8.9, 33.4) 0

Censored/Uncensored 336/77 81.4/18.6 0 182/41 81.6/18.4 0

Table 4.  Demographic breakdown per cluster for RFS. Following AJCC standard definitions, T1 - T4: “Size 
and/or extent of the primary tumor”, Tx: “Primary tumor cannot be evaluated”, Tis: “Early cancer that has 
not spread to neighboring tissue”, and N0-N4: “Involvement of regional lymph nodes”. BOT: Base of Tongue. 
NOS: Not otherwise specified. GPS: Glossopharyngeal Sulcus. CC: Concurrent Chemotherapy. IC: Induction 
Chemotherapy.
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The models with overall better AICs (>3) vs. the clinical model were Clin & Rad. and the models using scaled 
clusters ([Sc.] Cluster) as features. This is expectedly more so against the null model. For the models with the [Sc.] 
Cluster as feature, the 95% CI for the estimated hazard ratio of the non-reference label was [2.22,4.66] for OS 
and [0.30,0.66] for RFS. Similarly, when considering the clinical features and the cluster label, the interval for the 
cluster label was [1.64,3.64] for OS and [0.34,0.78] for RFS. All hazard ratios for clusters with standardized only 
are non-significant. As expected from the fact that the AJCC labels do not match with the cluster labels yet both 
could be informative, when comparing against the null model we note that the inclusion of both AJCC and the 
[Sc.] Cluster reflects a better model with AIC rather than either [SC.] Cluster or AJCC alone. However, once we 
control for the clinical variables, AJCC does not indicate any significant improvement.

Additionally, even when controlling for AJCC and Clinical, the [Sc.] Cluster feature still provides significant 
hazard ratios for the non-reference label, which are [2.01,3.59] for OS and [0.35,0.80] for RFS.

Table 6 shows the main model prediction evaluation using four of the metrics described in the Evaluation 
Metrics section. With our proposed method, when evaluating the labels as a feature in Clin.&[Sc.] Cluster, for 
OS we see better values for AUC, Brier and C-Index, and a well calibrated model. As for RFS, using the 4 radi-
omic signature features shows the better AUC, Brier and C Index despite not being as well calibrated as the other 
models Clin.&[Sc.]. Clusters with standardization only, as expected from AIC and LRT evaluation, considerably 
underperform against the radiomics or scaled clusters.

Vs. Clinical OS RFS

Model AIC AICc LRT AIC AICc LRT

Clin. & Rad. +21.80 +21.35 5.36e-06 +17.82 +17.37 3.43e-05

Clin. & [Sc.] Cluster +15.60 +15.50 2.72e-05 +7.03 +6.92 2.66e-03

Clin. & [Stand.] Cluster +0.52 +0.42 1.12e-01 −1.88 −1.99 7.34e-01

Clin. & AJCC −1.01 −1.34 1.73e-01 +2.05 +1.72 4.49e-02

Clin. & AJCC & [Sc.] Cluster +13.47 +13.02 2.55e-04 +8.65 +8.19 2.26e-03

Vs. NULL OS RFS

[Sc.] Cluster Only +30.69 +30.68 1.08e-08 +12.89 +12.88 1.14e-04

[Stand.] Cluster Only +1.77 +1.76 5.22e-02 −0.19 −0.20 1.79e-01

AJCC Only +11.48 +11.44 5.64e-04 +8.93 +8.89 1.88e-03

Only AJCC & [Sc.] Cluster +36.54 +36.48 4.96e-09 +19.50 +19.43 1.58e-05

Table 5.  Model comparisons of various Cox models and AJCC varying the features. The baseline model vs. 
Clinical refers to the Cox model using clinical covariates whereas for vs. NULL it refers to the null Cox model. 
Models were fitted on the entire dataset and the cluster labels (for the models the labels were used, i.e. denoted 
by Cluster) were those assigned to the validation samples at every fold. AIC/AICc values are given relative to 
the baseline model as the negated difference. [Stand.] Refers to min max standardization only. [Sc.] Refers to 
scaling features prior to clustering.

Method AUC Brier C-Index Calibration

OS

Clin. Only 0.6029 ± 0.0299 0.1349 0.6616 ± 0.0254 12.11

Clin. & Rad. 0.6203 ± 0.0302 0.1325 0.6785 ± 0.0259 15.25

Clin. & [Sc.] Cluster 0.6335 ± 0.0298 0.1298 0.6851 ± 0.0252 13.80

Clin. & [Stand.] Cluster 0.6061 ± 0.0297 0.1344 0.6645 ± 0.0254 10.47

Random Surv Forest 0.6292 ± 0.0309 0.1307 0.6818 ± 0.0262 28.85

Clin. & AJCC 0.6056 ± 0.0299 0.1347 0.6643 ± 0.0256 17.00

Clin. & AJCC & [Sc.] Cluster 0.6359 ± 0.0298 0.1302 0.6881 ± 0.0254 26.15

RFS

Clin. Only 0.6111 ± 0.0308 0.1378 0.6044 ± 0.0276 12.58

Clin. & Rad. 0.6639 ± 0.0302 0.1335 0.6408 ± 0.0278 25.60

Clin. & [Sc.] Cluster 0.6377 ± 0.0302 0.1354 0.617 ± 0.0274 18.39

Clin. & [Stand.] Cluster 0.6008 ± 0.0312 0.1387 0.5902 ± 0.0281 11.48

Random Surv Forest 0.6080 ± 0.0316 0.1352 0.6043 ± 0.0292 10.30

Clin. & AJCC 0.6185 ± 0.0312 0.1359 0.6103 ± 0.028 11.29

Clin. & AJCC & [Sc.] Cluster 0.6483 ± 0.0306 0.1340 0.6279 ± 0.0278 19.19

Table 6.  Validation metric summary with 10-fold cross validation for OS and RFS outcomes. Cox model was 
used for all methods except Random Surv Forest. Description of methods given in the Survival Models section.
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Discussion
As our driving motivation is to find discriminative groups of oropharyngeal head and neck cancer patients, we 
evaluate the performance of the proposed approach (Supervised Scaled Clustering) in terms of the KM curves it 
generates, the model performance under AIC and LRT metrics, and the predictive performance in terms of AUC, 
C-index, Calibration, and Brier scores.

Figure 2 compares the KM curves for the cluster groups against the latest edition of the AJCC staging (8th 
edition) for patients with known HPV status. As can be seen in Fig. 2, both AJCC staging and the proposed 
Supervised Scaling, significantly discriminates with respect to the patient’s time to event. Moreover, when eval-
uating the predictive performance of these classification schemes, the proposed Supervised Scaling clustering 
method outperforms AJCC staging. As can be seen in Table 5, the addition of AJCC staging has significant LRTs 
for all comparisons except for OS when compared to the model with clinical features. For AIC, however, includ-
ing the AJCC staging only improves when compared (∆(AIC) > 3) against the null model. Compared to the Cox 
model with clinical features only, the scaled cluster labels have high significance in LRT for the OS outcome 
whereas AJCC is not significant. The AIC values for the additional scaled cluster labels over only clinical are much 
greater than 3, which indicates an improved model.

Additionally, given the low pairwise agreement between AJCC staging and the cluster labels (rand index 
<0.2), we notice that when we include both AJCC and the scaled cluster label, the resulting model outperforms 
the models built with either one alone. This suggests that the information captured by the two stratifications is 
complementary. Compared to the null model, the combination of AJCC stage and scaled clustering shows the 
best performance for both OS and RFS. Not surprisingly and due to their correlation, the inclusion of AJCC in the 
clinical model, which already includes T-category and N-stage, shows no improvement. There is improvement, 
however, when the scaled cluster is included in the clinical model. These lead us to conclude that the proposed 
approach does indeed find a clinically meaningful categorization, complementary to AJCC staging, that can be 
further explored in future analyses.

As can be seen in Table 6, the cluster labels resulting from the proposed approach (i.e. [Sc.] Cluster or scaled 
cluster labels) shows improved performance over AJCC staging across all metrics, except [Sc.] Cluster is only well 
calibrated (Calibration < 15.5) for OS, whereas Clin. & AJCC is only well calibrated for RFS.

The proposed approach summarizes a high dimensional space into a single covariate. Machine learning 
approaches for feature selection identify a small subset of highly predictive features given an outcome varia-
ble. For these experiments, we use RReliefF and selected four radiomic features. When comparing the model 
performance of the scaled cluster labels to the radiomic signature, we see better AIC and LRT values for the 
radiomic signatures, but better values for AUC, Brier and C-Index for the scaled clustering for the OS outcome. 
For OS, Clin & Rad and Clin & [Sc.] are both well calibrated. These are encouraging results given the fact we per-
formed feature selection using the whole dataset (and the outcome information) as the training set. The proposed 
approach was able to generate a single covariate that represents the entire radiomic feature space and exhibits 
prognostic value for OS and RFS.

Cox proportional hazard models are widely interpretable and commonly used in the oncologic community for 
survival analysis. We evaluate the proposed approach when the cluster labels are incorporated into a Cox model. 
However, this approach is potentially extendable to parametric approaches with minor modifications and could 
represent an additional step, albeit one not heavily investigated in the current study. The utility of a future space 
reduction has the added value of avoiding significant overfitting, and this also has potential applications across a 
wider range of machine learning style approaches which incorporate right-censored variables.

A further advantage of using the scaled clustering approach is that missing data can be handled without impu-
tation nor removal by computing the distance between the patient and cluster centroids using the known available 
features. However, a thorough evaluation of missing data’s effect and performance comparison with established 
methods for data imputation are needed.

Clustering approaches specific in the context of leveraging right-censored outcomes have been previously 
considered in the literature. In Bair & Tibshirani49, for a gene dataset, the outcome information is considered by 
computing the univariate Cox score for all potentially relevant features, and then selected the top k of them as 
input to a nearest shrunken centroid clustering method. This method uses the Cox score for feature selection but 
performs clustering using equal weights. In our case, supervised scaling provides a mean to weight the features 
according to a particular outcome. A weighted approach has been also proposed in Gaynor & Bair50. In this work, 
univariate Cox score is assessed for each feature, the score is then ordered, and ultimately the k largest features 
are selected. A weighted sparse clustering maximizes a weighted between-cluster sum of squares. This work uses 
the censored outcome directly which would be less effective for largely censored data as the one used in this 
study. In Chen et al.51, the area under the curve between survival curves is considered as a measure of dissimilar-
ity. The samples are initially grouped by considering all possible combinations of the features being considered. 
KM curves are formed by the groupings, the area between the curves would be the measure of dissimilarity and 
hierarchical clustering is applied over these dissimilarity values. In this study the number of cases considered was 
approximately 110,000 and 4 factors. Given our vastly smaller sample size and the consideration of many more 
feature combinations, the KM curves would need to be initially constructed with very few samples, where most 
would be censored, such that the curves and by extension the area between the curves would not be meaningful.

For many parametric and semi parametric methods such as Cox, the number of features that can be consid-
ered, especially given the limitation on sample size, is constrained despite the availability of increasing number of 
potentially relevant features. A limitation for the generalization of this study is that even after vastly reducing the 
feature space of potential radiomic features to four or one (the cluster label), the number of features used within 
the Cox model exceeds the rule of thumbs of ten events per covariate in the model.

From a clinical perspective, a limitation of the current study is the dearth of real-time collected human pap-
illomavirus data status on historical patients within the data set; we circumvented this by incorporating the 
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previous corresponding staging categories where there was uncertainty about HPV status. However, it should be 
noted that this is a major etiologic feature of head and neck cancers, and necessarily meant that the robustness of 
our analyses which incorporated HPV data was reduced by this. We hope in future iterations to increase the size 
of our HPV data set and include external validation in these larger data sets which would be of significant value. 
We attempted to correct for this by using a rigorous cross validation approach which we hope should demonstrate 
the robustness of our findings across potentially generalizable clinical scenarios. However nonetheless, as with 
any radiomics approach, the extensibility or generalizability of our data to other head neck cancer databases is 
contingent upon their similarity to the patient characteristics, treatment profiles, and demographic information 
contained herein.

A natural extension of our approach would be to use clustering as a way to represent other high dimensional 
spaces related to the outcome such as genomics and other omics spaces, and then using these labels as poten-
tially useful features in prognosis. Other directions for future work include further evaluation to identify the 
attribute-values that characterize the clusters, and the evaluation of different parameters or algorithms considered 
in the different stages of the proposed processing pipeline. For example, the type of model fitted that can scale the 
feature space, the type of clustering and dissimilarity measures considered, and moreover, other ways to incorpo-
rate or leverage these discriminating clusters beyond as an additional feature used in a Cox model.

Data availability
The datasets analyzed during the current study are available from Scientific Data25 and TCGA.
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