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Retaining information from 
multidimensional correlation MRi 
using a spectral regions of interest 
generator
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Multidimensional correlation magnetic resonance imaging (MRI) is an emerging imaging modality that 
is capable of disentangling highly heterogeneous and opaque systems according to chemical and 
physical interactions of water within them. Using this approach, the conventional three dimensional MR 
scalar images are replaced with spatially resolved multidimensional spectra. The ensuing abundance in 
microstructural and chemical information is a blessing that incorporates a real challenge: how does one 
distill and refine it into images while retaining its significant components? In this paper we introduce a 
general framework that preserves the spectral information from spatially resolved multidimensional 
data. Equal weight is given to significant spectral components at the single voxel level, resulting in a 
summarized image spectrum. This spectrum is then used to define spectral regions of interest that are 
utilized to reconstruct images of sub-voxel components. Using numerical simulations we first show 
that, contrary to the conventional approach, the proposed framework preserves spectral resolution, 
and in turn, sensitivity and specificity of the reconstructed images. The retained spectral resolution 
allows, for the first time, to observe an array of distinct T1−T2− D  components images of the human 
brain. The robustly generated images of sub-voxel components overcome the limited spatial resolution 
of MRI, thus advancing multidimensional correlation MRI to fulfilling its full potential.

Biological tissues, particularly within the brain, are highly intricate systems composed of a variety of different 
materials and structures spanning multiple length scales. Characterization of these different tissues begins on a 
microscale, each tissue containing an ecosystem of microenvironments. An assortment of cell types, extracellular 
components, and membranes comprise these microenvironments, all of which perform and participate in a range 
of chemical processes, yielding unique functionality within the domain. Magnetic resonance imaging (MRI) is a 
widely applied medical imaging modality for numerous clinical applications. MRI can provide reproducible, non-
invasive, and quantitative measurements of tissue, including structural, anatomical and functional information.

Since its introduction in the early 1970s, MRI has been primarily conceived of and used as a radiological scan-
ning tool. Most clinical MRI applications provide images that contain scalar quantities that are averaged across a 
voxel, which is typically on the order of millimeters. One particular approach to overcome MRI’s limited spatial 
resolution is to harness this technology’s original designation as a spectroscopic modality. Achieving that goal, a 
series of advances within the field of porous media nuclear magnetic resonance (NMR)1–5 have led to the concep-
tion of multidimensional correlation MR6–13. This multidimensional approach is a phenomenological representa-
tion that makes no assumptions about tissue structure or composition, and jointly encodes and processes different 
dynamic processes, such as longitudinal (T1) or transverse (T2) relaxation, and diffusion (D). The result is a joint 
multidimensional distribution of these dynamic properties and their correlations, allowing for characterization 
of heterogeneous systems with increased specificity.

These techniques assume that the acquired signal is made up of a sum of exponenitals, each with their respec-
tive T1, T2, and D. In neuronal tissue, while first order relaxation processes indeed decay in a multiexponential 
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manner, it is well-known that diffusion does not truly behave as a sum of Gaussian processes14. As a result, inter-
pretation and modeling of diffusion in neural tissue is an ongoing area of research15–20. Nevertheless, modeling of 
the diffusion signal as a distribution of apparent diffusivities in neuronal tissue can be a way to separate water 
components based on the range of their apparent mobility4,21–26.

Integration of this multidimensional approach within imaging applications was not feasible until recently due 
to burdensome data requirements causing impractical scan times. The development of the marginal distributions 
constrained optimization (MADCO) framework27 had minimized data requirements, leading to the feasibility of 
multidimensional correlation imaging. Although the spatial resolution of MRI is low compared with biological 
tissue local heterogeneity, a spectroscopic approach such as multidimensional MRI provides a multicomponent 
signature in each voxel, which can be used to report on physical microstructure and chemical composition of a 
range of tissue types, from animal spinal cord24,25 to human placenta28.

Use of multidimensional techniques provides a powerful tool for MR analysis; however, it also presents a set of 
challenges. Through the inclusion of multiple dimensions, there is an increased need to generate a more compact 
representation of spectral information. The most commonly used method for dimensionality reduction in this 
context is to compute the relative signal fractions of the spectral components in each voxel and display them as 
images29,30. This dimensionality reduction is achieved by finding spectral regions of interest (sROIs) that contain 
peaks, and summing (i.e., numerically integrating) over them.

The greatest challenge with generating images from multidimensional spectra is adequately defining the sROIs 
because in many instances the spectral peaks overlap or somewhat indistinguishable31. Moreover, with an imag-
ing volume that easily contains thousands of voxels, a completely automated and robust method to correctly 
identify the sROI is of paramount importance. Multidimensional MRI is a new and emerging field, and to date 
the conventional approach to identify sROIs in a large dataset involved compressing the information into a single 
spectrum by averaging the multidimensional spectra over the entire image24,28. Once done, sROIs can be identi-
fied manually by the user, or automatically.

We will show in this paper that the conventional approach leads to an unequivocal loss of spectral resolution, 
and in turn, loss of sensitivity and specificity. We will further propose an automatic sROI generator and demon-
strate its ability to preserve the inter-voxel variability and heterogeneity of the multidimensional correlation MRI 
spectra both on synthetic data, and for the first time, on ex vivo human brain.

Theory
Multidimensional correlation MR. To obtain a multidimensional distribution of a set of d MR contrasts, 

…f x x( , , )d1 , the following Fredholm integral of the first kind should be solved, 

∫ ∫β β β β β β… = … … + … . m f x x k x x x x( , , ) ( , , ) ( , , , , ) d d ( , , ) (1)d d d d d d1 1 0 1 1 1 1

The signal, m, is acquired with d MR experimental variables, or dimensions, and consequently the density 
distribution function f  is multidimensional. The kernel, or dictionary, which relates the MR parameters to the 
acquisition variables is noted as βk x( , )0 , and is assumed to be exponential2,6, and ε β( ) is the experimental noise. 
We focus here on three MR dimensions, such that =d 3, and =x T1 1, =x T2 2, and =x D3 , which are encoded 
by varying the inversion time, β τ=1 1, the echo time, β τ=2 2, and the diffusion weighting (DW) parameter, 
β = b3 , respectively. It should be noted that to avoid computational instability and infeasible acquisition time, the 
diffusion was not characterized using a tensor distribution32. Instead, we investigated the orientationally averaged 
diffusivity, D , encoded by the isotropic generalized diffusion tensor MRI (IGDTI) acquisition protocol33. This 
type of diffusion encoding increases the contrast given by local anisotropy, and is not intended to measure the 
isotropic diffusion in the system.

Equation 1 can be written with the suitable kernel and parameters as 

⟨ ⟩ ⟨ ⟩ ⟨ ⟩∫ ∫ ∫τ τ τ τ τ τ= − − − +m b f T T D T T b D T T D b( , , ) ( , , )exp[ / / ] d d d ( , , ), (2)1 2 1 2 1 1 2 2 1 2 1 2

while the longitudinal relaxation kernel is in fact a modified version of the conventional kernel, obtained by sub-
tracting the fully recovered data from the data set, and is done to eliminate any signal offset. To solve Eq. 2, the 
signal is decomposed into a summation of exponential components each with unique MR parameters and ampli-
tude. Because the functional form that relates the MR parameters to the acquisition variables is smooth and 
continuous, solving a Fredholm integral is an ill-posed problem34–36, which means that the solution does not vary 
smoothly with the data. The strategy we used here to solve Eq. 2 was to transform it to a regularized constrained 
optimization problem, using 2 regularization to stabilize the solution1,2, and applying the marginal distributions 
constrained optimization (MADCO) framework27,37,38 to reduce data requirements. For more details, please refer 
to the Supplementary Information.

Automated spectral regions of interest generator. Here we propose a post-processing framework 
aimed at preserving the spectral information from a spatially resolved multidimensional data. Although con-
ceived for MRI applications, this program could be revised and used for applications in a myriad of fields with 
high-dimensional spectroscopic data.

The sROI generator is designed to preserve inter-voxel variability and prevent the spectral blurring that is 
caused (as will be seen here) by using the conventional approach of direct spatial averaging. Our guiding notion 
is that every spectral component is valuable, regardless of its prevalence or its amplitude in the image and spectral 
domains, respectively. The proposed method gives equal weight to all spectral components across the image, thus 
preserving the information they represent.
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Without loss of generality, we choose to focus on 2D correlation distributions in this work. Figure 1 presents 
an overview of the proposed approach, compared with the conventional method. Each image voxel contains a 2D 
correlation distribution, ∈ ×RF N Nx x1 2 (Fig. 1A), with projections fx1

 and fx2
.

In essence, we suggest replacing the distribution with a binary map of the significant peaks in each voxel. 
When averaged across the image, this simple yet effective procedure will result in a distribution that preserves 
even relatively small spectral components and making them identifiable. To implement this procedure, we chose 
to use 1D projections because it proved to be robust and easy to implement. However, searching for 2D peaks can 
be done with any other algorithm, such as feature selection.

Voxelwise, the following steps are taken: 

 1. Using the projections of F, fx1
 and fx2

 are independently analyzed to locate the 1D spectral peaks.
 2. Based on the peaks locations, the intervals in which they reside are then found using the zero crossing of 

the first derivative of the 1D distributions.
 3. Once deduced, these 1D intervals are then used to generate 2D intervals, or "boxes”, which may or may not 

contain a significant spectral peak (Fig. 1B).
 4. The maximal value is found in each of the boxes, and is then compared with a threshold value, εvox. This 

threshold determines the sensitivity of the peak detection, and is left at the discretion of the user, depend-
ing on the application and goals of the particular study.

 5. A spectroscopic “center of mass” is calculated in each of the boxes that contained a peak that survived the 
thresholding step. The center of mass location is replaced with 1, and the rest of the entries with 0.

 6. Steps (4) and (5) are repeated for all of the boxes, and result in a binary map of the significant 2D peaks at a 
given voxel, ∈ ×RF N N

bin
x x1 2 (Fig. 1C).

Upon completion of these steps in each of the image voxels, the binary peaks maps are averaged across the 
image domain and normalized to yield Fbin  (Fig. 1D). The last step of this process involves putting Fbin  through 
steps (1)–(4) (Fig. 1E), which results in the sROIs in the analyzed image (Fig. 1F). Alternatively, Fbin  can be used 
to manually select sROIs to ensure a more precise outcome. In this work, we used the former approach as a final 
step (i.e., unsupervised peak finding). The identified sROIs can be used as integral boundaries for 2D integration 
that would generate signal fraction images of specific spectral components.

The choice of εvox should be guided by the goal and the context of the study. If small regions in the image 
domain or alternatively low intensity spectral peaks are of interest, a lower threshold should be set. The lower εvox 
is, the more inter-voxel variability is preserved at the cost of false positive detection of peaks. In the current study, 
ε = .0 001vox  was chosen based on visual inspection of the images.

Types of signal-to-noise ratios. There are two types of signal-to-noise ratios (SNR) that should be con-
sidered here: (1) acquired signal and (2) spectral SNRs. The first type is usually defined using the acquired image, 
where the ratio between the average signal intensity within a tissue ROI, and the standard deviation of the signal 
intensity within a background (i.e., no sample) ROI is taken. In this study,  a typical SNR value was about a 100. 

Figure 1. Overview of the proposed method, compared with the conventional approach. (A) Each voxel in a 
given image contains a 2D spectrum. Up to date, the only strategy to process the voxelwise spectra into images 
was to average them24,28, manually identify spectral components, and generate sROIs accordingly (bottom 
panel). To circumvent the obvious limitations of the standard approach we propose here to first (B) identify all 
possible spectral peaks in each voxel, and then (C) apply a threshold and obtain binary voxelwise spectra, Fbin. 
(D) The binary spectra are then averaged to yield Fbin , (E) which is then used to generate the (F) sROIs. The 
binarization step ensures that even peaks with low prevalence in the image domain are represented in Fbin .

https://doi.org/10.1038/s41598-020-60092-5


4Scientific RepoRtS |         (2020) 10:3246  | https://doi.org/10.1038/s41598-020-60092-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Adequate signal SNR is very important to obtain a reliable inversion of Eq. 2. Studies that were dedicated to inves-
tigating the effect of SNR on similar inversions concluded that an image SNR of the order of 100 is a sufficient yet 
realistic value39,40.

The second type of SNR is obtained from the spectra (i.e., post-processing), and can be defined as the square 
of the ratio of the peak and the background amplitudes in the spectrum. In the specific application of multidi-
mensional correlation MR using 2 regularization the resulting spectra are constrained to be smooth, with no 
wiggles or spikes, which leads to background spectral intensity values on the order of −1e 9 (while the peak 
spectral intensity would be on the order of 0.01). The resulting SNR value is extremely high, approaching infinity, 
and therefore does not represent a tangible metric to asses or to report.

numerical Simulations
When it comes to biological tissue, there is very little "ground truth”. In the context of multidimensional correla-
tion MRI, the ground truth spectral components are unknown and cannot be feasibly determined. If we are to test 
any proposed method to identify and separate the spectral components, we cannot simply rely on the apparent 
improvement in the reconstructed spectral images (as will be seen in the next section), but rather test the pro-
posed strategy on a simulated dataset with a known ground truth. In this section we give a non-trivial example of 
a case in which the conventional approach of spatial averaging fails, while the proposed method works.

We therefore constructed a numerical simulation model, which included five different spectral peaks with dis-
tinct means and covariances, detailed in Fig. 2. Each of the peaks was associated with a different spatial coordinate 
within the synthetic image (i.e., pixel), forming concentric rings in the following manner: pixels in the inner most 
ring contain all of the spectral components (A–E), while pixels in the outer most ring contain only the spectral 
component E. As a result, component A is present only in the inner most circle, component B is present only in 
the the two smallest circles, up to component E, which is present in all of the circles. The 5 image-spectrum pairs 
in Fig. 2 were then superimposed, resulting in a single multidimensional image that simulated a heterogeneous 
system with different spectra at different spatial locations. The spectral signal fraction of each component in such 
an image is weighted by the number of pixels in which it resides, e.g., component A is the least prevalent, and 
would therefore have the smallest overall signal fraction. Spectral noise was added such that each pixel contained 
a spectral peak with a slightly different mean and covaraince than the model, normally distributed around the 
original values with a standard deviation of 1.

The results of the numerical simulations are shown in Fig. 3. The ground truth spectrum shows the 5 compo-
nents, unweighted by their prevalence in the image. To the right of the ground truth spectrum, each image shows 
a spatial map of an integrated spectral peak, i.e., integration over peaks A–E result in images of their normalized 
signal fraction, I A

GT  to I E
GT , respectively. Before testing the conventional and proposed algorithms on the synthetic 

phantom we should keep in mind that the ability to distinguish between spectral components (i.e., spectral reso-
lution) dictates the specificity of the spatial maps. The challenge in correct and complete reconstruction therefore 
increases as the prevalence of a given spectral component in the image domain decreases. Thus, for instance, 
reconstructing I A

GT  in our simulations would present the greatest challenge.
The conventional approach of identifying the sROIs was used by averaging the spectra across all image pixels, 

which resulted in F  (center row, first column of Fig. 3). Visually, components A and B are not seen; using the 
automated peak finding algorithm did not improve the outcome. Peaks A and B were not detected because they 
were simply averaged out, such that F  no longer contained that spectral information. The process of selecting the 
sROIs was then used, which resulted in only 3 spectral regions (color coded, C–E) out of the 5 components. 
Compared with the ground truth, we can see that sROI C contained components C and B, and sROI E contained 
components E and A. Using these sROIs to integrate over the spectra and generate images resulted in 3 images, 

Figure 2. The simulations model. Each column shows a different simulated image-spectrum pair. Pixels in the 
inner most ring (I) contain all 5 spectral components (A–E), while pixels in the outer most ring (V) contain 
only a single spectral component (E). The synthetic phantom was created by superimposing all 5 image-
spectrum pairs.
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and because of the loss of spectral resolution, 2 of them were linear combinations of the correct ground truth 
images.

We tested our sROI generator on this challenging phantom. Upon visual examination of Fbin , we can see that 
components A and B were preserved (bottom row, Fig. 3). Using the automated sROI generator, 5 peaks were 
identified. Integration over those peaks resulted in a robust set of spectral components maps, IA to IE, which was 
highly similar to the ground truth images, I A

GT  to I E
GT , with structural similarity indices (SSIM) of .0 80, .0 82, .0 75, 

.0 84, and .0 90, and mean-squared error values of . −1 3e 4, . −3 0e 4, . −5 8e 4, . −6 9e 4, and . −4 8e 4, 
respectively.

Experimental Results
A human cortical brain specimen was imaged in a 7 T Bruker vertical bore microimaging scanner with an iso-
tropic voxel dimension of 300 µm, and a total of 274 acquisitions in the τ1−τ2−b space. The multidimensional 
correlation MRI resulted in 3 sets of voxelwise 2D spectra, such that each voxel of a 2D image contained −FT D1 , 

−FT D2 , and −FT T1 2, leading to 3 sets of 4D information. This multidimensionality is crucial, and as mentioned, it 
also presents a challenge, especially in extracting significant information and distilling it. We chose to focus on a 
cortical portion of the human brain because of its known anatomical heterogeneity, and the richness of the micro-
structural diversity. Similarly to the way the synthetic phantom data was processed, in this section we first pro-
cessed the correlation spectra using the conventional, spatial averaging approach, and then used the proposed 
sROI generator to extract images of different spectral components in the brain. For convenience, the MR dimen-
sions were partitioned into time ranges for T1 and T2, and mobility ranges for diffusion.

Conventional approach – spatial averaging. The top row of Fig. 4 shows spatially averaged T1− D , T2
− D , and T1−T2 distributions. In the left column of the Figure, the correlation distribution of diffusivity and 
longitudinal relaxation averaged across the entire image resulted in 3 spectral components: short T1−slow D , 
long T1−slow D , and long T1−fast D . These components and their respective sROIs were labeled A–C, which 
have led respectively to the spatial maps IA−IC. Looking at these images, IC contained highly saturated regions, 
which may indicate loss of spectral resolution. In other words, component C in −FT D1  is likely to be masking 
several different spectral components.

Looking at −FT D2 , the spectral resolution problem becomes more obvious; contradictory to a large body of 
research3,7,41–44, only 2 distinct diffusion−T2 peaks were captured by the spatially averaged distribution, although 
at least 3 components are expected from this brain region that contains a mixture of brain gray and white matter 
(GM and WM, respectively). Furthermore, the A and B sROIs separated the signal contributions exclusively 

Figure 3. Numerical simulations results. The spectrum on the top row shows the 5 ground truth spectral 
components unweighted by their prevalence in the image, with their corresponding ground truth spatial 
images. Results from using the conventional approach to processing spectral imaging data are shown on the 
center row. F  is simply an average spectrum across the entire image, and as such, it does not contain 
components A and B, and therefore cannot be used to correctly reconstruct the ground truth images. The 
bottom row shows the application of the suggested sROI generator, and its successful identification and 
reconstruction of the ground truth images.
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according to the diffusivity dimension, making the T2 dimension redundant (Fig. 4, center column). Similarly to 
the case of peak C in −⟨ ⟩⟨ ⟩FT D1 , here too, component B seems to be smearing over more than one distinct peak.

The dataset that correlated the distribution of the longitudinal and transverse relaxations is perhaps the most 
extreme demonstration of the importance of our proposed sROI generator (Fig. 4, right column). In this case the 
T2 dimension seems to be completely redundant, and the components in −FT T1 2  are only separable according to 
their T1 values. In addition, the resulting long T1 spatial map, IB, is obviously saturated and does not provide a very 
informative contrast.

New approach – single voxel contributions. The idea of the proposed automatic sROI generator is to 
preserve the inter-voxel variability and heterogeneity of the multidimensional correlation MRI spectra. As we saw 
in the previous section, using a whole image average of the spectra to identify the salient sROIs had led to an 
unequivocal loss of spectral resolution, and in turn, loss of sensitivity and specificity. In this section, the same 3 
sets of voxelwise 2D spectra were processed using the proposed automatic sROI generator algorithm, which 
yielded the images in Fig. 5. This time, instead of using the spatially averaged spectrum, F , an average of the 
binary peaks masks, Fbin , was used according to the proposed algorithm in Fig. 1.

Before examining these results more carefully, we can start by investigating the overall quality and richness of 
the information in the spatial maps in Fig. 5. The sROI generator preserved more spectral components, has identi-
fied a significantly larger number of multidimensional peaks, and the spatial maps did not contain over-saturated 
regions.

Focusing on the D −T1 correlation (Fig. 5, top row), 6 distinct components were identified (A–F). Looking 
closely, sROIs A and B are very similar to the ones found using the conventional approach. However, the remain-
ing 4 peaks, which resulted in the spatial maps IC−IF, present new information that would have been otherwise 
remained undetected. These images, which are all complementary to one another (i.e., they sum to 1), reflect 
specific microenvironments that are distinguished based on apparent water local mobility and longitudinal relax-
ation, such as long T1−fast D , etc.

Moving on to the center row of Fig. 5, 6 distinct D −T2 spectral components were identified, leading to 6 
spatial maps. Compared with the conventionally obtained spatial images in Fig. 4, in this case the T2 dimension 
was not redundant and resulted in a distinct separation to intermediate (inter.) and long T2 contributions, as 
expected from previous studies3,7,12,41–45. As with −FT D

bin
1 , here too the D  dimension, which corresponds to 

water mobility, was separated into 3 regimes: slow, inter., and fast.
Lastly, we examine the results of the automated sROI generator algorithm on the most challenging case, the T1

−T2 correlation, where the conventional approach was able to resolve only a single dominant spectral component 
(Fig. 4, bottom row). By taking into account the single voxel contributions that yielded −FT T

bin
1 2 , 4 distinct spectral 

components were observed, leading to the corresponding spatial maps in the bottom row of Fig. 5. The spatial 
localization of these T1−T2 components created 4 images with unique contrast and information of the examined 
brain tissue specimen.

Reproducibility of the sROI generator algorithm was demonstrated by evaluating its consistency across differ-
ent but consecutive coronal brain slices, in addition to the one shown in Fig. 5. Three adjacent slices were selected, 
from which the T1−T2 and the D −T2 datasets were processed. Using the same initialization and parameters for 

Figure 4. Conventional processing and image reconstruction of multidimensional correlation MRI data. T1
− D , T2− D , and T1−T2 distributions averaged across the image were used to locate the sROIs and to generate 
the signal fraction images (left to right). Note the loss of spectral resolution that resulted in redundancy of the T2 
dimension. Furthermore, many of the reconstructed images appear to be saturated, which implies the blending 
and smearing of the underlying spectral components.
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all slices, similar sROIs were identified in all cases, which led to the corresponding T1−T2 and D −T2 spectral 
components spatial maps shown in Figs. S1 and S2 in the Supplementary Information. Apart from the anatomical 
changes that are expected over a length of 1.2 mm, all of the spectral components spatial maps were consistent.

Discussion
In this study, we developed a novel method to preserve and correctly identify spectral components derived from 
multidimensional imaging data, thus significantly increasing the effective spectral resolution and specificity of 
the reconstructed images. Using simulations and experimental data we showed that the proposed framework will 
outperform the conventional spatial averaging method in most instances, if not all.

The synthetic phantom results demonstrated how the proposed sROI generator is able to preserve spectral 
resolution, which is also its advantage over the conventional method. Being able to identify spectral components 
that may be localized in small regions of the image (e.g., pathological tissue), and would have been otherwise 
averaged out, is extremely important if one wishes to image those abnormal regions.

This development allowed us to apply, for the first time on ex vivo human brain, multidimensional correla-
tion MRI. Compared with the conventional approach for processing such data, our results showed the useful-
ness, robustness and efficiency of the proposed method to automatically generate sROIs. Consistency of spectral 
images between serial coronal slices of the brain indicates that the the inversion algorithm and the sROI generator 
framework are stable and reproducible. The significance and impact of this work lies in the interpretation of the 
multidimensional spectral components images of the brain, shown in Fig. 5. Although it is not the direct subject 
of this work, a limited interpretation of these images in a biological context may illustrate the potential of the 
emerging field of multidimensional correlation MRI, and in particular, the use of a robust sROI generator.

Generally speaking, diffusivity is associated with water mobility, and therefore slow D  indicates high micro-
scopic restrictions, or barriers, while faster D  values point to the opposite. In the brain, GM and WM can be 
distinguished relatively well based on the distribution of D , with GM having spectral components with faster 
diffusion compared with WM4,22,46. The range of T2 of a specific spectral component can be used to determine 
whether it is associated with intracellular or extracellular water, the former having longer T2 than the latter7,25,43. 

Figure 5. Proposed framework for processing and image reconstruction of multidimensional correlation MRI 
data. −FT D

bin
1 , −FT D

bin
2 , and −FT T

bin
1 2  were computed using the proposed algorithm in Fig. 1 (top to bottom). 

These summarized spectra were then used to identify and define sROIs. Note that compared with the 
conventional approach, the sROI generator preserved more spectral components, has identified a significantly 
larger number of multidimensional peaks, and the spatial maps did not contain over-saturated region.
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Myelin, which is an essential lipid-rich substance that insulates nerve cell axons, can be quantified from the the 
short T1

47,48 and short T2 components29,49.
In our case, each signal fraction image in Fig. 5 contains information from a specific multidimensional spec-

tral component. Based on prior studies, some of these images can be assigned to a physical or biological compo-
nent with relatively high certainty. The long T1−fast D  and the long T1−long T2 images are likely to be associated 
with unrestricted bulk water, while the short T1−short T2 and the short T1−slow D  images are presumably asso-
ciated with myelin. Additionally, clear separation of GM and WM is evident in some of the images, where, for 
example, the inter T2−slow D  and long T1−inter D  images exhibit hyperintensities primarily in WM, while the 
inter T1−fast D  image is more specific to the cortical GM. Furthermore, some spectral components images, 
primarily the short T1−long T2 and the long T2−inter D , capture the heterogeneity of the GM cortical layers, 
suggesting that multidimensional correlation MRI can be utilized to provide cortical layer-specific information. 
A complementary neuropathological study of the tissue should be performed to establish a direct correlation 
between these novel multidimensional MR images and known neuroanatomy. These efforts are currently under-
way and will be the subject of future publications.

This work proposed and evaluated a robust framework for processing of multidimensional correlation MRI 
data that preserves spectral resolution while performing the required dimensionality reduction and image recon-
struction. We demonstrated that the sROI generator has powerful capabilities for resolving the complex multi-
dimensional spectral signature into separable components using numerical simulations and data from human 
brain. Furthermore, our work has highlighted the intrinsic flaws of the conventional treatment of multidimen-
sional MRI data. Using a robust processing framework allowed us to apply this new phenomenological imaging 
modality to generate multiple images of intra-voxel components in the human brain, thus potentially overcoming 
spatial resolution limitations.

Materials and Methods
Tissue preparation. A portion of occipital lobe was obtained from a brain specimen that was derived from 
the Uniformed Services University/Center for Neuroscience and Regenerative Medicine (USU/CNRM) Brain 
Tissue Repository collection (U.S. Department of Defense, Bethesda, Maryland, USA). Next of kin provided 
written consent for participation and brain donation. The tissue archive used have approved procedures for the 
donation of tissue and storage of clinical information. This study received Institutional Review Board (USU) 
approval prior to the initiation of the study. All experiments were performed in accordance with the relevant 
guidelines and regulations. Following formalin fixation, the brain was serially sectioned in the coronal plane. A 
segment of occipital lobe measuring approximately 5 mm in thickness and containing V1 was then subdissected 
and used for this study.

MRI acquisition protocol. The cortical brain specimen was imaged using a 7 T Bruker vertical bore micro-
imaging scanner with a 30 mm quadruple RF coil. A 3D inversion recovery spin-echo diffusion-weighted (DW) 
echo planar imaging (IR–DWI–EPI) sequence was used with a repetition time of 1200 ms, and the following 
spatial parameters: field of view (FOV) 33 × 26 × 18 mm3 and matrix 110 × 87 × 60 for isotropic voxel dimension 
of 300 µm. The sample temperature was set at . 16 8 C.

For a DW experiment, the spin magnetization decays according to the diffusivity, D, due to the experimental 
parameters, the gradient amplitude, G, its duration δ, and separation ∆, which can be summarized in DW param-
eter, γ δ δ= ∆ −b G ( /3)2 2 2 , where γ is the gyromagnetic ratio. For a T1−weighted measurement, the spin magnet-
ization returns to thermodynamic equilibrium, followed by an IR experiment with the inversion period, τ1, as the 
governing experimental parameter. Finally, the echo time, τ2, governs the decay due to T2.

The acquisition of multidimensional data was done according to the MADCO framework encoding 
scheme25,27. First, the three 1D distributions of T1, T2, and D, were estimated, respectively, with the following data 
acquisition protocols: A 1D T1-weighted data set ( =b 0, τ = .11 62  ms) with 21 logarithmically sampled τ1 values 
ranging from 14.3 to 800 ms by using an IR–DWI–EPI sequence; a 1D T2−weighted data set ( =b 0) with 20 log-
arithmically sampled τ2 values ranging from 11.6 to 120 ms by using a DWI–EPI sequence. For diffusion encod-
ing, we used the isotropic generalized diffusion tensor MRI (IGDTI) acquisition protocol to achieve an efficient 
orientationally averaged DW signal33 with the following parameters: 21 linearly sampled b-values ranging from 
400 to 16000 s/mm2 in 3 directions, 16 linearly sampled b-values ranging from 4000 to 16000 s/mm2 in 4 direc-
tions, and 11 linearly sampled b-values ranging from 8000 to 16000 s/mm2 in 6 directions, using the efficient 
gradient sampling schemes in Table 2 of  33. Additional DW parameters were δ = 4 ms and ∆ = 15 ms.

The three 2D distributions of D−T1, D−T2, and T1−T2, were estimated, respectively, with the following data 
acquisition protocols (in conjunction with the a priori obtained 1D distributions as constraints): A 2D D−T1
-weighted data set with 12 sampled combinations of inversion times and b-values within the above 1D acquisition 
range by using an IR–DWI–EPI sequence; a 2D D−T2−weighted data set with 16 sampled combinations of echo 
times and b-values within the above 1D acquisition range by using an DWI–EPI sequence; a 2D T1−T2−weighted 
data set with 12 sampled combinations of inversion and echo times within the above 1D acquisition range by 
using an IR-EPI sequence.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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