
1Scientific RepoRtS |         (2020) 10:3655  | https://doi.org/10.1038/s41598-020-59963-8

www.nature.com/scientificreports

Mosaic chromosome Y loss is 
associated with alterations in blood 
cell counts in UK Biobank men
Shu-Hong Lin1, erikka Loftfield1, Josh n. Sampson1, Weiyin Zhou1,2, Meredith Yeager1,2, 
neal D. freedman1, Stephen J. chanock1 & Mitchell J. Machiela1*

Mosaic loss of Y chromosome (mLoY) is the most frequently detected somatic copy number alteration 
in leukocytes of men. in this study, we investigate blood cell counts as a potential mechanism linking 
mLOY to disease risk in 206,353 UK males. Associations between mLOY, detected by genotyping 
arrays, and blood cell counts were assessed by multivariable linear models adjusted for relevant risk 
factors. Among the participants, mLOY was detected in 39,809 men. We observed associations between 
mLoY and reduced erythrocyte count (−0.009 [−0.014, −0.005] × 1012 cells/L, p = 2.75 × 10−5) and 
elevated thrombocyte count (5.523 [4.862, 6.183] × 109 cells/L, p = 2.32 × 10−60) and leukocyte count 
(0.218 [0.198, 0.239] × 109 cells/L, p = 9.22 × 10−95), particularly for neutrophil count (0.174 × [0.158, 
0.190]109 cells/L, p = 1.24 × 10−99) and monocyte count (0.021 [0.018 to 0.024] × 109 cells/L, 
p = 6.93 × 10−57), but lymphocyte count was less consistent (0.016 [0.007, 0.025] × 109 cells/L, 
p = 8.52 × 10−4). Stratified analyses indicate these associations are independent of the effects of aging 
and smoking. Our findings provide population-based evidence for associations between mLOY and 
blood cell counts that should stimulate investigation of the underlying biological mechanisms linking 
mLoY to cancer and chronic disease risk.

Recently, large molecular epidemiology studies have shown that hematopoietic cells can undergo postzygotic 
mutations resulting in somatic copy number alterations, which can give rise to daughter cells with the same 
genomic aberration. Clonal expansion of cells bearing a somatic mutation results in clonal mosaicism1. Clonal 
mosaicism can be driven by somatic mutations affecting genes frequently mutated in myelodysplastic disease 
(referred to as clonal hematopoiesis of indeterminate potential (CHIP))2 or be the result of acquired copy number 
aberrations. The most frequently detected somatic copy number alteration in circulating leukocytes is mosaic loss 
of the Y chromosome (mLOY) in males3–5. The prevalence of mLOY is age-related, increasing substantially after 
age 50 in men. Likewise, CHIP is common in the elderly, with recent evidence suggesting CHIP and mLOY may 
co-occur6. Exposure to cigarette smoking4,7 has also been well established as a risk factor for mLOY and recently, 
early evidence suggests that air pollution could also be associated with mLOY8. Epidemiologic studies have 
uncovered potential associations between mLOY and increased risk of cancer3–5, neurodegenerative diseases9, 
and cardiovascular diseases10,11. Similarly, CHIP has been associated with select cancers and cardiovascular dis-
ease2. Although common germline variants near important cell-cycle regulation and cancer susceptibility genes 
have been identified through genome-wide association studies of mLOY4,12, the underlying biologic mechanisms 
linking mLOY to chronic disease risk are likely complex.

We investigated possible associations between mLOY and clinical measures, here the composition of the clas-
sical hematologic compartments in the UK Biobank, which has available genomic and blood cell count data on 
over 220,000 men, providing a large well-characterized population to investigate these questions. We performed 
multivariable, stratified and mediation analyses to evaluate the association of mLOY with blood cell count and 
distribution. Our study provides a unique, population-based investigation of changes in blood cell counts associ-
ated with a somatic mutation. Our findings indicate robust associations between mLOY and leukocyte, erythro-
cyte and thrombocyte counts, independent of age and cigarette smoking.
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Methods
The current analyses were extension of our previous studies5,13,14 which included population-based data from 
223,336 males between age 37 and 73 recruited between 2007 to 2010 from the UK Biobank15,16. After providing 
informed consent, each participant provided a blood sample, answered a detailed health and lifestyle question-
naire, and had physical measurements taken. Collected blood was held at 4 °C and sent to a central processing 
laboratory in temperature-controlled boxes. Samples were processed, aliquoted and cryopreserved at −80 °C or 
−196 °C. One tube of blood was loaded on a Beckman Coulter LH750 to provide direct measurement of various 
blood cell counts and indices including but not limiting to hematocrit, plateletcrit, mean corpuscular volume, 
hemoglobin, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, mean sphered cell 
volume, mean platelet volume, platelet distribution width, immature reticulocyte fraction, and high light scatter 
reticulocyte proportion.

Blood-derived DNA from UK Biobank men was extracted starting early 2013 and genotyped on Affymetrix 
UK BiLEVE or UK Biobank Axiom arrays. mLOY was measured by two different methods. The first measure of 
mLOY was made by examining the median log R ratio (mLRR) of 691 single nucleotide polymorphisms spanning 
the male specific region of the Y chromosome. LRR is a measure of probe signal intensity on the genotyping array 
with negative values across contiguous variants indicating evidence for a copy number loss and positive values 
indicating copy number gain. Men with mLRR > 0.15 could possibly have a mosaic gain of Y chromosome or a 
constitutional extra copy of the Y chromosome (XYY syndrome) and were removed (205 men, 0.09%). We also 
apply the methods proposed by Thompson et al.14 to call dichotomized mLOY. For clarity, we use the term mLOY 
for dichotomized mLOY calls by Thompson et al.

Our final analytical set included 206,353 self-reported men who reported no prior cancer history at recruit-
ment (n = 14,356 excluded), did not have X chromosome heterozygosity (n = 167 excluded), had consist-
ent smoking data (n = 2 excluded), were without evidence of copy number gains of Y chromosome (n = 205 
excluded) and passed quality control during the dichotomized mLOY detection step (n = 2,394 excluded) as 
shown in Fig. 1. Multivariable linear regression was employed to identify associations between lifestyle factors, 
mLOY and blood cell counts. Factors which might influence blood cell counts (smoking17, BMI18, alcohol con-
sumption19, diabetes20, hypertension21, and hypoercholesterolemia22) were included in multivariable models. 
For interaction between smoking and mLOY, we fit models with mLRR, 3-level smoking status (never, former, 
current), interaction terms between mLRR and smoking, and all other aforementioned covariates. We adjusted 
for continuous age, age squared13, race/ethnicity, smoking, alcohol consumption, continuous body mass index 
(BMI), self-reported diabetes, hypertension, and hypercholesterolemia. When modeling mLRR, we applied the 
following formula to calculate standardized mLRR for easier interpretation of the regression coefficient. We first 
subtracted mean of raw mLRR (mLRRr) from all raw mLRR, divided the difference by standard deviation (S.D.) of 
mLRRr, and flipped the sign (to have effect estimates in the same direction as the dichotomous mLOY estimates).

= −
−

. .
mLRR mLRR mLRR

S D (mLRR )
r r

r

A 25-level smoking status variable was created according to prior literature13 and used in the majority of our 
models. In brief, a detailed smoking history variable was created by combining information on baseline smoking 

Figure 1. Number of participants. The number of participants excluded by each criterion was shown.
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status, smoking intensity, time since quitting, and type of tobacco product smoked (i.e., cigarettes or cigars/pipes). 
Indicator variables were created for each category and “never smokers” were used as the reference group. After 
accounting for skip patterns, a small percentage of respondents were missing one or more pieces of information. 
Because we had some, but not complete, smoking information on these respondents we created a number of 
indicator variables for each of the partial missing categories. Alcohol consumption was coded in 7 levels (never, 
former, occasional, 1–3 drink/month, 1–2 drink/week, 3–4 drink/week) according to the history and frequency 
of consumption. Continuous BMI was used in most models while a 5-level BMI defined by the World Health 
Organization (WHO) was also presented for reference. All missing data in categorical variables were coded as 
‘missing’ and included in the analysis. A significance level was set at 0.001 to account for multiple comparisons 
(0.05/50 independent tests for all indicator variables). To evaluate the effect of any potential residual confounding 
from smoking and age in the reported association between mLOY and blood cell counts, we conducted a sensi-
tivity analysis restricted to strata of ever or never smokers and individuals older or younger than 65 years old. We 
chose 65 years old because the prevalence of mLOY increased exponentially between 60 to 70 years old even for 
never smokers (Fig. S1).

A polygenic risk score (PRS) was created to estimate the effect of genetic contributors to mLOY. The PRS 
was calculated by scoring risk alleles in 156 variants previously found to be associated with mLOY risk using the 
formula:

∑= β
=

( )PRS SNPi
j 1

156

i ij

i denotes an individual while j denotes a SNP being scored. The number of risk alleles of each variant (SNPij) were 
weighted by reported estimates for log odds ratio of risk alleles (β)23. Then, blood cell counts and other indices 
were regressed against the PRS instrumental variable to investigate for potential associations between mLOY PRS 
and blood counts. Mediation analyses were conducted to estimate the direct and indirect effect among smoking, 
mLOY, and blood cell counts while controlling for BMI, ethnicity, alcohol consumption, diabetes, hypertension 
and hypercholesterolemia using the “mediation” package in R24.

Finally, we performed reciprocal Mendelian randomization (MR) on previously reported mLOY-associated 
SNPs as well as blood cell count-associated SNPs obtained from PhenoScanner25,26. We queried for respective 
blood cell counts in PhenoScanner and discarded multi-allelic SNPs. The final list of SNPs included 270 for leu-
kocyte count27–39, 1,888 for erythrocyte count29,31–36,39–48, and 662 for thrombocyte count29,31–36,44,49–55. Estimation 
of causal association was carried out by the “MendelianRandomization” package56. All statistical analyses were 
performed in R version 3.5.2 and plots were created using the “ggplot2”57 and “sjPlot”58 packages.

ethical approval. The UK Biobank received ethical approval from the research ethics committee (REC 
reference for UK Biobank 21552) and all participants provided signed informed consent at enrollment and all 
research was performed in accordance with relevant guidelines/regulations. All data used in this analysis is avail-
able through application to the UK Biobank.

Results
Patient characteristics are shown in Table 1 based on their mLOY status. Among the 206,353 UK Biobank 
male subjects in our analytic set, we detected mLOY in 39,809 men (19.29%). Compared to participants with-
out mLOY, those with mLOY were older (6.683 [6.598, 6.768] years, p < 5 × 10−324), more likely to be white 
(OR = 2.822 [2.560, 3.118], 4.014 [3.464, 4.682] compared to Asian and Black, respectively. p < 5 × 10−324 for 
both), more likely to smoke (OR = 1.588 [1.551, 1.627] and 1.973 [1.910, 2.038] for former and current compared 
to never smokers, respectively. p < 5 × 10−324 for both), more likely to consume alcohol (OR = 1.451 [1.324, 1.591] 
and 1.326 [1.234, 1.426] for former and current compared to never drinkers, p = 8.88 × 10−16 and 4.00 × 10−15, 
respectively), less likely to have BMI > 35 (OR = 0.645 [0.513, 0.820], p < 5 × 10−324), more likely to have diabetes 
(OR = 1.121 [1.072, 1.171], p = 6.71 × 10−7), hypertension (OR = 1.344 [1.314, 1.376], p < 5 × 10−324), and hyper-
cholesterolemia (OR = 1.509 [1.468, 1.552]], p < 5 × 10−324). As expected, as individuals age, the prevalence of 
mLOY increased exponentially (Fig. S1). There was no significant difference for mLOY prevalence by assessment 
center and region (Table S1). In univariable analyses, we detected associations (p < 0.001) between mLOY and 
counts of six blood cell populations including leukocytes, erythrocytes, thrombocytes, lymphocytes, monocytes, 
and neutrophils (Fig. 2). We examined possible confounding by immune-related diseases identified in inpatient 
records and did not identify any statistically significant association between these diseases and mLOY (Table S2).

Multivariable analyses further confirmed this relationship between mLOY and blood cell count for eryth-
rocytes (ORmLOY = −0.009 [−0.014, −0.005] × 1012 cells/L, pmLOY = 2.75 × 10−5; βmLRR = −0.009 [−0.010, 
−0.007] × 1012 cells/L, pmLRR = 8.73 × 10−23 for categorical mLOY and increase in each standard deviation of 
mLRR, respectively with all following estimates, 95% CIs, and p values reported in the same order), leukocytes 
(ORmLOY = 0.218 [0.198, 0.239] × 109 cells/L, pmLOY = 9.22 × 10−95; βmLRR = 0.058 [0.050 to 0.066] × 109 cells/L, 
pmLRR = 6.48 × 10−45) and thrombocytes (ORmLOY = 5.523 [4.862, 6.183] × 109 cells/L, pmLOY = 2.32 × 10−60; 
βmLRR = 2.321 [2.063, 2.579] × 109 cells/L, p = 2.41 × 10−69) (Fig. 3; Table S3). Among these blood cell count asso-
ciations, mLOY was positively associated in all cases except for erythrocyte count where an inverse association 
was observed. For leukocyte populations, we observed elevated monocyte (ORmLOY = 0.021 [0.018, 0.024] × 109 
cells/L, pmLOY = 6.93 × 10−57; βmLRR = 0.005 [0.004, 0.006] × 109 cells/L, pmLRR = 5.24 × 10−25) and neutrophil 
(ORmLOY = 0.174 [0.158, 0.190] × 109 cells/L, pmLOY = 1.24 × 10−99; βmLRR = 0.055 [0.048, 0.061] × 109 cells/L, 
pmLRR = 4.81 × 10−65) counts associated with mLOY (Table S4). We found inconsistent evidence for an over-
all association between mLOY and the overall lymphocyte count (ORmLOY = 0.016 [0.007, 0.025] × 109 cells/L, 
pmLOY = 8.52 × 10−4; βmLRR = −0.002 [−0.005, 0.002] × 109 cells/L, pmLRR = 0.345). While certain immune-related 
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diseases were associated with blood cell counts (Tables S5 and S6), these diseases occurred in less than 1% of 
individuals and inclusion of these diseases did not significantly alter the estimates for mLOY and other risk fac-
tors. All observed blood count associations demonstrated a dose-response relationship which is evident in the 
mLRR results. The most prominent association was observed for neutrophil count in which men with mLOY 
had 1.74 × 108 more cells per liter compared to men without detectable mLOY. This is equivalent to an average 
increase of 4.153% in median neutrophil count among men without mLOY. As a comparison, among erythro-
cytes, the least associated blood cells, men with mLOY had 9 × 109 fewer erythrocyte per liter compared to men 
without mLOY, a decrease equivalent to 0.189% of the mean erythrocyte count in individuals without detectable 
mLOY.

In addition to mLOY, the multivariable model also provided estimates for other potential factors associated 
with blood cell counts. Smokers who smoke >40 cigarettes per day had leukocyte count 36.91% higher than the 
median leukocyte count of never smokers with the elevation being evenly distributed across lymphocytes, mono-
cytes, and neutrophils (Figs. 3 and S2). Black ethnicity was associated with 19.26% less leukocyte and 10.61% less 
thrombocyte compared to Whites, and the decrease in leukocyte count was more prominent among monocytes 
(19.80%) and neutrophils (32.67%), but relatively mild in lymphocytes (8.56%) suggesting a preferential activa-
tion of innate immunity. Alcohol consumption, even among daily drinkers, is mildly associated with blood cell 
counts, and the largest effect size was observed for decrease in leukocyte count (4.14%) when compared to never 
drinkers. Another factor associated with blood cell counts is body mass index (BMI) where having BMI greater 
than 35 was associated with increased leukocyte (13.60%), erythrocyte (2.92%), lymphocyte (16.61%), monocyte 
(16.86%), and neutrophil (11.72%) counts as well as decreased thrombocyte count (1.91%) compared to those 
with normal BMI (18.5 to 25).

As indicated in Table S7, neutrophil-lymphocyte ratio (NLR), a measure used to evaluate systemic inflam-
mation in cancer patients, was found to be significantly elevated in men with mLOY (ORmLOY = 0.061 [0.045, 
0.077], pmLOY = 2.98 × 10−14). The thrombocyte-lymphocyte ratio (TLR), a prognostic indicator for select cancer 
types59–62, was also found to be elevated in men with mLOY (ORmLOY = 1.288 [0.564, 2.012], pmLOY = 4.90 × 10−4). 
These mLOY associations with NLR and TLR showed robust dose response relationships and demonstrated sig-
nificant trends with continuous mLRR (pmLRR = 1.39 × 10−33 and 3.31 × 10−32, respectively), suggesting robust 
relationships for mLOY with measures of both systematic inflammation and cancer prognosis.

To better understand the changes in erythrocyte and platelet counts, we also explored associations between 
mLOY and multiple erythrocyte indices. Both univariable (Fig. 2) and multivariable (Tables S8 and S9) regres-
sion on erythrocyte-related indices indicated that mLOY was associated with an increase in mean corpuscular 

Characteristics Normal mLOY Pa

Participants 166548 (80.7) 39809 (19.3) NA

Age (mean,SD) 55.199 (8.168) 61.882 (5.784) <5 × 10−324

Ethnicity

White 155443 (80) 38790 (20) Ref

Mixed 922 (90.5) 97 (9.5) <5 × 10−324

Asian 4932 (91.9) 436 (8.1) <5 × 10−324

Black 2914 (94.2) 181 (5.8) <5 × 10−324

Other 1648 (92.3) 138 (7.7) <5 × 10−324

Smoking status

Never 86007 (84.8) 15474 (15.2) Ref

Former 60851 (77.8) 17388 (22.2) <5 × 10−324

Current 19072 (73.8) 6770 (26.2) <5 × 10−324

Alcohol drinking

Never 4877 (84.7) 883 (15.3) Ref

Former 5660 (79.2) 1487 (20.8) 8.88 × 10−16

Current 155837 (80.6) 37408 (19.4) 4.00 × 10−15

Body mass index

18.5- 339 (78.3) 94 (21.7) 0.279

18.5to25 39733 (80.4) 9702 (19.6) Ref

25to30 80774 (80.3) 19853 (19.7) 0.636

30to35 32845 (81.4) 7507 (18.6) 1.08 × 10−4

35+ 9864 (84.8) 1767 (15.2) <5 × 10−324

Diseases

Diabetes 9870 (79) 2625 (21) 6.71 × 10−7

Hypertension 48007 (77.4) 14033 (22.6) <5 × 10−324

Hypercholesterolemia 24396 (74.9) 8192 (25.1) <5 × 10−324

Table 1. Patient characteristics by mLOY status. Abbreviations: mLOY: mosaic loss of the Y chromosome. 
aFisher’s exact test with mid-p method.
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hemoglobin (MCH), mean corpuscular volume (MCV), immature reticulocyte fraction (IRF), mean sphered cell 
volume (MSCV), and high light scatter reticulocyte percentage (HLSRP) as well as decrease in hemoglobin (Hb).

To evaluate the potential effect of possible residual confounding from smoking, we conducted a sensitivity 
analysis restricted to strata of ever or never smokers. For leukocyte, erythrocyte, thrombocyte, monocyte, and 
neutrophil count, associations with mLOY and cell count remained significant, but the effect size was larger in 
ever smokers for all counts except thrombocyte count. (Tables S10–S13). Interestingly, lymphocyte count was 
only significantly increased in ever smokers. We further tested for interactions between mLOY and smoking on 
changes in blood cell count. mLRR was found to significantly interact with current smoking status in analyses 
of leukocyte (p = 5.06 × 10−31), thrombocyte (p = 4.18 × 10−6), lymphocyte (p = 5.25 × 10−11), and neutrophil 
(p = 2.26 × 10−25) count. Likewise, significant interactions between mLRR and former smoking status were also 

Figure 2. Blood cell counts and indices by mLOY status. Various blood cell counts among men with different 
mLOY status were observed in univariate analyses. Yellow, Normal: men with normal chromosome Y; 
Orange, mLOY: men with mLOY. All displayed counts and indices had p < 0.001 when comparing between 
participants with or without mLOY. Black dashed lines: median count among normal individuals. Blue dashed 
lines: reference ranges from prior studies73–75. MCV: mean corpuscular volume. MCH: mean corpuscular 
hemoglobin. MCHC: mean corpuscular hemoglobin concentration. MSCV: mean sphered corpuscular volume. 
IRF: immature reticulocyte fraction. PDW: platelet distribution width.
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seen for leukocyte (p = 5.30 × 10−8) and neutrophil (p = 2.33 × 10−6) count. Inclusion of interaction terms modi-
fied the magnitude of association between mLRR and blood cell counts, but the direction of association between 
mLRR and cell counts remained the same except for lymphocyte count where the direction of association flipped 
in never smokers (Fig. S3). The associations between mLOY and NLR remained statically significant in both ever 
and never smokers (Table S14). We observed a stronger association between TLR and mLOY in never smokers 
(Table S15).

When stratified by age (<65 and ≥65), all blood cell counts remained significantly associated with mLOY 
at similar magnitude except for lymphocyte counts which were only marginally significant in the ≥65-year-old 
group (Tables S16–S19). As for NLR and TLR the magnitude of association between TLR and mLRR more than 
doubled in the ≥65 age group (Tables S20 and S21).

We also constructed a polygenic risk score using 156 SNPs previously found to be associated with mLOY23 as 
an instrumental variable to further investigate the association between mLOY and blood cell counts. As shown 
in Table S22, the mLOY PRS was significantly associated with leukocyte, erythrocyte, thrombocyte, monocyte, 
and neutrophil counts and the effect sizes closely mirrored those seen observationally for mLRR. Interestingly, 
the effect estimate for erythrocyte count was in the inverse direction for the mLOY PRS, suggesting potential 
non-genetic influences such as malnutrition or hypothyroidism could modify this association. The association 
between the mLOY PRS and blood cell counts was also examined in UK Biobank females and observed similar 
results as in males. We did not observe an association between mLOY PRS and overall lymphocyte count in the 
UK Biobank (Table S22).

In addition, we conducted reciprocal MR with SNPs associated with mLOY and blood cell counts (Table S23 
and Fig. S4). We noted bi-directional effects for leukocyte count and thrombocyte count suggesting a potential 
shared biological process between mLOY and blood cell counts, although further studies are needed to confirm 
these findings. For erythrocyte counts, a potential effect was only observed from erythrocyte to mLOY, although 
the estimated effect size was small suggesting environmental or non-genetic contributors may also be important 
in this relationship.

Mediation analyses were also conducted to investigate whether mLOY acts as a potential mediator of the asso-
ciation between age or smoking and blood cell count. We found evidence suggesting most associations between 
age and blood cell counts were only partially mediated by mLOY (Tables S24 and S25). The estimated proportion 
of effect mediated by mLOY was less than 4%, suggesting any potential mediation effect of mLOY on age-related 
changes in blood cell counts only accounts for a small proportion of the total effect. We also found limited evi-
dence suggesting mLOY mediated the association between smoking and blood cell counts (Tables S26 and S27) 
including leukocytes, erythrocytes, thrombocytes, monocytes and neutrophils with estimated proportion medi-
ated of less than 2% of the total effect.

Figure 3. Relative impact of selected risk factors associated with leukocyte, erythrocyte, and thrombocyte 
counts. Multivariable linear regression models adjusted for age, age squared, race/ethnicity, smoking, alcohol 
consumption, body mass index (continuous variable), diabetes, hypertension, and hypercholesterolemia. The 
reference group for categorical variables were no mLOY, Caucasian, never smoker, never drinker, 18.5 ≤ body 
mass index <25, no diabetes, no hypertension, no hypercholesterolemia. The point estimates, confidence 
interval, and p-values can be found in Table S1.
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Discussion
We present evidence from a large cross-sectional study that demonstrates significant population-based associa-
tions between men with mosaic loss of the Y chromosome (mLOY) and circulating blood counts, as measured in 
a complete blood count. While differences observed remain within the range of expected healthy counts, some 
men with high proportions of mLOY had substantial deviations in blood cell counts, which could be a harbinger 
of chronic disease risk.

In a 2018 report by Loh et al., enrichment of autosomal mosaic events was observed among people with 
abnormal blood cell indices in UK Biobank63. For instance, the odds of having a copy number neutral mosaic 
event in chromosome 9p was 17.7 [10.2, 30.6] times higher among people with top 1% erythrocyte counts 
(p = 1.1 × 10−13). While Loh et al. detected an interesting association, the authors only examined the extreme 
1% of blood cell indices which resulted in a small sample size and accordingly wide confidence intervals. Their 
analysis was also a univariable statistical test which did not take into account potential confounding by other 
factors. A recently published study on 57, 987 men in Biobank Japan also reported associations among mLOY, 
increased thrombocyte and leukocyte counts64. While the authors did not find statistically significant negative 
associations between erythrocyte counts and continuous mLRR in univariable models, effect estimates indicate 
men with mLOY trended toward a decreased erythrocyte count. In the current study, we modeled mLOY in both 
continuous and categorical measures and employed multiple strategies to prevent potential confounding includ-
ing multivariable models adjusting for potential risk factors as well as polygenic risk scores and a Mendelian 
randomization framework which are less susceptible to confounding.

A proposed biologic mechanism relating mLOY to disease risk has been through alteration of the immune 
system and its response to multiple factors3,65. mLOY could be associated with differences in blood counts either 
as a consequence of the mosaicism or as a response to one or more exposures that drive development and mainte-
nance of mLOY. In particular, neutrophils have been suggested to promote tumor initiation by releasing reactive 
oxygen species, reactive nitrogen species, and proteases, as well as promote progression by activating senescent 
cancer cells and suppressing CD8+ T cell-mediated immune responses66. The role of thrombocytes is complex: 
classically platelet counts can be elevated in inflammatory conditions or select pediatric cancers (e.g., neuroblas-
toma). The literature also supports the association of elevated platelet counts with lung cancer risk59. Still it is 
plausible that thrombocytes could contribute to tumor progression by stimulating angiogenesis67 and activating 
thrombosis-related inflammation68. In addition, observational studies have found that the composition of blood 
cells including neutrophil-lymphocyte ratio and thrombocyte-lymphocyte ratio are associated with overall and 
disease-free survival in multiple cancers69.

Stratified analyses and inclusion of interaction terms in multivariable models demonstrated that smoking 
status interacts with mLOY and strengthened the association between mLOY and blood cell counts. Among the 
six blood cell types we reported, smoking status did not alter the directionality of associations between blood 
cell counts and mLOY except for lymphocytes. While mLOY was positively associated with lymphocyte counts 
in ever smokers, the association flipped in never smokers. This stark change in association along with a relatively 
mild association between mLOY and thrombocyte resulted in a larger effect size in association between TLR 
and mLOY in never smokers. Although high TLR has been suggested to be a prognostic biomarker reflecting 
systemic inflammation in cancer patients, the clinical utility of such a biomarker in healthy individuals remained 
uncertain. If deviations in blood cell counts were persistent over years or decades, these alterations could have an 
impact on immune regulation and immunosenscence, both likely contributors to chronic disease risk. Since we 
do not fully understand the underlying mechanisms, it is plausible that perturbations in genomic stability and cell 
cycle pathways could be altered as well. The strongest effect of mLOY is seen in the myeloid lineage, which is con-
sistent with the immune hypothesis as a key element. The involvement of the myeloid lineage also suggests CHIP 
(a correlated phenotype) may have some relevance for these observed associations. We observed no relationship 
with basophil and eosinophil counts as well as overall lymphocyte counts.

It is notable that mLOY is associated with other non-leukocyte parameters, such as an increase in eryth-
rocyte size and a decrease in hemoglobin concentration per cell as well as an increase in thrombocyte counts 
accompanies by a decrease in platelet distribution width. The changes in erythrocyte indices were similar to 
macrocytic hypochromic anemia. And the most common causes for macrocytic anemia were vitamin B12 and 
folate deficiency70. A report in 2016 on National Diet and Nutrition Surveys found that 12.4% and 6.4% women 
in childbearing age were deficient in serum vitamin B12 and folate despite 96% consumption of adequate B12 
in UK71 suggesting that the current recommended intake of vitamin B12 and folate might require adjustment to 
accommodate difference in life style or genetic background which may influence bioavailability. The intake and 
deficiency of vitamin B12 and folate among men was under-studied. The cross-sectional design of current inves-
tigation is inadequate for elucidating causal relationship, but the potential involvement of mLOY and vitamin B12 
and folate metabolism might warrant further study. The effect of mLOY on red blood cells is intriguing in light 
of the steady decline in hematopoietic regeneration after middle age- and indeed, our finding could be correlated 
but not causally related to such72.

Despite careful consideration of the effects of age and tobacco use in our analysis, we cannot rule out potential 
biases of residual confounding, or confounding by other unmeasured or unadjusted exposures. Increasing age 
and tobacco use are associated with both mLOY and changes in blood cell count indices and warrant careful 
consideration to remove potential confounding in our analysis of the association between mLOY and blood cell 
counts. To adjust for these effects, multivariable regression models adjusted for a 25-level smoking variable and 
allowed for non-linear relationships with age. Furthermore, stratified analyses restricted to strata of age group and 
smoking status found no major differences in overall analytical outcome except for in sub-analyses of lympho-
cytes; suggesting potential effect modification by age and tobacco use for lymphocytes. Additionally, we used a 
mLOY PRS as a genetic instrumental variable to further investigate the association between mLOY and blood cell 
counts. Again, blood cell indices that were significantly associated with mLOY in the observational data were also 
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associated in this genetic analysis. The only exception was erythrocyte indices which remained highly significant 
but had effect sizes in the opposite direction, suggesting environmental contributors may have strong influence 
in this relationship.

Our analysis in the UK Biobank provides important evidence that mLOY in circulating blood cells is associ-
ated with changes in blood cell counts. Our cross-sectional investigation is unable to determine the temporality 
of this relationship (e.g., does mLOY precede changes in blood cell count). Results from our mediation analyses 
indicate mLOY could account for a small proportion of age and smoking-related effects on blood cell count; 
suggesting mLOY may precede changes in blood cell counts. Alternatively, the PRS analysis in women (who do 
not carry a Y chromosome) demonstrates a strong relationship between mLOY genetic susceptibility variants and 
blood cell counts independent of chromosome Y loss, suggesting blood cell count and mLOY may share common 
genetic risk factors related to genomic instability and cell cycle regulation or alternatively that genetic suscep-
tibility to mLOY in men may be associated with genetic susceptibility to chromosomal alterations in women 
(e.g., mosaic chromosome X loss) that may have similar impacts on blood cell counts. Regardless, our analysis 
suggests mLOY and blood cell counts are highly associated and are relevant for underlying disease risk. Although 
the specific mechanisms responsible for the association between mLOY and blood cell counts are unclear, our 
work highlights the need to explore the functional bases of the reported associations. Future studies that examine 
the molecular impact of mLOY on cellular transcription, cell cycle regulation and differentiation are vital for 
expanding our understanding of how mLOY could have an impact on hematopoiesis, particularly in the aging 
population, and could provide novel insights into potential biological mechanisms responsible for the observed 
associations between mLOY and possible cancer and chronic disease risk.
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