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Delegated Regressor, A Robust 
Approach for Automated Anomaly 
Detection in the Soil Radon Time 
Series Data
Muhammad Rafique   1*, Aleem Dad Khan Tareen1, Adil Aslim Mir2, 
Malik Sajjad Ahmed Nadeem2, Khawaja M. Asim3,5 & Kimberlee Jane Kearfott4

We propose a new method based on the idea of delegating regressors for predicting the soil radon gas 
concentration (SRGC) and anomalies in radon or any other time series data. The proposed method 
is compared to different traditional boosting e.g., Extreme Gradient Boosting (EGB) and simple 
regression methods e.g., support vector regressors with linear kernel and radial kernel in terms of 
accurate predictions. R language has been used for the statistical analysis of radon time series (RTS) 
data. The results obtained show that the proposed methodology predicts SRGC more accurately when 
compared to different traditional boosting and regression methods. The best correlation is found 
between the actual and predicted radon concentration for window size of 2 i.e., two days before and 
after the start of seismic activities. RTS data was collected from 05 February 2017 to 16 February 2018, 
including 7 seismic events recorded during the study period. Findings of study show that the proposed 
methodology predicts the SRGC with more precision, for all the window sizes, by overlapping predicted 
with the actual radon time series concentrations.

During past few decades several studies have been carried out across the globe focusing on earthquake predic-
tion based upon anomalous behavior of radon gas in atmosphere, soil and water. Many studies, since after first 
evidence of a correlation between radon in well water and earthquake (1966; M = 5.3) occurrence, reported by 
Ulomov and Mavashev in 1967 for the Tashkent earthquake, have recognized that anomalous behavior of radon 
in soil and groundwater can serve as a precursor for a forthcoming earthquake1. Sultankhodzhayev et al. in 1976 
have reported the rise of the radon concentration in a spring before the Gazli earthquake (17 May 1976; M = 7.3)2. 
A number of studies conducted in China reporting radon anomalies before strong earthquakes compelled scien-
tists in the rest of the countries to carry out systematic investigation to probe possible link between radon anoma-
lies and earthquake prediction3,4. Several studies have reported correlation between impending earthquakes with 
variability of radon gas in soil and ground water5–23.

Walia et al. 2005, have shown that micro-seismic events recorded along the Main Boundary Thrust (MBT) of 
N-W Himalaya in the grid (30–34°N, 74–78°E) have correlation with radon anomalies24. The same study revealed 
that 62% of micro-seismic events have correlation with the precursory nature of radon24. Their findings revealed, 
as reported in some other studies20,23, that radon anomalies are not only influenced by seismic events but also by 
meteorological parameters. Ramola et al. 2008, have reported spike-like and sharp peak anomalies in radon time 
series data before, during and after earthquake occurred in Garhwal Himalaya15.

Besides having a considerable number of research studies addressing radon anomalies serving for earthquake 
precursor based upon their experimental findings, yet there are some scientists who had produced thematic 
papers on radon as precursor for earthquake forecasting25,26.

Since anomalies in RTS data may arise due to multiple factors including seismic events, meteorological 
parameters, so forth. This leads to serious impediments in differentiating anomalies caused by seismic activities 
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and those caused exclusively by environmental factors. Tareen et al. 2019 used same data set to identify the 
parameters, viz. environmental parameters, noise or seismic activity, influencing or triggering anomalies in radon 
time series data. Findings of that study showed that under meticulously characterized environments, on exclusion 
of noise contribution, seismic activity is responsible for anomalous behavior seen in current RTS data. Such situ-
ations can be handled using Machine Learning Methods (MLMs).

Machine learning has been successfully applied to many problems in the environmental sciences27. With 
MLMs, a model for the prediction of radon concentration can be built, taking into account various environmen-
tal parameters (e.g., barometric pressure, rainfall, and air and soil temperature). Such models can subsequently 
be used to identify radon anomalies triggered by seismic events. The application of artificial neural networks28–30, 
regression and model trees31–34 and different other methods32,35 have proven to be useful for extracting radon 
anomalies caused by seismic events.

Diagonal Linear Discriminant Analysis- DLDA36, k-Nearest Neighbors-kNN37, Support Vector Machine38 
and Random Forest39 have been employed for classification and regression purposes. These methods have appli-
cations in decision support systems40–42 and earthquake prediction studies33,43–45. Analyses of the radon data from 
three stations in the Krsko basin, Slovenia33, showed that model trees outperformed other regression methods. 
Negarestani et al., 2002, experimented layered neural network (LNN) to estimate the radon concentration in soil 
related to the environmental parameters that can find any functional relationship between the radon concentra-
tion and the environmental parameters28. Singh et al., 1999, observed the significant increases in radon concen-
tration of groundwater and water level which are correlated to the seismic events which occurred in Northern 
India during the period of study46.

Freund and Schapire 1998, proposed the well-known AdaBoost.M1 (also known as Discrete Adaboost) algo-
rithm47. Friedman et al.48 worked on boosting and developed gradient boosting algorithm, which uses machine 
learning techniques to make weak classifiers usually decision tress and then make the final prediction, is based on 
the aggregate of this weak classifier. In 2000, He established connections of Adaboost.M1 algorithm to statistical 
concepts such as loss functions, additive modeling, and logistic regression. The step of taking the random sam-
pling in boosting is motivated by Breiman’s bagging procedure that makes the nature of boosting to be stochastic. 
In addition, it develops the idea of delegating classifiers in a systematic way by delegating the difficult or uncertain 
predictions to other, possibly more specialized classifiers. On the other hand, Ferri et al., 2004, also presented an 
iterated scenario involving an arbitrary number of chained classifiers26.

In this study we propose a new method based on delegating classifiers26 for predicting the radon concentration 
and anomalies in soil radon time series data by delegating the samples to the next lower level that do not meet 
the desired threshold e.g., uncertain predictions. The proposed methodology has foundations regarding classifi-
cation task by keeping the power of delegation in classification. For analysis purpose, RTS data was obtained for 
the period from 05 February 2017 to 16 February 2018 including 7 seismic activities recorded during this period. 
The proposed method is compared to different traditional boosting (Extreme Gradient Boosting) and simple 
regression methods (support vector machines with linear kernel support vector machines with radial kernel) 
based on how much they accurately predict the radon concentration. The extreme gradient Boosting method is 
the most popular and extensively used ensemble approach that has had been successfully used for the regression 
problems and also Support Vector Machine technique (with linear and radial kernels) which is also the most pop-
ular method for regression problems. The results obtained depicts that the proposed methodology predicts more 
accurately the RTM 1688-2 measured RTS data when compared to different traditional boosting and regression 
methods.

Materials and Methods
Location and instrumentation.  Current study is performed in Muzaffarabad, a city in Pakistani terri-
tory of Kashmir. A radon station, for the continuous measurement of radon time series data, was installed in 
highly active seismic zone. RTM 1688-2, (SARAD RTM 1688-2, Nuclear Instruments, Germany) was installed at 
the fault line passing beneath the Chehla with latitude 34.39621 and longitude 73.47347. The location of radon 
monitoring station lies within 150 km of the Centre of the strongest earthquake in the region since 1900. Packer 
probe was placed with already digged borehole and sealed to avoid ambient air contact. Than Packer probe was 
connected to the RTM 1688-2, (SARAD RTM 1688-2, Nuclear Instruments, Germany), placed within a 1 meter 
of the soil surface.

The RTM 1688-2 measures the 222Rn concentration in slow i.e., contributions from the disintegrations of both 
218Po and 214Po, and Fast modes for which only 218Po decay events are counted. The RTM 1688-2 device measures 
humidity (0 to 100%), temperature (−20 to 40 °C) and barometric pressure (800 to 1200 mbar). We have operated 
the instrument in slow mode for measurement of radon gas in current study. RTS data were collected in 40 min 
intervals with 36 readings per day spanning over a period of one year.

Proposed methodology.  Complete simulation plan for radon anomaly detection using different machine 
learning methods is shown in Fig. 1.

Since radon concentration is a numeric variable, we have approached the task of predicting radon concen-
tration from meteorological data using regression (or function approximation) methods. In order to predict the 
radon concentration at different periods of time before and after the seismic activity, the dataset is divided into 
two parts i.e. seismic and non- seismic radon data. For each window size the seismic radon data comprises of 
the days before and after the seismic events viz. window size of 1 means 1 day before and after the seismic event. 
Algorithm developed for proposed methodology is given as;
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Return predictions.  The total number of samples in the dataset are 13456; including 7 seismic activities. 
The data has been divided into two parts: seismic data, containing anomalies, and treated as test data while 
non-seismic, without anomalies, and is taken as training data. The number of samples in the training and test 
data varies with respect to window size. With the increase in window size, the number of samples in the test data 
starts increasing as compared to training data which decreases. On increasing the window size, i.e. days before 
and after the seismic activity, the sample from non-seismic training data is added to seismic data (i.e. test data).

The predictive performance of the regression methods was determined using root mean squared error 
(RMSE). The RMSE measures the discrepancy between measured and predicted values of radon concentration. 
Smaller RMSE values indicate lower incongruities. There are other metrics in order to measure the error for 
predictions e.g. MSE (mean squared error) which is the most simpler and commonly used metric for regression 

Algorithm 1.  Proposed Delegated Boosting for Regression.
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evaluation tasks but the problem in this metric is that if we make only a single prediction very bad, it makes the 
error even worst because of squaring the distance between actual and predicted values and skews the metric in 
the direction of overvaluing the computed model’s badness. In order to make errors to meet the scale of targets, 
a square root is introduced on MSE but travelling along the RMSE gradient is same as travelling along MSE gra-
dient but at a different flowing rate. Moreover, in the literature authors also used RMSE as a metric for estimation 
of error.

To test the hypothesis for the predictability of radon concentration in periods with and without seismic activ-
ities, the following procedure was applied. First, the value of the class—daily radon concentration; and the values 

Figure 2.  Basic representation of Support Vector Machine for regression60.

Figure 3.  Support Vector Regressor with slacked variable60.

Figure 1.  Simulation Plan for radon anomaly detection using different machine learning methods.
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of attributes—barometric pressure, thoron, temperature and relative humidity was selected. Second, this data set 
was split into two parts. In the first part (labeled SA), data for the periods with seismic activity were included, 
i.e., periods of 12 days before and after an earthquake. Data for the remaining days were included in the second 
part, belonging to the seismically non-active periods (labeled non-SA). We have applied the methodology by 
utilizing the proposed and traditional methods, we trained the models on non-seismically active data part and 
obtained each respective model. Moreover, from each model we have predicted the seismically active data part 
and obtained the predicted radon concentration. Finally, we estimated the error regarding predicted and actual 
values. The performance of the model depends upon how much the actual and predicted values of radon are 
closed to each other.

Machine Learning Prediction Methods
Extreme gradient boosting.  XGBoost (Extreme Gradient Boosting) has become one of the most popular 
machine learning algorithms for classification and prediction problems49. Gradient Boosting was developed as a 
generalization of AdaBoost by observing gradient search of AdaBoost in decision tree space against a particular 
cost function50. The innovation of Gradient Boosting39,51 was the observation that can use different cost func-
tions, some of which were more suitable to the domain than the one that was implicitly used in AdaBoost.

Gradient Boosting was however overwhelmed by a lot of ad-hoc parameters to control the growth of the deci-
sion trees in the algorithm51. XGBoost52 was developed to put this on a more formal footing. In XGBoost the size 
of the tree and the magnitude of the weights are controlled by standard regularization parameters. This leads to 
a ‘mostly’ parameter-free optimization routine. In theory that is, as in practice a plethora of parameters are used, 
still to control the size and shape of the trees. Regularization did however proved to be very powerful and made 
the algorithm much more robust.

Real extreme gradient boosting is better regularized model formalization of Gradient Boosting that gives bet-
ter performance to control the over-fitting problem. Therefore, it helps to reduce over fitting regarding training 
data. Its roots begins from the implementation of gradient boosting machines but now because of its efficiency 
and better performance, it is now associated to a more extensive collection of tools under the umbrella of the 
distributed machine learning community53.

Figure 4.  Number of measurements in seismic and non-seismic dataset with respect to window sizes ranging 
from 1 to 12.

Figure 5.  Mean correlation of actual and predicted radon concentration using different regression methods.
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Support vector machine (linear and polynomial).  Vladimir Vapnik, 1979 and his co-workers intro-
duced a Support Vector Machines (SVMs)54. SVMs is a well-known method used for classification and regression 
problems both for linear and non-linear types of data39. By utilizing non-linear methods it refurbishes the data 
in to high dimensions. The main theme of support vector machines is to find the finest linear decision boundary 
to discriminate different categories. Moreover, the fastest version of SVMs can take much time for training of 
data but in result, returns the more accurate classifications or prediction. SVMs had been successfully applied 
for different regression problems55–57 by maintaining the entire main features i.e. maximal margin that makes 
algorithm ability to differentiate itself. Support Vector Regression encompasses the same foundations as we used 
as the SVMs for classification tasks only having a few little differences. As we know that in regression problems, 
the output is the real values that make it difficult to predict the information at hand because of having inestimable 
possibilities. In order to make it predictable, epsilon (margin of tolerance) is approximated to the SVM that is pre-
viously asked from the problem. On the other hand, in order to minimize the error rate, hyperplane are individu-
alized based on how much they maximize the margin and also taking in to account that part of error is tolerated.

As like SVM works for classification problems, regression is also done by providing a loss function that toler-
ates errors within a certain margin58. Moreover, that ε-band contain points called as support vectors59.
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with g x( )j  as a set of transformation functions that are aimed to map input x to m-dimensional feature space. b is 
the bias term, which can be ignored when the data is preprocessed to be zero-mean. Basic representations of SVM 
and SVR with slacked variables are shown inFigs. 2 and 3 respectively60,61.

Results and Discussion
This section presents the results to evaluate the performance of the proposed methodology, delegated regressor, in 
comparison with other regression methods in terms of different performance measure and accuracy for predict-
ing radon concentration during the seismic periods of windows ranging for size 1 to 12.

It is noted that upon increasing the window size, the error in prediction of the radon concentration increases. 
This is due to decrease in training data samples caused by splitting of data during each window operation. As the 
window size increases the radon seismic data samples grows at the cost of decreasing number of instances for 
training of MLs, as shown in Fig. 4.

Figure 4 shows the number of measurements after splitting of whole data in to seismic activity (SA) and 
non-seismic activity (NSA) datasets. Non-seismic data set are those days for which no seismic activity have been 
observed. And these non-seismic data sets dynamically change with respect to window size.

Figure 5 shows the mean linear correlation regarding different regression methods for the actual and predicted 
radon concentrations in soil. With the fact that number of measurements gets decreased with the increase in 
window size, the correlation between the actual and predicted radon concentration in soil also decreases. The best 
correlation found between the actual and predicted radon concentration is at window size of 2. This demonstrates 
those two days before and after the seismic activities are very important in order to accurately predict the radon 
anomaly which is an earthquake precursor.

Win 
Size

Extreme Gradient 
Boosting (XGBoost)

Support Vector 
Machine Linear 
(SVML)

Support Vector 
Machine Radial 
(SVMR)

Delegated 
Regressor Method 
(DRM)

1 2505.088 6108.028 4826.279 1809.784

2 2473.006 6149.988 4977.869 1806

3 2416.071 6225.425 5318.782 2017.899

4 2518.619 6365.508 6527.553 1927.861

5 2593.956 6531.951 6699.957 1731.9

6 2670.358 6745.238 7109.096 2479.699

7 2761.739 6945.34 7704.349 2200.264

8 3033.962 7150.594 9223.404 1991.526

9 3135.076 7223.843 9424.501 2269.731

10 3138.239 7396.725 9659.676 2291.885

11 3596.169 7568.502 10229.27 2300.619

12 3757.667 7618.878 10881.65 2667.437

Table 1.  Root mean squared error (RMSE) of different regression methods for prediction of radon 
concentration in soil with respect to different window sizes.
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Comparison of Delegated Regressor with Other Traditional Regressors
Results obtained from proposed delegated regressor algorithm have been compared with other regression meth-
ods for the prediction of radon concentration in soil. The dataset distribution regarding SA and NSA was carried 
out in such a way that SA data contains varying number of days ranging from 1 to 12 before and after the seismic 
activity.

Table 1 presents the error rate of proposed delegated and other regression methods for the prediction of radon 
concentration in soil. On the same dataset, regarding same window size extracted data, the proposed delegated 
Regressor outperforms then other regression methods having minimum RMSE. Experimental data for the period 
from 05 February 2017 to 16 February 2018 is used for computer experimentations and simulation purpose.

The maximum error rate for the proposed methodology (2667.437) is appreciably smaller when compared to 
other Regressor methods (XGBoost, SVML and SVMR) having maximum error rates of 3757.667, 7618.878 and 
10881.65 respectively.

For the window 1, one day before and after earthquake, Fig. 6(a) shows the actual and predicted RTS data 
using delegated and other regression methods. On the X axis we have a number of measurements and Y axis 
represents the radon concentration. The Fig. 6(a) shows that delegated Regressor predicts more accurately than 
other regression methods by overlapping real time RTS data with better results than other regression methods. 
Proposed delegated Regressor Method (PDRM) shows that RMSE is less for PDRM (1809.784) when compared to 

Figure 6.  (a–l) Represents radon concentration for 1 through 12 days before and after earthquake with red lines 
actually showing the earthquake with its magnitude.
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other regression methods viz., XGBoost (2505.088), SVML (6108.028) and SVMR (4826.279) for the prediction 
of radon concentration in soil. All these evaluation criteria show that the PDRM outperforms other regression 
methods. Figure 6a shows anomalies in real RTS data can be predicted well by PDRM. Trend in series generated 
by PDRM follows trend of real RTS.

The results on same pattern were observed for the windows 2 through 12. For the 2nd window (see Fig. 6b), two 
(02) days before and after earthquake, we have obtained lowest value of RMSE as compared to all other windows. 
PDRM showed that RMSE is less for PDRM (1806) when compared to other regression methods viz., XGBoost 
(2473.006), SVML (6149.988) and SVMR (4977.869) for the prediction of radon concentration in soil.

RMSE computed from all MLs techniques and PDRM, for the window 3, shows that RMSE is less for PDRM 
(2017.899) when compared to other regression methods viz., XGBoost (2416.071), SVML (6225.425) and SVMR 
(5318.782) for the prediction of radon concentration in soil (see Fig. 6c). The results for all other windows 4 
through 12 are shown in Table 1. All these statistics shows that the PDRM outperforms other regression methods 
for the window size 1 through 12. Almost for all windows, 1 through 12, PDRM trend follows RTS real time trend 
(see Fig. 6a–l).

Figure 7(a) through 7(l) shows the RTS data recorded from one through twelve days before and after each 
earthquake struck in the area of study. Vertical lines, olive green, show the earthquake with its magnitude (see 
Fig. 7a–l).

Figure 7.  (a–l) Actual and predicted radon concentration using delegated and other regression methods using 
window size of one through 12 days.
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Radon anomalies leading to possible earthquake have been predicted using the method of standard deviation 
(see Fig. 7a–l). To differentiate between anomalies caused by environmental data from seismic events we have 
chosen period for anomaly for which radon concentration is deviated by more than ±2σ61–64. For the window 
1 four spikes, with radon concentration 26763, 26539, 25773 and 15127 Bq/m3, in RTS data were recorded for 
which radon concentration deviated by more than ±2σ. Anomaly, at 15127 Bq/m3, in RTS data was followed by 
an earthquake, after one day, with magnitude 4.3 at the depth of 25 km with Lat (34.91°N) and Long (72.94°E) 
on 21st of March 2017 (see Fig. 7a). Spike observed at 26763 Bq/m3 was followed by another earthquake after one 
day with magnitude 4.8 at richter scale. Earthquake occurred at the depth of 10 km with Lat (33.81°N) and Long 
(73.19E°E) on 27th of August 2017. Another spike in radon concentration 25773 Bq/m3 was followed by earth-
quake of magnitude 4.6 after one day. This earthquake occurred on 23rd of September 2017 at the depth of 61 km 
with Lat N(35.48 N) and Long E(73.01 E). For the window one it was observed that the three earthquakes were 
struck soon after observing radon anomaly before one day.

For the window 2, RTS deviated −2σ pattern during measurement 1490 and 1497 with radon soil concentra-
tions 15126 and 15197 Bq/m3 respectively. These anomalies in radon concentrations were followed by an earth-
quake of magnitude 4.3 during measurement number 1510. Two more anomalies in RTS data were observed, 
exceeding +2σ, during measurement numbers 7196 and 7231, followed by earthquake of magnitude 4.8 on rich-
ter scale. Almost same pattern was observed for rest of windows 3 through 12.

Conclusion
This study proposed a new approach for regression based on delegating classifiers. The idea behind the proposed 
method is that the examples having predictions not lie on a reliable threshold gets delegated to the next lower 
level with the hope that the regressor at the next level will become more specialized to predict these delegated 
examples. Moreover, we have also compared the proposed delegated regressor to other machine learning methods 
such as XGBoost, SVML and SMR to predict radon concentration in soil gas from measured environmental data, 
i.e. relative humidity, temperature and pressure. From the statistics above we have concluded that the proposed 
methodology predicts the radon concentration with more precision for all the window sizes by overlapping the 
actual radon concentration and all of the 6 earthquakes. Our measurements are still in progress and further anal-
yses will be carried out over longer number of measurements.

Data availability
All data included in the manuscript are available upon request by contacting with the corresponding author.
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