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Development of potent 
forchlorfenuron Analogs and their 
Cytotoxic Effect in Cancer Cell Lines
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forchlorfenuron (fcf) is a synthetic plant cytokinin widely used in agriculture to promote fruit size, 
that paradoxically inhibits proliferation, migration, and invasion in human cancer cell lines. fcf has 
also been shown to affect HIF-1α and HER2, which are both known to play a crucial role in cancer cell 
survival. In this study, we have developed potent FCF analogs through structural modification of FCF, 
coined UR214-1, UR214-7, and UR214-9. Compared to parental FCF, these analogs are more effective 
in decreasing viability and proliferation in both ovarian and endometrial cancer cell lines. these fcf 
analogs also suppress HER2 expression at a concentration lower than that of FCF. In addition, we found 
that treatment with either fcf or its analogs decreases the expression of human epididymis protein 
4 (HE4), which is commonly upregulated in ovarian and endometrial cancers. Given the association 
between cancer behavior and HE4 production in gynecologic cancers, our findings may provide insight 
useful in the development of new treatment strategies for gynecologic cancers.

Malignancy of the ovary and uterus is relatively common and unfortunately quite lethal. The fourth most com-
mon cancer in women, uterine cancer represents approximately 60,000 new cancer diagnoses and 10,000 cancer 
deaths per year in the US1. While less common, ovarian cancer is more fatal yet, with a 5-year survival of 46.6% 
(www.cdc.gov/cancer/dataviz, June 2019). Current treatment of these diseases relies on a combination of surgical 
and medical management. While evolving, the foundation of first-line medical treatment for both is a combina-
tion of platinum-based and taxane drugs and has been so for over a decade.

Diaryl urea derivatives have been of great interest in medicinal chemistry and the small molecules contain-
ing a diaryl urea scaffold have exhibited a broad spectrum of biological activities including anti-inflammatory, 
antithrombotic and antimicrobial effects2. Additionally, diaryl urea derivatives such as sorafenib and regorafenib 
are used clinically for cancer treatment3. Forchlorfenuron (FCF; N-(2-Chloro-4-pyridyl)-N′-phenylurea) is a 
small synthetic urea derivative that is currently utilized in agriculture. FCF shows potent cytokinin activity and 
has been used worldwide as a plant fertilizer that increases fruit size. Interestingly, FCF has been shown to inhibit 
proliferation, anchorage independent growth, migration and invasion of cancer cell lines4–6. The effect of FCF has 
been demonstrated in various cancer types, including prostate, mesothelioma, lung, colon, breast, ovary and cer-
vix4. FCF was also found to be effective in a mouse model, in which tumor growth was inhibited4. At a molecular 
level, FCF treatment causes the suppression of HIF-1α and HER2, both of which are known to be associated with 
more malignant cancer phenotypes6,7.

In this study, we have conducted a focused, structure-activity relationship study to optimize the chemical 
structure of FCF, with the goal of developing potent FCF analogs that could be tested for cytotoxic activity against 
a panel of gynecologic cancer cell lines. Ultimately, we hope such a compound could potentially be utilized as a 
future research tool. We also explored whether FCF or FCF analogs contribute to human epididymis protein 4 
(HE4) secretion, which has been linked to the progression of ovarian cancer as well as poor patient outcomes, 
including advanced disease and decreased survival8. Finally, we delve into the role of FCF analogs on cancer cell 
growth factor receptor expression.
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Results
treatment of fcf reduced the viability of endometrial and ovarian cancer cell lines. We first 
tested the effect of FCF on cellular viability in a panel of gynecologic cancer cell lines employing endometrial 
(ECC-1 and KLE) and ovarian (HCH-1, OVCAR-3, and SKOV-3) cancer cell lines. We observed that FCF treat-
ment reduced the viability of these cells in a time- and dose-dependent manner (Fig. 1). Although FCF exhibited 
noticeable cytotoxic activity against a panel of cell lines, such an inhibition was only achieved at relatively high 
concentrations (at or above 100 µM).

Structural modification of FCF. We conducted a systematic structural modification of the FCF scaffold 
with the intent of generating a highly potent FCF analog (Table 1). In this limited exercise, the substituents on the 
phenyl moiety were varied initially, keeping the 2-cholopyridine constant (except for UR214-5 and UR214-6). 
The substituents were varied to read the effect of modification on the anti-proliferative activity of the molecules. 
As described in Fig. 2A, substitutions such a benzyloxy (UR214-2), pyrimidinyl (UR214-4) and pyrrolyl (UR214-
3) were not tolerated. However, CF3S substitution (UR214-1) on the phenyl ring of FCF generated very potent 
cytotoxic activity. The importance of 2-choloropyridine was demonstrated by replacing 2-choloropyridine with 
2-chloropyrimidine while retaining the CF3S-Ph moiety (UR214-6); this alteration resulted in lack of activity. 
UR214-1 emerged as the most potent molecule against cancer cells, followed by UR214-7 (Fig. 2A). UR214-1 was 
not further altered, but UR214-7 was chosen for further optimization in an effort to enhance efficacy.

Effects of FCF analogs on cell viability and proliferation. We elaborated UR214-7’s structure further 
to develop molecules UR214-8 through UR214-11. The dose-dependent effects of these FCF analogs (UR214-7 
to −11) on the viability of tumor cells was tested using MTS assay (Fig. 2E). Treatment with compounds UR214-7 
to −11 exerted potent anti-viability effects against ovarian (SKOV-3, OVCAR-3, and HCH-1) and endometrial 
(ECC-1 and KLE) cancer cells. To produce the most active compound of the series (UR214-9), we installed a 
chloride at the 6th carbon of pyridine. UR214-9 showed potent activity across most cell lines, except for HCH-
1, where UR214-7 had superior efficacy for unclear reasons (Fig. 2E). For the most part, halide substituents on 
the pyridine were well tolerated. Surprisingly, the replacement of 2-chloro with 2-bromo was tolerated and as 
such, UR214-11 did not lose activity, keeping the window open for further modifications. Next, we employed a 
BrdU assay to measure the anti-proliferative activity of UR214-7 and UR214-9 against ECC-1 cells at lower dose 
ranges. In this assay, FCF was utilized as a positive control. As shown in Fig. 2B, UR214-9 treatment for 48 hours 
inhibited viability and proliferation around 33 and 4 µM, respectively. UR214-7 did not alter tumor cell viability 
below 11 µM, but did reduce proliferation (Fig. 2B, right). In both assays, FCF lacked activity. Next, we analyzed 
the ability of UR214-7 and UR214-9 to induce apoptosis of ECC-1 cells. As shown in Fig. 2D, treatment with 
both UR214-7 and UR214-9 caused apoptosis, but the latter was much more effective. The effects of UR214-7 and 
UR214-9 treatment were time- and dose-dependent (Fig. 2C).

FCF analogs selectively inhibit HER2 expression. FCF has been shown to downregulate HER2, the cell 
membrane-anchored growth factor implicated in the aggressiveness of several cancer types7. Therefore, we sought 
to explore whether our newly generated FCF analogs impact HER2 expression in cancer cell lines. Treatment 
with UR214-7 and UR214-9 did not have an effect on EGFR expression. However, treatment with UR214-7 and 
UR214-9 led to the inhibition of HER2 expression in both ECC-1 and HCH-1 cells, as did FCF at a significantly 

Figure 1. The effect of FCF on the viability of ovarian and endometrial cancer cell lines. Cancer cell lines were 
treated with FCF (0, 100, 300 µM) for either 24 h or 72 h, after which the cell viability was measured by MTS 
assay.
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higher dose (Fig. 3A). Previous study suggests that the effect of FCF on HER2 could be achieved through the dis-
ruption of septins and septin-2 knockdown decreased HER2 expression7. Thus, we knocked down septin-2 and 
determined its effect on HER2 levels. Septin-2 knockdown resulted in HER2 downregulation (Fig. 3B). Inhibition 
of septin-2 also decreased the viability of cancer cell lines (Fig. 3C).

FCF analogs decrease HE4 secretion. HE4 is a small secretory glycoprotein that is highly upregulated 
in patients with ovarian and endometrial cancers9,10 and is associated with malignant phenotypes of cancer8. 
Therefore, we sought to determine whether FCF or its potent analog, can impact the secretion of HE4. As shown 
in Fig. 4A, FCF treatment (300 µM for 7 h) resulted in a decrease in HE4 secretion by OVCAR8-C5 that stably 
overexpresses HE4, along with a marginal increase in intracellular levels of HE4. This effect was found to be 
dose-dependent in both ECC-1 and HCH-1 cells (Fig. 4B). Compared to FCF, similar inhibition of HE4 secretion 
was achieved by UR214-1 and UR214-7 at much lower concentrations (<10- to 27-fold; Fig. 4C). FCF treatment 
was found to suppress HE4 mRNA to some extent (Fig. 4D). Septin-2 disruption by small interfering RNA also 
resulted in reduction of HE4 expression (Fig. 4E).

Septin overexpression is associated with increased cancer mortality. In the present study, septin-2 
knockdown caused a decrease in HER2 and HE4 expression and inhibited the viability of cancer cell lines. In 
addition, septins are associated with malignant cancer phenotypes5,11–15. Therefore, we wondered if septin expres-
sion is associated with patient outcomes in endometrial and ovarian cancers. We conducted Kaplan-Meier sur-
vival analyses for endometrial cancer stratified by expression of septin-2, -3, and -7. These septins are of particular 
interest because they were used for the binding study of FCF16. Analyses of The Cancer Genome Atlas (TCGA) 
(Fig. 5A) show that both septin-2 and septin-3 overexpression correlate with increased mortality in endome-
trial cancer. In endometrial cancer, relative expression of septin-2 was highest, followed by septin-7. Septin-3 
expression was found to be very low (Fig. 5B). The correlation between septin-2 expression and increased mor-
tality was also found in kidney, lung, liver, and pancreatic cancers, but not in ovarian cancer (data not shown). 
Cancer-associated fibroblasts (CAFs) are found in the stroma that surrounds and supports cancer cells. The sep-
tin network is known to support CAFs in creating a pro-tumorigenic microenvironment17. Therefore, data that 

Name Structure Name Structure

FCF UR214-6

UR214-1 UR214-7

UR214-2 UR214-8

UR214-3 UR214-9

UR214-4 UR214-10

UR214-5 UR214-11

Table 1. The structure of FCF and its newly derived analogs.
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profiled septin expression in ovarian cancer-associated vs. normal ovarian stroma were also analyzed (Wong-
77-MAS5.0-u133p2). In cancer-associated stroma, the expression of septin-2 and septin-9 was significantly 
upregulated, while septin-6 and septin-7 were unchanged (Fig. 5C).

Figure 2. The effect of FCF analogs on the viability of ovarian and endometrial cancer cell lines. (A) Cell lines 
were treated with a fixed concentration (100 µM) of FCF or FCF analog for 24 h. After treatment, cell viability 
was determined by MTS assay. (N = 3, see Suppl. Fig. A for mean values and SEM) (B) ECC-1 cells were treated 
with UR214-7 or UR214-9 at the listed concentrations for 48 h. After treatment, cell viability was determined by 
MTS assay (left). Cell proliferation was measured by BrdU incorporation (right). (C) ECC-1 cells were treated 
with vehicle, UR214-7, or UR214-9 at the indicative concentrations for 24 or 72 h. Cell viability was determined 
by MTS assay. (D) ECC-1 cells were treated with UR214-7 or UR214-9 at 33 µM for 48 h. Cells undergoing 
apoptosis were measured by caspase-3/7 activity assay (E) Each indicated cells were treated with various 
concentrations of FCF analogs for 72 h. After treatment, cell viability was determined by MTS assay.

Figure 3. The effect of FCF analogs on HER2 expression. (A) ECC-1 or HCH-1 cells were incubated with 
UR214-7 (33 µM), UR214-9 (33 µM) or FCF (300 µM) for 24 h. The levels of each protein were determined by 
Western blot analysis. (B) HCH-1 cells were incubated with UR14-9 (10 µM) or FCF (100 µM) for 48 h (top) or 
transfected with septin-2 targeting siRNA or non-targeting control siRNA for 24 or 48 h (bottom). Cell lysates 
were collected. The cellular levels of HER2 were determined by human HER2 enzyme-linked immunosorbent 
assay. (C) The cells were transfected with septin-2 targeting siRNA or non-targeting control siRNA. At 48 h post 
transfection, cell population and relative expression of septin-2 were determined by sulforhodamine B assay 
(top) and Western blot analysis (bottom), respectively.
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Figure 4. The effect of FCF analogs on the expression of HE4. (A) HE4 overexpression clones (OVCAR8-C5) 
were treated with or without FCF (300 µM) for 7 h, after which the cell lysates and matching culture media 
were collected and analyzed for the levels of HE4 using enzyme immunoassays. The amount of secreted HE4 
was normalized to the protein concentration of respective cell lysate. (B) ECC-1 and HCH-1 cells were treated 
with the indicated concentrations of FCF for 5 h and the secreted levels of HE4 were measured. (C) ECC-1 cells 
were treated with either UR214-1, UR214-7 or FCF at the concentrations indicated for 5 h at which point the 
secreted levels of HE4 were determined. (D) ECC-1 cells were washed and incubated with FCF (300 µM) for 
5 h in basal media. Relative HE4 expression was determined by real time PCR (normalized to B2M). (E) ECC-1 
cells were transfected with septin-2 targeting siRNA or non-targeting control siRNA for 48 h (bottom) or for 
72 h (top). Relative gene expression of HE4 was determined by real time PCR (normalized to TBP; bottom). The 
intracellular levels of HE4 were measured using enzyme immunoassays (top).

Figure 5. (A) Correlation of septins with survival rates of endometrial cancer patients was analyzed using the 
TCGA dataset. (p < 0.05); x-axis: days; y-axis: survival fractions. (B) Relative expression of septin-2, -3 and -7 
in endometrial cancers (TCGA dataset). (C) Relative gene expression of various septins was analyzed from the 
dataset (Wong-77-MAS5.0-u133p2), which contains gene expression profiling of microdissected cancer stroma 
samples from high grade serous ovarian cancer patients (red) and those from normal ovarian stroma (blue). 
(**p < 0.01, Student’s t-test vs. microdissected normal ovarian stroma).
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Methods
cell lines, cell culture and reagents. HCH-1 cell line was kindly provided by Dr. Hiroaki Itamochi (Iwate 
Medical University, Japan). All other cell lines were purchased from the American Type Culture Collection. 
OVCAR8-C5 was previously developed18. The cells were maintained in either DMEM (SKOV-3, KLE, OVCAR-3 
OVCAR8-C5 and IGROV-1) or RPMI-1640 (ECC-1 and HCH-1), supplemented with 10% fetal calf serum (or 
20% for OVCAR-3), penicillin (100 units/mL), and streptomycin (100 µg/mL) at 37 °C with 5% CO2 in a humid-
ified incubator. Antibodies were purchased from Abcam (septin-2; ab179436) and Cell Signaling Technology; 
ERK (9102), p-ERK (4370), β-Actin (3700), α-Tubulin (2144), EGFR (4267) and HER2 (4290). FCF was pur-
chased from Abcam. All other chemicals were from Sigma Aldrich.

Synthesis of fcf analogs. FCF analogs were synthesized by coupling variously substituted aryl isocyanates 
with differentially substituted 4-aminopyridines in (0.1:0.1) molar ratio in dry DMF at 65 °C overnight. The reaction 
was monitored using thin-layer chromatography plates with DCM-MeOH or pure ethyl acetate as eluent. Spots were 
monitored in a UV chamber. The reaction mixture, upon completion of the reaction, was poured into wet ice mix-
ture and triturated, then the separated solid was filtered by vacuum. The product was washed with hexane, followed 
by diethyl ether, and was dried under vacuum. The compounds were characterized by spectrometric techniques.

Quantitative real-time PCR. The indicated cell lines were transfected with siRNA targeting septin-2 
or non-targeting control siRNA (Santa Cruz Biotechnology: sc-37007 or sc-40936) using Lipofectamine 3000 
(Invitrogen). Tri reagent and Direct-zol kit (Zymo Research) were used to lyse and isolate total RNA. Reverse 
transcription was performed using iScript cDNA synthesis kit (BioRad), both following the manufacturer’s rec-
ommendations. Quantitative real-time PCR was conducted using QuantStudio 12 K Flex Real-Time PCR System 
(ABI) and the Taqman Gene Expression Assay (ABI) consisting of the FAM-labelled probes as follows: SEPT2 
(Hs01565417_m1); WFDC2 (Hs00899484_m1); TBP (Hs00427620_m1) or B2M (Hs00187842_m1), which was 
used as reference for normalization.

cell viability, proliferation and apoptosis assay. Cell viability, proliferation, and cellular apoptosis 
were measured using the MTS (Promega), BrdU cell proliferation (Cell Signaling Technology), and Caspase-Glo 
3/7 apoptosis detection (Promega) assays, following the respective manufacturer’s recommendations with suita-
ble modification.

Enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Cells were maintained over-
night in the culture media described above. The medium was removed and replaced with fresh complete medium 
containing either vehicle (DMSO) or FCF/FCF analogs in the indicated conditions. Following the treatment, cell 
lysates and supernatants were collected and subjected to HE4 assay (Human HE4 Quantikine ELISA Kit, R&D 
systems). The amount of HE4 in supernatant was normalized to the protein concentration of matching cell lysate. 
The levels of HER2 were determined by Human Total ErbB2/Her2 DuoSet IC ELISA (R&D systems). Western 
blot analysis was conducted using the protocol previously published19.

Data acquisition and statistical analysis. Gene expression profiling of septins, comparing microdis-
sected normal ovarian stroma (N = 8) against that of tumor stroma samples (N = 31) from high grade serous 
ovarian cancer patients, was obtained from Mixed Ovarian Cancer (CAFs)-Wong-77-MAS5.0-u133p2 data-
set through ‘R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl)’. Mean values with SD were 
plotted and compared using Student t-test (two tail, unpaired heteroscedastic t-test, significant difference when 
p < 0.01). The prognostic assessment of septin-2 amongst different cancers or septins in endometrial cancer was 
conducted using TCGA data acquired through Human Protein Atlas (http://www.proteinatlas.org)20. Survival 
curves between septin high and low population and their statistical significance were analyzed using GraphPad 
Prism software (Mantel-Cox test).

Discussion
In the present study, we found that treatment with FCF reduced cell viability in ovarian and endometrial cancer 
cell lines in the range 100–300 µM, which is pharmacologically undesirable. Through efforts to optimize FCF’s 
structure, we have generated highly potent analogs, UR214-1, UR214-7 and UR214-9. Treatment with these ana-
logs blocked proliferation in multiple endometrial and ovarian cancer cells at considerably lower doses than 
FCF. We found that UR214-9 can inhibit cancer cell proliferation in the range 4–5 µM. It is possible that further 
structural optimization could lead to a nanomolar disruptor that would then be appropriate for further animal 
and potentially human trials.

Septins are a class of cytoskeletal proteins that are associated with malignant phenotypes of cancer5,11–15. 
Additionally, septins have been increasingly linked to cancer oncogene expression, including EGFR, HER2 and 
the HIF-1α/angiogenesis axis7,21–23. It is therefore not surprising that we have linked high septin-2 levels to worse 
patient survival in several cancer types, including endometrial cancer. Additionally, ovarian tumor stroma has 
been found to be highly enriched for septin-2 and -9, prompting us to further investigate the role of these two 
structural proteins in ovarian cancer.

HE4 is a secretory glycoprotein encoded by WFDC2. It is found to be upregulated in ovarian and endometrial 
cancers9,24 and has been shown to increase cancer cell proliferation, migration, invasion, metastasis and chemore-
sistance8. Our findings show that treatment with UR214-1 and UR214-7 results in reduced HE4 secretion. To 
our knowledge, this is the first work to identify a putative HE4 inhibitor. Therefore, these FCF analogs may have 
particular therapeutic benefit in gynecologic cancers.

To date, FCF is the only known small molecule septin inhibitor. Septins are not found in land plants25 and so 
it would seem logical that FCF, which has profound effects on plant growth26, participates in cellular processes 
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not involving septins. Indeed, non-septin effects of FCF have been described27. Nevertheless, FCF has also been 
shown to inhibit septin dynamics and disrupt the assembly of septin-based structures28. In silico studies suggest 
that FCF could interact with a nucleotide-binding pocket of septins16. In the present study, treatment with FCF 
analogs caused downregulation of both HER2 and HE4, which appeared to mimic the effect of septin-2 knock-
down. It would be interesting to know if FCF analogs exert their activity through septin interference. Future study 
will be needed to investigate this.

This study was designed to develop potent FCF analogs for the purpose of testing their biological effects, with 
the goal of conducting an in vivo study in the future. The lead molecules identified have been coined UR214-1, 
UR214-7 and UR214-9. We expect these putative septin inhibitors hold promise in the pharmacologic treatment 
of cancer, given the similarities between septins and other structural proteins such as tubulin, which is the target 
of numerous FDA-approved cancer therapies. Animal studies evaluating the therapeutic potential of these novel 
agents are warranted to determine their antitumor effects and in vivo safety.
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