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photosynthetic rate prediction 
model of newborn leaves verified 
by core fluorescence parameters
pan Zhang1,2, Zhongxiong Zhang1,3, Bin Li1,2, Haihui Zhang1,2,3*, Jin Hu1,2,3* & Juan Zhao1,2,3

Due to the imperfect development of the photosynthetic apparatus of the newborn leaves of the 
canopy, the photosynthesis ability is insufficient, and the photosynthesis intensity is not only related 
to the external environmental factors, but also significantly related to the internal mechanism 
characteristics of the leaves. Light suppression and even light destruction are likely to occur when 
there is too much external light. Therefore, focus on the newborn leaves of the canopy, the accurate 
construction of photosynthetic rate prediction model based on environmental factor analysis and 
fluorescence mechanism characteristic analysis has become a key problem to be solved in facility 
agriculture. According to the above problems, a photosynthetic rate prediction model of newborn 
leaves in canopy of cucumber was proposed. The multi-factorial experiment was designed to obtain the 
multi-slice large-sample data of photosynthetic and fluorescence of newborn leaves. The correlation 
analysis method was used to obtain the main environmental impact factors as model inputs, and core 
chlorophyll fluorescence parameters was used for auxiliary verification. The best modeling method 
PSO-BP neural network was used to construct the newborn leaf photosynthetic rate prediction model. 
The validation results show that the net photosynthetic rate under different environmental factors of 
cucumber canopy leaves can be accurately predicted. The coefficient of determination between the 
measured values and the predicted values of photosynthetic rate was 0.9947 and the root mean square 
error was 0.8787. Meanwhile, combined with the core fluorescence parameters to assist the verification, 
it was found that the fluorescence parameters can accurately characterize crop photosynthesis. 
Therefore, this study is of great significance for improving the precision of light environment regulation 
for new leaf of facility crops.

In agriculture, photosynthesis research is important for understanding the physiological characteristics of crops 
and for predicting the degree of dry matter accumulation of crops1–3. A key question in agricultural research is 
how to precisely control the photosynthetic characteristics of crops based on their physiological characteristics. 
There is an obvious ‘old and new alternation’ behavior pattern in the growth process of crop canopy leaves4, when 
the new leaves of plant canopy develop into functional leaves, new newborn leaves will grow out and drive the 
whole plant to continue to grow. Therefore, the top newborn leaves of the plant play an important role in the 
growth and development of the entire crop. However, the leaves at the top of the canopy are generally newborn 
leaves, the photosynthetic apparatus is immature, the chlorophyll content is low and the photosynthetic capacity 
is also relatively low5. When there is excess light energy, the poor heat dissipation capacity of these leaves tends 
to cause light suppression, even light destruction, which in turn affects the growth of the whole plant6–8. The new 
technology of measuring chlorophyll fluorescence is mainly used for investigating photosynthetic mechanisms 
and for physiological research9. It is useful for accurately appraising the intrinsic characteristics of the photosyn-
thetic apparatus, and also for accurately characterizing plant stress responses and resistance.

In recent years, many scholars have studied photosynthetic fluorescence characteristics and photosynthetic 
rate prediction models10,11. Zhang Yongguang et al. Zhang et al. estimated the photosynthetic capacity of the 
crop canopy using solar-induced fluorescence, which can be used to simulate regional primary production. A 
substantial improvement in the seasonal and spatial patterns of regional primary agricultural productivity can be 
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achieved by constraining the equilibrium model of soil-canopy photosynthesis energy observations (SCOPE)12. 
Antal T et al. developed a chlorophyll fluorescence measurement system based on photosynthetic and fluores-
cence mechanisms to analyze fluorescence kinetic curves for continuous real-time monitoring of algal photosyn-
thesis in photobioreactors13. Yin Gaofang et al. Yin et al. proposed a photosynthetic rate measurement method 
based on tunable pulsed light-induced fluorescence kinetics, using chlorophyll fluorescence as a probe in pho-
tosynthesis. They used the photosynthesis electron transport rate to evaluate the photosynthetic rate, which has 
high measurement accuracy. By studying the diurnal variation of chlorophyll fluorescence of six submerged 
plants14. Hong Shengjiang et al. Hong et al. found obvious changes in the maximum potential quantum efficiency. 
The diurnal periodicity and the diurnal variation of photon irradiance can also be considered when chlorophyll 
fluorescence is studied15. Duan Renyan et al. Duan et al. analyzed the fluorescence parameters of different growth 
stages of strawberries and found that there were some obvious differences between new, growing and senescent 
leaves16. Gao Yu et al. Gao et al. used chlorophyll fluorescence induction kinetic analysis of cucumbers varieties 
with different heat resistance. They found that in the process of preventing photoinhibition, the triple mecha-
nism of reversible deactivation of the PSII reaction center, passivation of the oxygen release complex and heat 
dissipation plays an important role in heat shock prevention17. Zhang Haihui et al. Zhang et al. used chlorophyll 
convergence to construct a cucumber photosynthetic rate model and found that the accuracy of the model was 
improved using physiological factors18. Yin Jian et al. Yin et al. established a greenhouse tomato photosynthetic 
rate model using a wireless sensor network to collect environmental information, with the results showing good 
validity19. To date, the photosynthesis fluorescence characteristics of crops and construction of relevant photo-
synthetic rate models have been variously studied. However, the fluorescence parameters of new leaves and the 
intrinsic mechanisms of these leaves have not been considered. Therefore, it has become an important basis for 
efficient and precise regulation of facility crops to study the prediction model of photosynthetic rate of new leaves 
of crops with fusion fluorescence characteristics.

Cucumber was used as the experimental plant in this study, and photosynthetic and fluorescence data were 
obtained from newborn leaves using a multi-factorial test. Conventional environmental impact factors and core 
fluorescence parameters that had substantial effects on the photosynthetic characteristics of the newborn leaves 
were identified by correlation analysis. Furthermore, the BP neural network based on particle swarm optimiza-
tion was used to construct the photosynthetic rate prediction model of the new leaves. At the same time, the core 
fluorescence parameters were used to verify the photosynthetic capacity of the newborn leaves, so as to lay a good 
theoretical foundation for canopy light supplement technology of facility crops.

Results
new leaf selection. The photosynthetic rate response curves of different leaf positions of cucumber plants 
under different light conditions were obtained under constant temperature and CO2 (18 °C and 600 μmol·mol−1, 
respectively). The light response curves of different leaf positions are shown in Fig. 1, with the light intensity at the 
abscissa and the photosynthetic rate presented on the x and y axes, respectively.

There were obvious differences in the photosynthetic capacities between different leaf positions (Fig. 1). The 
top leaf (leaf position 1) has the worst photosynthetic capacity due to incomplete development of the photosyn-
thetic apparatus. The 5–7 leaf positions are functional leaf positions, in which the photosynthetic apparatus is 
mature and the photosynthetic capacity is relatively optimal in comparison with other leaf positions in the plant. 
Although the leaves at position is 11 are old, the photosynthetic apparatus mature and intact and the chlorophyll 
content is relatively high. Therefore, the photosynthetic capacity at this position is better than at the top leaf. 
However, because the top leaf promotes longitudinal growth due to its phototropism, the new leaves of the crop 
leaves play an important role in the growth and development of the whole plant. Therefore, it is important to 
precisely construct a photosynthetic rate prediction model of these newborn leaves.

Figure 1. Photosynthetic rates of different leaf positions under 18 °C and 600 μmol·mol−1 CO2.
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Modeling Method Selection
comparison of model convergence. The performance of convergence during the model training of the 
model determines the availability of the method. Therefore, with the temperature (Tem), CO2 concentration and 
light intensity (Par) as the input factors, the net photosynthetic rate as the output, to construct photosynthetic rate 
prediction model based on BP and PSO-BP and observe its convergence respectively (Fig. 2). Among them, the 
PSO-BP network only required 15 steps to reach the expected error level, no local flat zone or oscillations during 
the training process, and the mean square error was 2.9798 × 10−3. Although the BP neural network training 
process produced the desired error level with a mean square error of 7.3808 × 10−3, it required 83 steps and it had 
a local flat region that appeared during training. Therefore, the PSO-BP model overall had better convergence 
characteristics during the modeling process.

Comparison of model accuracy. In order to further obtain the best photosynthetic rate modeling method, 
the mean square error, average absolute error, average relative error and determination coefficient R2 was calcu-
lated (Table 1). Compared with the BP method, the photosynthetic rate prediction model trained by the PSO-BP 
method has a significant improvement in accuracy.

It is found that the PSO-BP method not only had obvious advantages in terms of convergence but also had a 
significant improvement in accuracy during the construction of photosynthetic rate prediction models. Therefore, 
in this study, the PSO-BP method was used to construct a model for predicting photosynthetic rate of top new-
born leaves.

Fluorescence parameters prediction. As plant leaves use light energy mainly through three ways, (1) 
leaves use light energy for photosynthesis accounting for 97%, and the ETR is the most representative of this part 
of efficiency. (2) the excess light energy treated by the blade in the way of heat dissipation accounts for 2.5% of the 
total energy. (3) residual energy is released in the form of fluorescence. At the same time, the fluorescence param-
eters can correctly reflect the intrinsic characteristics of the photosynthetic capacity of crops. Therefore, based 
on the correlation analysis in Table 2 above and the strong correlation between environmental factors and ETR 
and NPQ before, pso-bp algorithm was used to construct fluorescence parameter prediction with environmental 

Figure 2. Iterative diagram of the BP and PSO-BP training processes: (a) BP network training and (b) PSO-BP 
network training.

Predictive 
model

Mean square 
error

Average 
absolute error

Average 
relative error

Decisive 
factor

BP 5.1874 0.1932 0.0315 0.9611

PSO-BP 2.3393 0.0459 0.1166 0.9867

Table 1. Comparison of the two different modeling methods.

Variable Tem CO2 Par qP ETR PhiPS2 Fv′/Fm′ NPQ qN

Correlation coefficient 0.211** 0.317** 0.795** −0.366** 0.920** −0.453** −0.458** 0.714** 0.019

Significant test value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.744

Table 2. Correlation between each factor and the photosynthetic rate. Note: **Indicates a significant 
correlation at the 0.01 level (bilateral).
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factors as input and ETR and NPQ as output respectively. The specific results are shown in Table 3. Among them, 
Model1 represents the photosynthetic rate prediction model, Model2 represents the ETR prediction model, and 
Model3 represents the qP prediction model.

According to the analysis in Table 3, ETR and NPQ, as the main influencing factors reflecting the intrinsic 
characteristics of photosynthetic ability, are found to have significantly better prediction effect on ETR and NPQ 
than those on photosynthetic rate under the premise of the same modeling method. Therefore, in the later con-
struction of the photosynthetic rate prediction model, it can be considered to use fluorescence parameter as the 
target value to accurately characterize the photosynthetic capacity of crops.

Discussion
The net photosynthetic rate(Pn) was positively correlated with Tem, CO2, Par, ETR, NPQ, and qN; and nega-
tively correlated with qP, PhiPS2 and Fv′/Fm′ (Table 2). The first four of these factors are environmental, and the 
remaining factors are chlorophyll fluorescence parameters that are significantly related to the net photosynthetic 
rate (with the exceptions of qN). Based on the correlations between the environmental factors and photosynthe-
sis, we found that the air temperature affects the activity of enzymes involved in photosynthesis, the crop tran-
spiration rate and stomatal conductance20,21. These may in turn affect photosynthesis in crop plants. CO2 is the 
main substrate in plant photosynthesis and its concentration directly affects the accumulation of organic matter 
in photosynthetic carbon fixation22,23. Light intensity is the driving force of photosynthesis and is directly involved 
in the photoreaction phase of photosynthesis, providing sufficient electrons for the dark reactions and to ensure 
efficiency24,25. The light intensity, temperature and CO2 concentration in the greenhouse changed during the day, 
which greatly affected the crop photosynthesis and growth. Therefore, we included the environmental factors 
Tem, CO2 and Par in our model. In addition, analysis of the photosynthetic mechanism inside the leaves showed 
that the fluorescence parameters can accurately predict the photosynthetic capacity26. During photosynthesis, the 
qP measures the degree of closure of the reaction center, the ETR measures the rate of electron transfer during 
photosynthesis, and the PhiPS2 measures the actual initial light energy capture efficiency of the PSII reaction 
center with partial closure. The Fv′/Fm′ is the initial light energy capture efficiency of the open PSII reaction 
center, and the NPQ and qN measure the heat dissipation capacity when there is excess light energy. The correla-
tion analysis in Table 2 shows that the ETR, NPQ and photosynthetic rate are significantly correlated.

To further explore the relationship between fluorescence parameters and photosynthetic rate, the photosyn-
thesis and fluorescence response curves were plotted under different light intensities (Fig. 3). The Pn, Fv′/Fm′, 
ETR, NPQ, qP, PhiPS2, qN and other photosynthesis and fluorescence parameters reflecting crop photosynthetic 
capacity under different light intensities were compared. The temperature and CO2 concentration were set to 
18 °C and 600 μmol·mol−1, respectively; according to the fluorescence indices obtained earlier.

We can see from the Fig. 3, when the light intensity was in the range of 0–300 μmol·m−2·s−1, the photo-
synthetic rate of the new leaves increased with increasing light intensity. The intra-leaf ETR that is involved in 
photosynthesis also increased significantly, along with the NPQ and qN; while the Fv′/Fm′, PhiPS2 and qP were 
significantly reduced. When the light intensity was in the range of 300–1000 μmol·m−2·s−1, the photosynthetic 
rate of the new top leaves gradually decreased as the light intensity increased. The ETR inside the leaf is involved 
in the whole process of photosynthesis, and it gradually slows down as the light intensity increased. The ETR indi-
cates that the leaf has begun to approach light saturation and that there is slight photoinhibition. The increase in 
the NPQ and qN also slowed down, indicating that the heat dissipation capacity of the leaf is close to its limit for 
dealing with excess light energy. The Fv′/Fm′, PhiPS2, and qP also trended downwards when the light intensity 
was in the range of 1000–1500 μmol·m−2·s−1. As the light intensity increased, the photosynthetic rate of the new 
leaves at the top position gradually flattened. The internal ETR of the leaf is involved in the entire photosynthesis 
process, and its increase is also mild. The NPQ and qN began to show a downward trend, suggesting that the 
leaves were beginning to be damaged by the strong light. The downward trends of the Fv′/Fm′, PhiPS2, and qP 
slowed down, indicating that the photosynthetic capacity was beginning to decay. The patterns of the ETR, NPQ 
response curves and photosynthetic rate response curves correlate well, with the ETR and NPQ highly correlated 
to the photosynthetic rate. Therefore, ETR and NPQ can be used for auxiliary verification of the photosynthetic 
rate model.

Conclusion
The newborn leaves at the top of the cucumber play an important role in the growth and development of the 
whole plant; however, these leaves have an immature photosynthetic apparatus. Here, we constructed a photosyn-
thetic rate prediction model using PSO-BP. Our findings may be applied to all vine crops, to allow the construc-
tion of precise newborn canopy leaf regulation models and the systematic study of the different growth stages in 
crops. Specifically, our conclusions are as follows:

Predict 
target

Training set Test set

R2 RMSE R2 RMSE

Model1 Pn 0.987 0.05924 0.9867 0.05869

Modle2 ETR 0.9972 0.02913 0.9974 0.02739

Model3 NPQ 0.9819 0.04942 0.993 0.04178

Table 3. Fluorescence parameters prediction.
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Using the photosynthesis and fluorescence data obtained from our experiments a correlation analysis method 
was used to identify the main environmental factors (Tem, CO2 concentration and Par) and the core fluorescence 
parameters (ETR and NPQ) that influence the newborn canopy leaves. By comparing photosynthetic rate(Pn) 
response curve and fluorescence(ETR, NPQ, Fv′/Fm′, PhiPS2, qP, qN) response curve, it was found that the fluo-
rescence characteristics in the photosynthetic process of crops had a better photosynthetic evaluation effect than 
the changes in the photosynthetic rate. Therefore, In the later research, we can use the fluorescence mechanism 

Figure 3. Photosynthesis and fluorescence response curves of the newborn leaves at 18 °C and 600 μmol·mol−1 
CO2: (a) Pn response curve, (b) ETR response curve, (c) NPQ response curve, (d) Fv′/Fm′ response curve, (e) 
PhiPS2 response curve, (f) qP response curve, (g) qN response curve.
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inside the leaves as the auxiliary reference standard of photosynthetic capacity, which can lay a good foundation 
for the accurate regulation of the light environment of the new leaves in the canopy.

Using the traditional BP and PSO-BP neural networks with the input terms Tem, CO2 concentration and Par 
as the inputs and net photosynthetic rate as the output, we constructed a model of the photosynthetic rate of the 
newborn leaves at the canopy. Our results showed that the PSO-BP photosynthetic rate prediction model was very 
precise, with a coefficient of determination R2 of 0.9947.

Materials and Methods
Experimental materials. The greenhouse experiment was conducted from October to December 
2017 at the demonstration station base of the Comprehensive Service Area of Vegetable Industry in Jingyang, 
Xianyang, Shanxi. The cucumber variety “Bonai 14-3” was selected for the experiments. During breeding, full 
cucumber seeds were selected for soaking, germination and then cold treatment. A 50-hole nutrient mesh 
(540 × 280 × 50 mm) was used to support the seedlings and culture medium with an organic matter content 
of at least 50%, a humic acid content of at least 20% and a pH of 5.5–6.5 was used for seedling growth. Uniform 
irrigation, fertilization and illumination conditions were used during seedling growth. When the cucumber 
seedlings were sufficiently large, they were transplanted into the Base 2 East Sunlight Greenhouse, and then the 
net photosynthetic rate and fluorescence parameters of the newborn leaves were measured until the cucumber 
seedlings reached the flowering stage. No pesticides or hormones were used during the experiments and normal 
greenhouse conditions were applied.

Sixty strains of cucumber plants that exhibited good growth were selected for the experiments. Newborn 
cucumber leaves were used for the measurements, as shown in Fig. 4. Multi-environment factor testing was car-
ried out using an LI-6800 portable photosynthesis instrument (LI-COR, USA) to measure the net photosynthetic 
rate(Pn) of the newborn leaves. The photochemical quenching coefficient (qP), photosynthetic electron transport 
rate (ETR), PSII actual photochemical quantum yield (PhiPS2), PSII effective photochemical quantum yield (Fv’/
Fm’) and non-photochemical quenching coefficient (NPQ, qN) were recorded. The environmental conditions 
in the facility varied widely during the day, therefore, the temperature, CO2 concentration and light intensity 
were obtained by correlation analysis (Table 2). Because these parameters greatly affect photosynthesis, they were 
optimized for the experiments and for the model construction using a photosynthesiser self-tape module27. The 
temperature control was set to six different temperatures: 18, 20, 24, 28, 32 or 36 °C; and the CO2 injector was 
set to four different CO2 volume ratios: 300, 600, 900 or 1200 μmol·mol−1. When the light intensity is 0, the qP, 
ETR, PhiPS2, Fv’/Fm’, and NPQ are all invalid values, and the light saturation point of the cucumber leaves is 
approximately 990 μmol m−2·s−1. Because the light saturation point of the cucumber leaves changes with the light 
intensity inside the growth facility, we used an LED light source module set to 13 different light intensities: 20, 
50, 100, 200, 300, 500, 700, 900, 1000, 1100, 1200, 1300 or 1500 μmol·m−2·s−1. We set the relative humidity (RH) 
inside to 50% using a humidity module. The Fluorescence option Flr Action at Log was set to 2: FoFm (dark) or 
FsFm’Fo’ (light), the Flash type was set to MultiPhase and the other parameters were set to default. Daily readings 
were taken at 08:30–11:30 and 14:30–17:30 hours to avoid the impact of crop “midday break” on the reliability of 
the data collected. In total, 312 groups of experiments were conducted. Three plants were randomly selected for 
measurement in each group to form a complete data set of 936 test samples.

Model Construction Method
Selection of core fluorescence parameters. The photosynthetic and fluorescence parameter data were 
measured for the newborn leaves using the multi-factorial test described. The correlation between each factor 
and the photosynthetic rate was analyzed, and the core input factor for the newborn leaf photosynthetic rate 
prediction model was selected.

First, to avoid the large dimensional differences between the sample data that would have a significant impact 
on the neural network training, the Tem, CO2 concentration, Par, RH, qP,

ETR, PhiPS2, Fv′/Fm′, NPQ, qN and other parameters were normalized. The normalization interval was [−1, 
1], and the normalization formula is shown in Eq. (1).

Figure 4. Positions measured on the plants.
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y x x x x2( )/( ) 1 (1)min max min= − − −

where y represents the normalized data; and xmax and xmin represent the maximum and minimum of the same 
dimension data sequence, respectively.

Using the normalized data, the Pearson correlation coefficient between each factor and the photosynthetic rate 
was calculated using SPASS28, a data processing software and the formulae in Eqs. (2, 3, 4 and 5).
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where x and y represent the average values of Xij and yi, respectively; xj (j = 1, 2, … 10) represents Tem, CO2, Par, 
RH, qP, ETR, PhiPS2, Fv′/Fm′, NPQ and qN; and y represents Pn. The correlation between each factor and the 
photosynthetic rate calculated from formula (2) is shown in Table 2.

Construction of the photosynthetic rate prediction model. In this study, multi-factorial experi-
ments were used to obtain multidimensional photosynthetic and fluorescent data, and key input factors were 
obtained through correlation and mechanism analyses. Then we programmed BP and PSO-BP methods based on 
MATLAB2015b software, without using any existing package. Among them, PSO-BP neural network was used to 
predict the photosynthetic rate of cucumber newborn leaves with environmental factors Tem, CO2, Par as input 
and net photosynthetic rate as output.

Construction of the photosynthetic rate model using PSO-BP. A fixed learning rate is used in tradi-
tional BP neural networks. However, this gives them many limitations, including slow network convergence, long 
training time and low local vulnerability29,30. By optimizing the initial weight of the network, the convergence 
speed and accuracy of the model can be improved. A BP neural network based on particle swarm optimization 
(PSO) provided a good foundation for the photosynthetic rate prediction model of the newborn leaves. A flow 
chart of the new leaf photosynthetic rate prediction model is shown in Fig. 5.

BP neural network structure design. BP is a multi-layer feedforward network based on an error 
back-propagation algorithm31–33, and includes an input layer, hidden layer and output layer (Fig. 6). A single 
hidden layer structure was used to construct a photosynthetic rate prediction model using Tem, CO2, Par as 
three-dimensional input factors and the net photosynthetic rate as the output factor. The normalized input array 
was defined as X and the corresponding net photosynthetic rate, Pn, was defined as the output. The S-type tangent 
function Tansig was used as a hidden layer neuron transfer function, and the number of nodes is 5 which calcu-
lated in Eq. 6. The linear function Purelin was used for the output layer.

L m n c( )/2 (6)= + +

where m is the number of input layer nodes; n is the number of output layer nodes; and c is a constant between 
1 and 10.

Among them, the hidden layer is mainly used to calculate the current output of a neuron according to its final 
state and total input34. The current output state of a neuron reflects its activity level, which is usually calculated by 
an activation function. In this paper, the S-type tangent function is ‘Tansig’, the formula is shown in Eq. 7:

f
e

(X) 1
1 (7)X=

+ −

Based on the output of the aforementioned neurons, the output layer calculates the output of the network35, 
which is, Pn′. It can be defined as an output function, which is usually a linear function without limiting ampli-
tude. the formula is shown in Eq. 8:

Pn (X) X (8)′ =

Next, the error function is defined according to the output value of the network and the real value, which is 
used to update the weight of the network36. The formula is shown in Eq. 9:
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where E represents the error function; Pn′ is the output value of the network; Pn is the real value; and j represents 
the jth neuron.

Based on the error function, the weight of the network is modified in the direction of e-function gradient37. 
the formula is shown in Eq. 10:

Figure 5. Flow chart for constructing the PSO-BP photosynthetic rate prediction model.

Figure 6. Basic network structure.
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where wijk represents the weight of the j-th neuron in the k − 1 layer connecting the i-th neuron in the k-th layer; 
∆wijk represents the updated value of the weight; η represents the step factor.

PSO-BP network weights. To minimize error, BP learns and adjusts the network weights and thresholds 
through repeated training calculations. However, there are limitations to the training process where there are 
local minimums and large errors33,38,39. The PSO algorithm is derived from a simulation of bird predation behav-
ior40–42. The fitness is used to measure the pros and cons of the particles and the optimal solution of the neural 
network is evaluated. In our study, we used the PSO algorithm to optimize the weight of the BP model. The initial 
population is 110, the fitness and position of the particles were updated by tracking using two extreme values. The 
optimal solution of particles is Xpbesti; that is, the individual extremum = ...p p p p( , , )i i i ij1 2 . The optimal solution 
of the group is Xgbest, which is the Global extremum, = ...g g g g( , , )j1 2 . The particle speed and position update are 
shown in Eq. 11:
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where Vij, Xij are velocity and position, respectively; ω is the inertia weight of the particle; rand() is a random 
function; Pij is the optimal value of the individual position; and Pgi is the optimal value of the group position.

Based on the weight adjustment of the BP error algorithm, the PSO optimization algorithm was used to mod-
ify the weight. The global optimality was searched for using the PSO, and the global optimal solution was identi-
fied using the mean-square-error that is the fitness. The objective function is presented in Eq. 12:
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where p is the number of samples; L is the number of neurons; Toij is the expected output value; and Tdij is the 
predicted output value.

Model training and validation. Data set based on the above experiments, 80% was used as the training set, 
and 20% was used as the validation set. The LM training method was used to train the model based on the 
PSO-BP neural network obtained. The entire set of leaf input samples was ′ = ′ ′ ′X X X X[ ]T1 2 3 , in which ′ ′ ′X X X, ,1 2 3 
were Tem, CO2 and Par, and the output signal, Toij, represents the net photosynthetic rate calculated by the net-
work. The corresponding measured net photosynthetic rate is Td. When running the network, the optimal weight 
matrix obtained by PSO is received, and a set of sample sets ′X T( , )d  is the input that is used to construct the pho-
tosynthetic rate model for a different leaf position, ′ ′T X( )d .
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