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Reduced micromorphic model 
in orthogonal curvilinear 
coordinates and its application to a 
metamaterial hemisphere
A. R. el Dhaba

The reduced micromorphic model (RMM) is used to study the effect of the applied force on a hemisphere 
made of phononic crystals that belongs to the metamaterials group. The strain tensor, the micro-strain 
tensor and the coupling between them are the kinematic relations used to measure the deformation 
and micro-deformation of the representative volume element of these materials. The free energy 
function, the constitutive relations, the field equations, and the boundary conditions are presented 
firstly in the Cartesian coordinate. Then, the orthogonal curvilinear coordinates are introduced as a 
general coordinate to describe the physical quantities included in the RMM. The spherical coordinates 
are deduced as a special case from the curvilinear coordinates to study the deformation and micro-
deformation for the hemisphere. The kinematic relations and the governing equations of the model 
are considered to changing with the radius of the hemisphere only. The analytical solutions of the field 
equations are also obtained by using the Frobenius series satisfying the given boundary conditions and 
consequently the value of the physical constants of the problem is determined. Numerical applications 
for the obtained results are introduced with discussion. The results showed that the displacement 
has a greater effect rather than the micro-strain, when it is measured relative to the classical physical 
quantities while the micro-strain has a greater effect rather than the displacement, when it is measured 
relative to the nanoscale physical quantities.

Metamaterials are fabricated engineering materials with periodic internal structures. These materials have special 
properties that do not exist in other natural materials. They can be designed to prohibit the propagation of elastic 
waves in the bandgap frequency range effectively. This property has many potential applications in the vibration 
and noise reduction areas. Besides this property, there are many applications for metamaterials in the fields of 
technology, industrial engineering, telecommunication equipment, optical filters, medical devices and mobile 
communication systems and others.

The main idea of constructing metamaterials is attributed to Sir J.C. Bose in 1898. He suggested the idea of the 
existence of artificial materials by carrying the microwave experiment on twisted structures1,2. Winston E. Kock3,4, 
used the optical radio waves properties to develop new type of antennas made of metamaterial. V. G. Veselago5, 
introduced a theoretical model that predicts the propagation of electromagnetic waves in left-handed materials. 
During the last few decades, more attention was given to metamaterials. This is because of their important appli-
cations in recent industries. Theoretical formulation and mechanical applications can be found in refs. 6–9.

The idea of building metamaterials was extended to include elastic and acoustic waves by Ding et al.10, where 
the authors proposed metamaterials with simultaneously negative bulk modulus and mass density. Wu et al.11 pro-
posed a new type of elastic metamaterials made from fluid-solid components possessing negative shear modulus 
and negative mass density for a large frequency domain. To study the new phenomena at the micro-scale, many 
theories have been introduced to modify the classical theory of continuum mechanics by adding an additional 
degree of freedom. This describes the micro-effects relative to the macro-effects. Micropolar theory (Cosserat 
theory)12, couple stress theory13, micromorphic theory14, microstructure theory15, and micropolar theory16  
are extensions of the classical field theory to microscopic field theory in space and time scales. Among these 
theories, the micromorphic theory developed by Eringen and Suhubi17,18 and Eringen19,20 is an extension of the 
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classical field theories to microscopic time and space scales. In this new theory, the concept of material point 
used in classical field theory is replaced by a representative volume element (RVE) that can move, deform, rotate 
and stretch. Also, the molecules that constitute the RVE can deform and rotate. Moreover, the Micromorphic 
model can be reduced to yield other models. This can be achieved by imposing internal constraints prescribed 
on the micro-deformation21. When the micro-deformation is constrained to be pure rotation, micropolar theory 
is obtained. Also, when the micro-deformation coincides with the deformation gradient, the second gradient 
theory is obtained. Classical field theory is retrieved when the displacement field is a linear transformation and 
the micro-deformation vanishes.

Among the important phenomena that characterize the micromorphic model: the size-dependent effect, 18 
length scale parameters for the isotropic case, two types of wave propagation, acoustic and optic waves, and band-
gaps in the frequency domain.

Micromorphic theory provides basic field equations and constitutive relations for large classes of materials 
such as artificial materials, porous materials, composites, polymers, crystals, etc., whose REV possesses inde-
pendent degrees of freedom and described boundary conditions for each boundary-value problem. Neff et al.22, 
proposed a relaxed linear elastic micromorphic model to reduce the number of material parameters. The number 
of the materials parameters is reduced to 9, the coupling between materials parameters is reduced to 4 dependent 
+3 independent. Also, the types of waves are acoustic waves, optic waves, and standing waves for the relaxed 
micromorphic model. Shaat23 reduced the number of the material parameters to 8, the coupling between mate-
rials parameters are 8 dependent + 0 independent. Three types of waves are obtained. Shaat and El Dhaba, in24 
used the so-called reduced micromorphic model (RMM) to study the equivalent shear modulus for composite 
metamaterials.

The main objective of this article is to use the generalized curvilinear coordinates to introduce a novel descrip-
tion for the reduced micromorphic model with extension to spherical coordinates and applications in engineering 
and mechanics. The importance of this study arises from its potential applications in spongy materials, granular 
materials, as well as for materials used in lubrication and fluidization for the mechanical parts in cars, trucks and 
internal structure of engines. The paper is organized as follows: Section 2 is devoted to introducing the RMM in 
Cartesian coordinates with complete description of the kinematic relations, the definition of the strain energy 
function as well as the description of the constitutive relations, the field equations and the boundary conditions. 
Section 3 describes the mathematical formulas of the model in general curvilinear coordinates. An application for 
the model in spherical polar coordinates is presented in Section 4. Finally, in Section 5 we find the solution of the 
considered problem. The obtained results are presented in Section 6 with detailed discussion. Finally, the main 
findings of this study are presented in Section 7.

the RMM in cartesian coordinates
Because the classical theories of continuum mechanics do not have the ability to represent the nanoscale phenom-
ena, the reduced micromorphic model (RMM)23 is introduced to study such phenomena at the micro-scale level. 
The RMM introduces the micro-strain tensor as an unknown measure, besides the displacement components. 
Also, it introduces the coupling between the strain tensor and the micro-strain tensor as a coupling measure with 
elimination of the repeated effects. In addition to its ability to reduce the material parameters, the RMM generates 
more field equations and reduces the order of the partial differential equations of the model. These properties 
make it possible to obtain analytical solutions for the physical state variables of the model. Materials whose behav-
ior is described by this model are called “multiscale materials” or micromorphic materials.

In RMM, the kinematical variables are defined as follows:

ε γ ε χ χ= + = − = = .( )u u s s1
2

, , , (1)ij i j j i ij ij ij ijk jk i ijj, , , 0

where ( )ij jiε ε=  denote the classical strain tensor, =s s( )ij ji  is the micro-strain tensor, γ γ=( )ij ji  is the coupling 
between the micro-strain sij and the macro-strain ijε  and ( )ijk ikjχ χ=  is the gradient of the micro-strain tensor sij.

The equations of motion can be derived by using variational methods and are given as:
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the natural boundary conditions are

τ = =n t n m m, ,j ji i i ijk jk

where ρ is the mass density of the macro-scale material, mρ  is the mass density of the material particle, and J 
denotes a microinertia density per unit mass, fi and Hjk are the body force and the body higher-order-moments 
respectively.

The constitutive relations are related to the free energy function by:
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where ε γ χ=W W( , , )ij ij ijk  is the free energy function in terms of internal variables, tij is the micro-stress tensor, 

ijτ  can be defined as the residual stress and mijk is a higher order micro-stress tensor.
According to23,24, the free energy is taken in the form
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where λm and μm are the elastic moduli of the microstructure, λ and μ are the elastic moduli of the confined 
material between two particles, λc and μc are two elastic moduli accounting for the coupling between the 
micro-strain and the macro-strain, 1  and 2  are length scale parameters. Such a medium is composed of deformed 
molecules and have twelve degree of freedom: three translational, three rotational and six micro-deformations25 
and26. Many authors introduce a simplified version of the mathematical model for such materials in order to 
reduce the material parameters22 and23.

Substitute Eq. (4) into Eq. (3) to get the constitutive relations as:
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the RMM Model in orthogonal curvilinear coordinates
In this section, we introduce a theoretical method to obtain the governing equations, boundary conditions and 
the constitutive relations for the RMM in orthogonal curvilinear coordinates. The main idea of the method 
depends on two concepts mentioned by Eringen27. We introduce the main rules for the derivatives of the covar-
iant and contravariant vectors, and the second and higher orders contravariant and mixed tensors as follows:
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where Ai are the vector contravariant components, Bjk- the second rank tensor contravariant components, Ck
j - the 

components of second rank mixed tensor, Dijk- the contravariant components of third rank tensor and Ek
ji, Fjk

i  are 
the components of the third rank mixed tensors. Γ jk

i  are the known Christoffel symbols of the second kind satis-
fying Γ Γ=jk

i
kj
i  and defined in orthogonal curvilinear coordinates as follows28:

g g g g1
2

( ) (7)jk
i ia

aj k ak j jk a, , ,Γ = + −

where gij are the metric tensor components.
Following the two concepts proposed by Eringen27, we replace the partial differentiation (,) with the covariant 

differentiation (;) taking in consideration the repeated indices summation rule.
Therefore, the kinematic relations (1) can be written in mixed tensor form as follows:
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Using Eq. (6), Eq. (8) can be written as:
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The constitutive relations in terms of the contravariant components are given by:
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Following27–30, the equations of motion in the RMM model may be written in the form:
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where (;) denotes covariant differentiation.
Using Eq. (6), the covariant derivatives of the second and third rank tensors are:
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Neglecting external forces and moments, substituting Eq. (12) into Eq. (11) one gets:

τ Γ τ Γ τ ρ

Γ Γ Γ τ ρ

+ − + =

+ + − + − + = .








̈

̈

f u

m m m m t H Js

,

(13)

i j
j

qj
j

i
q

ji
q

q
j j j

k i
ij

iq
i

k
qj

iq
j

k
iq

ki
q

q
ij

k
j

k
j

k
j

m k
j

,

,

According to30 and31, the vector and tensor physical components are
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where gii  are the Lamé coefficients. Also, the relation between the contravariant and covariant components are:

u g u u g u,i im
m i im

m( )
( ) ( )

( )= = .

To obtain the kinematic relations, the constitutive relations and the field equations in terms of the physical 
quantities we substitute Eq. (14) into Eqs. (9), (10) and (13):
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Figure 1. Spherical coordinates system.
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It should be noted that some authors write the physical components as mixed tensors, as in29,30, while others 
write the physical components as covariant tensors as in32.

Half-space Involving Spherical Symmetry
Assume the an isotropic material occupying the half-space ≥x 0, in the xyz-plane containing a metamaterial 
hemisphere with radius R. Using the spherical coordinates (r, θ, ∅) (Fig. 1),
where,

x r sin cos y r sin sin z r cos( ) ( ), ( ) ( ), ( ), (18)θ ϕ θ ϕ θ= = =

the metric tensor in spherical coordinates is defined as:

θ
=



















g r
r sin

1 0 0
0 0
0 0

,ij
2

2 2

and the components of the metric tensor are:

θ= = =g g r g r sin1, , (19)11 22
2

33
2 2

the Christoffel symbol of the second kind are:

r rsin sin cos

r
cot

, , ,
1 , ,

(20)

22
1

33
1 2

33
2

12
2

31
3

32
3

Γ Γ θ Γ θ θ

Γ Γ Γ θ

= − = − = −

= = =









without any body forces and body higher-order-moments and under the assumption of central symmetry, it is 
expected that the components of the displacement and micro-strain fields along θ and φ vanish, hence
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Substitute the Eqs. (19–21) into Eq. (15), to get the kinematic relations in spherical coordinates as follows
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Similarly, substitute Eqs. (19–21) into Eq. (16) to get components of the micro-stress tensor in spherical 
coordinates:
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Substituting Eqs. (19–20) into Eq. (13) and neglecting the dynamic effects, we get the field equations in static 
equilibrium as follows:
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Substitute Eqs. (23–25) into Eq. (26) to obtain the field equations of a hemisphere made of elastic phononic 
material in spherical coordinate as follows:
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Figure 2. represents a hemisphere with radius R made of an elastic phononic material, the Cartesian coordi-
nates are chosen at the lower surface of the hemisphere, we take the hemisphere fixed at origin of the coordinates 
and subjected to an external force in r-direction.

The hemisphere is described by

r R[0, ], [0, ], [0, ] (29)θ π ϕ π= = = .

the Analytical Solution
Frobenius series is employed to get the analytical solution for the system of ordinary differential equations in (27) 
with the boundary conditions in Eq. (28). Since the point (0, 0, 0) is a regular point, one can express the functions 
ur and srr in terms of the variable r as follows:

∑ ∑= =
=

∞

=

∞
u r A r s r B r( ) , ( ) ,

(30)
r

n
n

n
rr

n
n

n

0 0

where An and Bn are constants to be determined from the given boundary conditions.
Substituting the expressions for the two functions ur and srr and their derivatives into Eq. (27), we obtain
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Based on the previous mathematical calculations, Eq. (30) takes the form
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A solution to the system of ordinary differential Eq. (27) may be found in series form as in (30). Applying the 
boundary conditions (28), we find that the first boundary condition is automatically satisfied while the second 
one gives
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.

=
∞

+ =

with
⁎ λ= − − + + .+ +W a a n a W(2 (2 1) )n n2 1 3 2 3 2 1

numerical Results
Table 1 shows the values for the physical parameters23 for an epoxy matrix and the inclusions materials.

Figure 2. Hemisphere embedded in an isotropic half-space.
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The following figures are obtained depending on the numerical values for materials parameters listed in Tables (1)  
and (2).

Figures (3 and 4) show the displacement and the micro-strain at the hemisphere surface. It is noted that the 
displacement and the micro-strain increase at the surface. Also, the micro-strain relative to the radius is of order 
10−4 and the displacement relative to the radius is of order 10−3. Figures (5 and 6) show the displacement and the 
micro-strain for different values for the ratio with changing d

R
. We note that the displacement increases in a linear 

way until = .0 004d
R

 then decreases until 0 005d
R

= . , then becomes constant. On the other hand, the micro-strain 
decreases in a nonlinear way with increasing d

R
.

Radius of the sphere = .R m0 2

Micro-inertia density =J d2 /52

Micro-moduli GPa GPa406 , 273 1 ,m mλ μ= = .

Macro-moduli GPa GPa406 , 273 1 ,λ μ= = .

Mass density ρ ρ= =kg m kg m27000 / , 2700 / ,m
3 3

Coupling moduli λ λ μ μ= − . = − .0 9 , 0 9 ,c e c e

Length scales m0, 0 0125 ,1 2 = = .

the rule of mixture
λ λ λ= + −f f(1 ) ,e m

μ μ μ= + −f f(1 ) ,e m

The applied force = .q N30r

Table 1. Phononic material constants.

d M = R/2d f = 2 Md3/R3

0.01 1000 . × −2 10 7

0.0125 800 . × −3 91 10 7

0.016 625 × −6 10 7

0.02 500 × −1 10 6

0.025 400 1 5625 10 6. × −

0.04 250 4 10 6× −

0.05, 200 6 25 10 6. × −

0.08 125 . × −0 16 10 4

0.1 100 0 25 10 4. × −

0.2 50 . × −0 1 10 3

Table 2. Radius of the inclusions d, number of inclusions and the frequency.

Figure 3. Displacement in r-direction when R = 20 cm.

Figure 4. Micro-strain in r-direction when R = 20 cm.
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Figures (7 and 8) show the displacement and micro-strain with changing with the frequency = ( )f M2 d
R

3
 

respectively. The change in the displacement can be tangible at the nanoscale (10−9), while the change in the 
micro-strain is linear decreasing and can be tangible at the microscale (10−6).

Figures (9 and 10) show the displacement and micro-strain with changing with the ration μc/μ respectively. 
The change in the displacement can be tangible at the nanoscale (10−9) while the change in the micro-strain is 
linear increasing and can be tangible at the microscale (10−6). Figure (11) show the initial and current position of 
the hemisphere due to the micro-strain and displacement at the surface, the total deformation of the hemisphere 
is linear. Note that we measure only the deformation of objects on their surfaces. Figure (12) shows the distribu-
tion of the displacement and the micro-strain at the surface of the hemisphere, they are uniformly distributed.

Figure 5. Displacement in r-direction with changing d
R.

Figure 6. Micro-strain in r-direction with changing d
R

.

Figure 7. Displacement in r-direction for different values of the frequency.

Figure 8. Micro-strain in r-direction for different values of the frequency.
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concluding Remarks
In this paper, the reduced micromorphic model (RMM) is reformulated and presented in orthogonal curvilinear 
coordinates. Specific forms for the field equations, boundary conditions, and the constitutive relations have been 
derived in spherical coordinates. This model may be conveniently applied to a wide range of problems. As an 
application for this model, a hemisphere made of phononic crystals is considered, where the main unknown func-
tions are the displacement and the micro-strain, changing with the radius of the hemisphere only, and neglecting 
any dependence on the other coordinates.

The analytical solution is obtained for the field equations using Frobenius series. The unknown coefficients of 
the considered problem are determined. The results of this study are summarized as follows:

•	 The displacement and the micro-strain are concentrated at the surface of the hemisphere.
•	 The displacement increases linearly with the increase of the inclusion radius.

Figure 9. Displacement in r-direction for different values of μc/μ.

Figure 10. Micro-strain in r-direction for different values of μc/μ.

Figure 11. Initial and current positions for the hemisphere.

Figure 12. Displacement and micro-strain distribution at surface of the hemisphere.
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•	 The micro-strain linearly decreases when ∈ . .d R/ [0 001, 0 005], and decreases linearly when 
∈ . . .d R/ [0 005, 0 01]  In other words, when the number of inclusions is 100 or 50, the change in micro-strain 

is linearly decreasing.
•	 The displacement has a greater effect than the micro-strain, when it is measured relative to the classical phys-

ical quantities as on Figs. (3 and 4).
•	 The micro-strain has a greater effect than the displacement when it is measured relative to the nanoscale 

physical quantities as on Figs. (5–10).
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