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Complex System Analysis of Korean 
Peninsula Earthquake Data
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Earthquakes are natural disasters that cause damage in a wide range of regions and represent a 
complex system that does not have a clear causal relationship with specific observable factors. This 
research analyzes the earthquake activities on the Korean Peninsula with respect to spatial and 
temporal factors. Using logarithmic regression analysis, we showed that the relationship between 
the location of the earthquake and its frequency in these locations follows a power law distribution. In 
addition, we showed that since 1998 the average earthquake magnitude has decreased from 3.0143 
to 2.5433 and the frequency has risen by 3.98 times. Finally, the spatial analysis revealed significantly 
concentrated earthquake activities in a few particular areas and showed that earthquake occurrence 
points have shifted southeast. This research showed the change in earthquake dynamics and 
concentration of earthquake activities in particular regions over time. This finding implies the necessity 
of further research on spatially-derived earthquake policies on the change of earthquake dynamics.

Damage caused by earthquakes is difficult to predict1 because they are a complex system that cause new phe-
nomena and disorder through interaction between its components2–4. This complex system can be found in both 
social5–7 and natural8–11 phenomena, and there are studies analyzing such complex systems using the power law12–15  
and complex networks16–21. Therefore, to investigate the earthquake phenomena of the Korean Peninsula, this 
study examines the change of earthquake patterns with time and the distribution of the power law according to 
space and magnitude.

The selected region for this research, the Korean Peninsula, is located in the stable intraplate region of East 
Asia22. With an average of 41.65 earthquakes stronger than ML2 by year, it is considered a relatively safe area in 
terms of earthquakes23. However, in 2016 and 2017, the number of earthquakes stronger than ML2 in the Korean 
Peninsula, was 254 and 223, respectively. Moreover, on September 12th, 2016, an ML5.8 earthquake occurred in 
Gyeongju, Gyeongsang-do Province, being recorded as the strongest earthquake so far. On November 15th, 2017, 
an ML5.4 earthquake occurred in Pohang, Gyeongsang-do Province, the second strongest earthquake in Korea. 
They caused the greatest social and economic damage compared to all past earthquakes in the Korean Peninsula24. 
These consecutive strong earthquakes have increased public interest in earthquakes25.

Various earthquake studies have been conducted to analyze their complexity. Omori validated the power law 
distribution between earthquakes26 and their aftershocks, and Gutenberg proved that if the earthquake magni-
tude is small, the frequency increases in a constant ratio27. Using identified earthquake power laws from previous 
studies, Serra and Corral compared the truncated gamma and tapered Gutenberg–Richter distributions to the 
simple Gutenberg–Richter power law distribution. They proved that truncated gamma distribution shows sig-
nificant improvement over the simple power law when fitting the earthquake moment distribution of the whole 
Earth28.

Spatial factors are the key elements to understanding the original form of the earthquake, the damage caused 
by the earthquake, and earthquake-related social policymaking29. Liu conducted research on the spatiotemporal 
complexity of earthquakes by applying a complex network to sections divided according to rock mass, which 
are based on earthquake and ground mass data. As a result, the connectivity distribution of the earthquake net-
work showed a power law distribution between the average maximum magnitude of a region and frequency30. 
Earthquake networks have also been used to consider the spatial factors of earthquakes31–33. Moreover, previous 
studies have analyzed earthquake networks based on their sequence34,35, and Abe concluded that earthquake 
studies based on time distribution were necessary, using data from different regions36.

In Korea, studies are focused around Gyeongju and Pohang, where the largest earthquake occurred so far37–39. 
In particular, Kim and Choi studied active faults, concluding that further studies are needed to produce active 
fault maps40,41. According to a study of the Yangsan fault zone, which resulted in the largest earthquake on the 
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Korean Peninsula, four significant deformation episodes occurred in the fault, and the dextral slip faulting in the 
late Paleogene had a significant effect on the deformation. Due to the deformation of the Yangsan fault, it was 
temporarily reactivated42.

This research considers spatiotemporal perspectives. We identified the relationship between the 
spatial-location and the frequency of earthquakes and its activities in space, along with an analysis of earthquake 
activity changes according to time. Spatial data was created based on the longitude and latitude of earthquakes 
that occurred in the Korean Peninsula. While previous studies divided the space into equal areas based on the 
rock mass, this study creates rectangular grid-sections based on the extreme latitude and longitude points of the 
earthquake. An analysis of the relationship between the grid-sections and the frequency of earthquakes in these 
grid-sections is conducted. In addition, the Gutenberg–Richter law is established between the magnitude and 
frequency of earthquakes by period, and the change in earthquake activity by period is identified to assess the 
overall change of earthquake activity within the Korean Peninsula.

Results
Analysis of earthquake activities in the Korean Peninsula considering spatial factors.  First, to 
verify that the earthquakes are intensively concentrated in a few areas, the Korean Peninsula was equally divided 
using a 40 × 40 uniform grid forming 1,600 spatial reference points. Then, the frequency of earthquakes per 
grid-section and the distribution of each grid-section was verified using logarithmic regression.

More than two-thirds of the Korean peninsula consist of granite and metamorphic rock. The granite mainly 
consists of Jurassic and Cretaceous granite, Daebo granite, and Bulguksa granite. Metamorphic rocks are mainly 
composed of gneiss and include shale, sandstone, and limestone. The primary sedimentary rocks are shale, sand-
stone, conglomerate, and limestone, and they are mainly distributed in the Gyeongsang Basin, including 
Gyeongsang-do Province. In the Cretaceous basins, including the Gyeongsang Basin, sediments, volcanic rocks, 
and tuff appear43. Although 1,733 earthquakes greater than ML2 occurred in the Korean Peninsula, Fig. 1(a) shows 
that out of the 1600 grid-sections, 459 spaces experienced more than one earthquake, indicating the earthquakes 
did not occur spatially uniform. Most of the earthquakes observed in the Korean Peninsula can be identified to 
occur in either Gyeongsang-do Province in the southeast of the Korean Peninsula, or Hwanghae-do Province in 
the northwest. Gyeongju and Pohang, where the two strongest earthquakes occurred, particularly show frequent 
earthquake activities. A total of 535 earthquakes were identified in Gyeongsang-do Province, resulting in the 
highest frequency of earthquakes—31% of the total for the Peninsula. The logarithmic regression, coefficients of 
determination (R2), between the grid-section and the frequency of earthquakes was 0.7674, showing a high cor-
relation between space and frequency. This suggests that the earthquake frequency of each grid-section and the 
number of grid sections follow a power law distribution. In other words, statistically, we prove that even if there 
are a large number of earthquakes, they do not occur spatially uniform, but rather tend to concentrate in specific 
regions.

Analysis of earthquake activity in the Korean Peninsula considering temporal factors.  To iden-
tify changes in the frequency of earthquakes by magnitude, the overall observation window 1978–2018, was 
divided into 10-year periods, and the establishment of the Gutenberg–Richter law was examined in each period 
and the total window.

Figures 2 shows the result of the logarithmic regression between the magnitude and frequency of earthquakes 
throughout the entire period. The numerical values of the analyzed results are shown on Table 1. The fitness of 
the logarithmic-regression distribution for magnitude and frequency in the entire period was significant because 
the p-value was less than 0.0001. In other words, the Gutenberg-Richter law was established for the entire earth-
quake of the Korean Peninsula. After that, to confirm the establishment of the Gutenberg–Richter law by time, 
we moved the time window only in three-year steps and overlapped the time windows over the entire period. As 
a result of overlapping, the coefficient of determination of the power law distribution between the magnitude and 
frequency of earthquakes was less than 0.5 before 1998. In some cases, the p-value was higher than 0.05, and the 
Gutenberg-Richter law was not established. However, since 1998, the power law distributions consistently showed 
coefficients of determination above 0.5. The coefficients of determination from 1978 to 1997 and 1998 to 2018 
were 0.6247 and 0.9025, respectively, indicating a significant difference between the periods. The reason for the 
large difference in the coefficients of determination of the power law between magnitude and frequency by period 
is that earthquakes before 1998 had a relatively low frequency. The fitness of the logarithmic regression model 
over the entire period was also significant, with a coefficient of determination of 0.9029, which showed a clear 
power law distribution between magnitude and frequency.

Because there was a significant difference in the coefficient of determination of the power law, coefficients of 
determination from before and after 1998, a visualization, and further analysis of frequency and magnitude were 
established for these two periods.

Even though the earthquake activity observation period was divided in half, the earthquake activity record 
since 1998 accounted for about 80% of all earthquake activities. This is depicted in Fig. 3. From 1998–2018, 
seismic activity was concentrated in a small area in the southern part of the Korean Peninsula, mainly near 
Gyeongsang-do Province, confirming that the average location center of earthquakes has moved southeast-
erly. Table 2 shows the results of the t-test to determine the seismic changes in the Korean Peninsula over the 
two periods. Welch’s t-test, which is a heteroscedastic test, was performed because the two equal time variance 
assumptions did not hold during the t-test. The t value was found to be high at 13.782, indicating that there is a 
statistically significant difference in the magnitude of earthquakes between before and after 1998.
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Discussion
In this study, the earthquake phenomena of the Korean Peninsula were analyzed in consideration of spatiotempo-
ral factors. To take into account spatial factors, the Korean Peninsula was divided into 1,600 equal sections using 
a grid. The logarithmic regression then verified that the relation between the grid section where the earthquake 
occurred and the frequency(number) of earthquakes in that grid-section follows the power law distribution. In 
another analysis, the earthquake observation period was divided to consider the temporal factors and to deter-
mine whether or not the Gutenberg–Richter law was established by period. As a result, earthquakes occurring 
after 1998 showed 1.7372 times higher coefficients of determination of the power law distribution than before, 
and the t-test confirmed that the magnitude of earthquakes occurring after 1998 was smaller than of those occur-
ring earlier. In other words, according to the power law distribution between the grid section where the earth-
quake occurred and the frequency of earthquakes in that grid-section, the earthquakes are concentrated in 

Figure 1.  Visualization of earthquake activity in the Korean Peninsula in terms of spatial location and 
frequency of earthquakes per grid-section. (a) The entire Korean Peninsula is divided into a 40 × 40 rectangular 
grid and divided into spaces of the same size (top left: N43.00°, E122.8°; bottom right: N32.35°, E131.1°). The 
total size of the grid is about 674 km in width (longitude) and about 1184 km in length (latitude), and the size 
of each grid is 16.85 km in width and 29.6 km in length. Then, the frequencies of earthquakes were mapped to 
these grid-sections based on the longitude and latitude of the earthquakes observed in the Korean Peninsula 
earthquake measurement data. (b) This is a log-log plot showing the logarithmic regression of the frequency 
of earthquake occurrence (number of earthquakes per grid-section) and the number of grid-sections with 
that frequency of events for the 1600 sections. The x-axis represents the log of the number of earthquakes per 
grid-section, and the y-axis represents the log of the number of sections with the same earthquake frequency. 
For example, if seven grid sections had 10 earthquakes, the plotted x-axis value would be log(10) and the y-axis 
value would be log(7).
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specific regions. Hence, it was confirmed that many earthquakes occurred in Gyeongsang-do Province. In addi-
tion, since 1998, the power law distribution between the magnitude and frequency of earthquakes had a high 
coefficient of determination, and the average number of earthquakes has increased significantly. This increase in 
the number of earthquakes resulted in a number of small-scale earthquakes; also a few large-scale earthquakes 

Figure 2.  Visualization of the analytical result of the magnitude and frequency distribution of all earthquakes 
observed since earthquake observation began on the Korean Peninsula. Log-log plot between the magnitude 
and frequency of earthquakes observed from 1978 to 2018.

Figure 3.  Visualization of earthquake occurrence in the periods before and after 1998. The blue and red 
triangles show the average latitude and longitude of all earthquake observations until 1997 and from 1998 to 
June 2018, respectively. The blue points indicate earthquakes before 1998 and red points indicate earthquakes 
after 1998. The map was drawn using the package ‘ggmap’ version 2.7.9 (https://cran.r-project.org/web/
packages/ggmap/)44 in R version 3.5.1 (https://www.R-project.org/)45. The map of the Korea Peninsula was 
provided from the Google Maps (Map data©2019 Google) using the function ‘get_map’ in the ‘ggmap’ package.
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occurred. In particular, since 1998, five out of seven earthquakes of ML5 or higher have occurred, and 80% of the 
total earthquakes occurred. Moreover, Due to the concentration of earthquakes in specific regions, earthquakes 
of ML5 or higher also occurred five times in Gyeongsang-do Province alone. As a result, large-scale earthquakes 
can occur at any time in specific regions in which earthquakes are concentrated.

The earthquake spatial data of this study were generated in rectangular grid-sections based on latitude and 
longitude. This is different from previous studies that have formed earthquake networks. This study presents ideas 
from the spatial point of view of the earthquakes. We argue that follow-up studies need to consider spatial factors 
due to the concentration of earthquakes in specific regions. Moreover, we revealed that the pattern of earthquakes 
differs significantly over time windows, which may be useful for earthquake-related social policymaking and 
follow-up studies.

Materials and Methods
This study used the earthquake magnitude and location data of the Korean Peninsula from 1978 to June 2018 
from the Weather Data Open Portal of the Korea Meteorological Administration. There is a total of 264 earth-
quake measuring stations in the Republic of Korea. The types of stations are classified into 95 broadband seis-
mometers, 27 short-period seismometers, and 142 accelerometers. The collected data includes the date, 
magnitude, epicenter, and latitude and longitude of the earthquakes. Of the 4,107 datasets, 31 datasets with miss-
ing information on location or magnitude of earthquakes were removed. In addition, since the earthquake data 
from 1978 to 1998 were collected by analog observations of earthquakes with a magnitude greater than ML2, only 
datasets of events of ML2 or higher were used after 1999, when digital observation was implemented. The statisti-
cal lower limit for earthquakes on the Korean Peninsula suggested by the Korea Meteorological Administration is 
more than ML2. Therefore, we excluded micro-earthquakes of less than ML2 from the dataset. After such filtering, 
a total of 1,733 datasets were available and used for this study.

Table 3 lists the descriptive statistics of earthquakes that occurred on the Korean Peninsula, including the 
standard deviation (S.D.) for each value. As only earthquakes of ML2 or higher were used, the minimum earth-
quake magnitude value was ML2, the average value ML 2.64, and the maximum value ML5.8. The latitude of the 
earthquake region ranged from N32.35° to N41.60° and the longitude ranged from E122.8° to E131.1°, covering 
the entire Korean Peninsula.

periods R2 F-statistic p-value periods R2 F-statistic p-value

1978–1980 0.3898 11.5000 0.0032 1998–2000 0.5144 21.1900 0.0001

1979–1981 0.2146 4.3720 0.0528 1999–2001 0.6711 36.7300 <0.0001

1980–1982 0.4025 10.1000 0.0062 2000–2002 0.7967 74.4600 <0.0001

1981–1983 0.1128 2.1610 0.1598 2001–2003 0.8580 114.8000 <0.0001

1982–1984 0.1736 3.7820 0.0675 2002–2004 0.6568 38.2700 <0.0001

1983–1985 0.0935 1.6520 0.2170 2003–2005 0.6855 45.7800 <0.0001

1984–1986 0.2881 6.4750 0.0216 2004–2006 0.7274 50.6900 <0.0001

1985–1987 0.0827 1.3540 0.2628 2005–2007 0.6640 35.5800 <0.0001

1986–1988 0.1390 2.0980 0.1712 2006–2008 0.8133 69.7400 <0.0001

1987–1989 0.0673 0.5779 0.4690 2007–2009 0.7935 65.3300 <0.0001

1988–1990 0.0025 0.0277 0.8707 2008–2010 0.6723 34.8800 <0.0001

1989–1991 0.0368 0.4975 0.4931 2009–2011 0.5465 20.4900 <0.0001

1990–1992 0.0209 0.3423 0.5666 2010–2012 0.6823 36.5100 <0.0001

1991–1993 0.2771 6.5170 0.0205 2011–2013 0.7080 46.0600 <0.0001

1992–1994 0.3713 13.5800 0.0012 2012–2014 0.6734 43.3000 <0.0001

1993–1995 0.5077 22.6900 <0.0001 2013–2015 0.6621 41.1500 <0.0001

1994–1996 0.4381 16.3700 0.0005 2014–2016 0.7181 56.0300 <0.0001

1995–1997 0.2360 5.2500 0.0349 2015–2017 0.7968 90.1900 <0.0001

1996–1998 0.2750 7.5880 0.0122 2016–2018 0.8479 122.6000 <0.0001

1997–1999 0.2516 6.7220 0.0174 Entire
period 0.9029 316.1000 <0.0001

Table 1.  Results of the Logarithmic Regression by Period.

Year t-value
Degree of 
freedom p-value Observation

Average 
magnitude

1978–1997
13.782 479.43 2.2e-16

348 3.0143

1998–2018 1385 2.5453

Table 2.  Welch’s t-test of the magnitude of the earthquakes by period.
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To consider spatial factors, the entire area of the Korean Peninsula was divided into a uniform grid with 40 
rows and 40 columns. This is depicted in Fig. 4. First, this study analyzed the frequency of earthquake occurrence 
in each grid-section followed by mapping the frequency of earthquake occurrences in various grid sections. 
Moreover, this study considered the relationship between the magnitude and frequency of earthquakes by period.

The distribution of the frequency of earthquakes in each space and the number of spaces corresponding to 
a specific number of events were confirmed by logarithmic regression (Eq. 1). The dependent variable was the 
number of grid sections in which earthquakes occurred, and the independent variable was the frequency (total 
number) of earthquakes in a grid section. Sections where no earthquake occurred were removed, and only the 
sections where at least one earthquake occurred were used. Second, the analysis of magnitude and frequency to 
confirm the establishment of the Gutenberg–Richter law by period was conducted in the same way as the spatial 
analysis except that the independent variable was the magnitude of the earthquake and the dependent variable 
was the frequency of earthquakes by time windows. Finally, a t-test was performed to determine any overall 
change in magnitude of the earthquakes over time. The stats package in R version 3.5.1 was used for all analysis.

The logarithmic transformed regression and t-test equations used in the two analyses are as follows:

Figure 4.  An image of the entire Korean Peninsula, defining its latitude as N32.35° to N43.00° and longitude as 
E122.8° to E131.1°, then divided into a uniform grid with 40 rows and 40 columns, for a total of 1,600 sections.

Parameter Min. Median Mean Max. S.D.

Magnitude (ML) 2.0 2.5 2.64 5.8 1.4

Latitude (90° N) 32.35 36.14 36.46 41.6 2.98

Longitude (180° E) 122.8 127.7 127.6 131.1 2.82

Table 3.  Descriptive Statistics of the Korean Peninsula Seismic Data.
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In Eq. (1), y is a dependent variable and x is an independent variable. αi s a regression coefficient for estimat-
ing the y intercept, ε is the error term, and n is the number of data. β is a coefficient that reflects the influence of 
log(x) and measures the change rate of y according to the fine change rate of x. In Eq. (2), t is the average differ-
ence of the two groups by the data deviation calculated from the two groups. A and B denote each group, S is the 
standard deviation, and X  is the average.
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