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identifying vital nodes in complex 
networks by adjacency information 
entropy
Xiang Xu  *, cheng Zhu*, Qingyong Wang, Xianqiang Zhu & Yun Zhou

Identifying the vital nodes in networks is of great significance for understanding the function of nodes and 
the nature of networks. Many centrality indices, such as betweenness centrality (Bc), eccentricity centrality 
(ec), closeness centricity (cc), structural holes (SH), degree centrality (Dc), pageRank (pR) and eigenvector 
centrality (VC), have been proposed to identify the influential nodes of networks. However, some of these 
indices have limited application scopes. ec and cc are generally only applicable to undirected networks, 
while pR and Vc are generally used for directed networks. to design a more applicable centrality measure, 
two vital node identification algorithms based on node adjacency information entropy are proposed in this 
paper. To validate the effectiveness and applicability of the proposed algorithms, contrast experiments 
are conducted with the BC, EC, CC, SH, DC, PR and VC indices in different kinds of networks. The results 
show that the index in this paper has a high correlation with the local metric Dc, and it also has a certain 
correlation with the pR and Vc indices for directed networks. in addition, the experimental results indicate 
that our algorithms can effectively identify the vital nodes in different networks.

The vital nodes in networks are the nodes that have great impacts on the network structure and function1. 
Previous studies have described many centralities that can rank the nodes in networks, such as degree centrality2, 
eccentricity3, closeness centricity4, betweenness centrality5–7, eigenvector centrality8 and PageRank9. Identifying 
the influential nodes in networks is not only of theoretical significance but also of practical value. For example, 
identifying the important junctions in traffic networks can prevent the paralysis of traffic networks caused by traf-
fic congestion. Locking key sources in virus transmission networks can significantly reduce the speed and scope 
of virus transmission. These examples and others are all related to identifying the vital nodes in networks. The 
paper of Gino et al. applied the optimal percolation theory to predict the influential nodes in memory networks10.

Considering that the local metrics have lower computational complexity and the global metrics have higher 
computational accuracy, in recent work, many vital node identification methods that consider both local and 
global metrics have been proposed. A semi-local metric that balances the accuracy and efficiency was proposed 
by Chen et al.11. Another neighbourhood centrality that takes into account the importance of a node and its 
neighbours’ was proposed12. In the paper by Yu et al.13, an improved method called improved structural holes 
(ISH) that identifies the key nodes in complex networks was proposed; unlike the eccentricity and betweenness 
centrality, this method can be applied to large-scale and disconnected networks. Zhang et al.14 presented an effec-
tive method named VoteRank to identify a set of dispersive spreaders with the best spreading ability. By consid-
ering the propagation probability, Ma et al.15 proposed a new algorithm named hybrid degree centrality (HC) to 
improve the local metrics and combined it with degree centrality. Lü et al.16 gave a complete overview of the vital 
node identification methods in recent years.

In addition to the above perspectives, many other related references use network dynamics to study the 
importance of nodes in networks. Lü et al.17 devised an adaptive and parameter-free algorithm, the LeaderRank, 
to measure the influence of users in social networks, and the experimental results show that the algorithm is 
more efficient than PageRank and more robust to noisy data. Min18 proposed a method using a message-passing 
approach for identifying the most influential spreaders in networks and found that the method can be easily 
applied to unweighted and weighted networks. Liu et al.19 presented dynamics-sensitive (DS) centrality for locat-
ing influential nodes by combining the topological and dynamic characteristics of the networks. Zhang et al.20 
designed a multiscale node-importance method to measure the importance of nodes in the process of network 
dynamics according to different network scales. Many related studies only identify the vital nodes for a certain 
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type of network, such as refs. 21–23 that only study node identification for weighted networks, Chen et al.24 who 
proposed an identification method for directed networks, reference25 that mined the vital nodes in directed 
weighted complex networks, and Edgar et al.26 who used Kuramoto and Ising dynamics to study the central role 
of peripheral nodes in directed networks. The last paper argued that a large key component does not uniquely 
ensure the emergence of collective phenomena, as it does for undirected networks.

To identify the vital nodes for different types (unweighted-undirected, unweighted-directed, 
weighted-undirected and weighted-directed) of networks, we propose an adjacency information entropy method 
to identify the vital nodes in different networks by considering the weights and directions of the edges in net-
works. For weighted networks, the node strength is used instead of the node degree. For directed networks, in 
order to refine the influence of the out-degree and in-degree on the node importance, we set the influence coeffi-
cient θ of the in-degree value. By adjusting the size of θ, we can control the different influences of the out-degree 
and in-degree on nodes.

The rest of this paper is organised as follows. In section 2, we provide detailed representations of the different 
types of networks. In section 3, two vital node identification algorithms and three related definitions are pro-
posed. In section 4, four empirical experiments on the independent parts, largest components, network efficiency 
and correlations analysis are carried out, and the experimental results are compared and explained. Finally, the 
conclusion and future works are presented in section 5.

Representations
In this paper, we study vital node identification in four different types of networks, namely, unweighted-undirected 
networks, unweighted-directed networks, weighted-undirected networks and weighted-directed networks. Obviously, 
the representations of the different networks and the calculations of the related metrics in the networks are different.

Figure 1. Four different types of networks and their corresponding adjacency matrices. (a) An unweighted-
undirected network and its adjacency matrix. (b) An unweighted-directed network and its adjacency matrix. (c) A 
weighted-undirected network and its adjacency matrix. (d) A weighted-directed network and its adjacency matrix.

Figure 2. Relationships among the four different types of networks. Directed networks can obtain their 
corresponding undirected networks via symmetrisation, and weighted networks can obtain their corresponding 
unweighted networks via thresholding.
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Four different types of networks. Usually, an unweighted network is represented by G = (V, E), where 
V = {v1, v2, ⋯, vn} and ∣V∣ is the number of nodes in the network. E = {e1, e2, ⋯ , em} and ∣E∣ is the number of 
edges in the network. An adjacency matrix is used to represent the connections between the nodes in the net-
work, and the topology of the network can be obtained by using the adjacency matrix. In Fig. 1(a), the left figure 
is an unweighted-undirected network and the right figure is its corresponding adjacency matrix. It is obvious that 
the adjacency matrix of undirected network is a symmetric matrix.

The degree of nodes in unweighted-undirected networks can be calculated by = ∑ =k ai j
m

ij1 , where j is the 
neighbour of node i and m is the number of neighbours of node i. aij = 1 if there is an edge between node i and 
node j, and otherwise it is 0.

Unlike unweighted-undirected networks, the edges between the nodes in unweighted-directed networks have 
directions. The asymmetry of the adjacency matrix can reflect the directions of the edges in networks. We can 
see that the matrix in Fig. 1(b) is different from the matrix in Fig. 1(a). There are two kinds of degrees of nodes in 
directed networks, namely, in-degree and out-degree. In directed networks, the in-degree of a node is the number 
of edges from its neighbours that point to it, and the out-degree of a node is the number of edges of the node that 
point to its neighbours. These two kinds of degrees can be calculated by Eqs. 1 and 2, respectively.
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Figure 3. Two example networks with 7 nodes and 11 edges. (a) An unweighted-undirected network. (b) An 
unweighted-directed network.

UUNs n m  < k >   < d >  C

Astro 14845 239304 16.12 4.798 0.715

CA 8638 49612 5.743 5.945 0.580

Facebook 4039 88234 43.69 3.693 0.617

Hamster 2000 32194 16.09 3.589 0.573

UDNs n m  < k >   < d >  C

Email 1133 5451 4.811 3.715 0.110

PGP 10680 24340 2.279 4.050 0.133

Router 5022 6258 1.246 3.973 0.006

Wiki-Vote 7115 103689 14.57 3.341 0.081

WUNs n m  < k >   < d >  C

Astro 14845 239304 1256.6 4.798 0.715

CA 8638 49612 448.78 5.945 0.580

Facebook 4039 88234 1113.7 3.693 0.617

Hamster 2000 32194 1257.2 3.589 0.573

WDNs n m  < k >   < d >  C

Email 1133 5451 4.811 3.715 0.110

P2P 6301 20777 29.663 6.632 0.005

PHD 1025 1043 8.956 3.429 0.002

Router 5022 6258 1.246 3.973 0.006

Table 1. The statistical properties of the four kinds of complex networks, where n and m are the total numbers 
of nodes and edges, respectively.  < k >  and  < d >  denote the average degree and the average distance 
respectively, and C denotes the clustering coefficient.
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Generally, the calculation of the degree in directed networks adds the in-degree to the out-degree. Here, we 
consider that the in-degree and out-degree of nodes have different effects on nodes27. Then, the degree of nodes 
in directed networks can be calculated by Eq. 3, where θ is the influence coefficient of the nodes’ in-degree, and 
in this paper, we set θ = 0.75.

∑ ∑θ θ θ θ= + − = + −
= =

k k k a a(1 ) (1 )
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A weighted network can be represented by G = (V, E, W), where W is the adjacency weighted matrix of the 
network. The weights of the connected edges in weighted networks are not only 0 or 1, and edges’ weights can 
reflect the strength of the relationships between nodes. Figure 1(c) presents a weighted-undirected network and 
the corresponding adjacency matrix. The degree of nodes in weighted-undirected networks can be obtained by 

= ∑ =k wi j
m

ij1 , where wij is the weight of the edge between node i and node j.
Weighted-directed networks are the most complicated of the four types of networks. Figure 1(d) shows a 

simple weighted-directed network and its adjacency weighted matrix. According to the above degree calculation 
method for weighted networks and directed networks, naturally, the degree of nodes in weighted-directed net-
works can be obtained by Eq. 4. Figure 2 illustrates the relationships among the four different types of networks.
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Figure 4. Independent parts experiments for unweighted-undirected networks. In (a), when the proportion 
of removed nodes reaches approximately 10%, the performance of URank is better than the other metrics; and 
when more than 20% of the nodes are removed, URank performs better and better until approximately 60% of 
the nodes are removed. Panel (b) clearly shows the performance of URank compared with the other metrics. In 
(c), it can be seen that there is little difference among the different metrics when removing the first 40% of the 
nodes. Panel (d) shows that the performance of URank is more uniform.
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Methods
Related definitions. To identify the vital nodes in different types of networks, we propose three definitions 
as follows.

Definition 1. Adjacency degree Ai. We define the adjacency degree of nodes in undirected networks by con-
sidering its nearest neighbours as = ∑ ∈ΓA ki j ji

, where j is the neighbour of node i, Γi is the set of neighbours of 
node i, and kj is the degree of node j. For example, in Fig. 3(a), A1 = k2 + k7 = 3 + 6 = 9. In directed networks, the 
adjacency degree of nodes is defined as follows (Eq. 5), where k jin

 is the number of edges that point to node j from 
node i, and k jout

 is the number of edges from node j that point to node i. For example, in Fig. 3(b), Ab = θ(ka + kc)  
+ (1 − θ)kg = θ * (1 + 1.75) + (1 − θ) * 2 = 2.5625.

∑ ∑θ θ= + −
∈Γ ∈Γ

A k k(1 )
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j

j
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Definition 2. Selection probability Pij
. We define the selection probability of node i in the network by consid-

ering the probability that it will be selected by its neighbour j, and the calculation formula is Eq. 6.
Taking from the idea from information theory, a certain node in the network is taken as the information 

source point, and its neighbouring nodes are taken as the target points. In the process of information transmis-
sion or disease transmission, the information source point and infected person will select the target point among 
its neighbouring nodes for information transmission or disease infection. The probability that the target nodes 
are selected is called the selection probability. This definition considers the importance of the selected nodes, that 
is, the influence of the degrees of the selected node in the selection process.

= ∈ ΓP k A j, ( ) (6)i i j ij


For example, in Fig. 3(a) = = + + = + + ≈ .P k A k k k k( ) 2 (2 3 6) 0 231 1 2 1 1 3 72
   . Similarly, = =P k A1 1 77

  
 + + + + + = + + + + + = .k k k k k k k( ) 2 (2 3 3 3 3 2) 0 1251 1 2 3 4 5 6 .

Definition 3. Adjacency information entropy Ei. We define the adjacency information entropy of nodes in 
undirected networks as Eq. 7 and that in directed networks as Eq. 8.

∑= −
∈Γ( )E P log P (7)i j i i2

i j j

∑= −
∈Γ ( )E P log P

(8)i j i i2
i j j

Vital node identification algorithms. According to the characteristics of the four different types of net-
works, the proposed algorithms in this paper can be applied to different networks. Before the algorithms can be 
applied, we need to obtain the adjacency matrix A or the adjacency weighted matrix Wof the network. From the 
above definitions, we can rank the nodes in the network by the value of the node’s adjacency information entropy 
(Ei), and the specific algorithms step are as follows.

Algorithm 1. Calculate Fi for unweighted networks.

Algorithm 2. Calculate Fi for weighted networks.

https://doi.org/10.1038/s41598-020-59616-w
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Results and Discussion
To verify the accuracy and applicability of our proposed algorithms, four different kinds of networks are 
employed, which include (1) unweighted-undirected networks (UUNs), (2) unweighted-directed networks 
(UDNs), (3) weighted-undirected networks (WUNs), and (4) weighted-directed networks (WDNs). The statisti-
cal properties of the studied networks are listed in Table 1. With respect to the unweighted-undirected networks, 
the Astro network is a collaboration network of astrophysics scientists28; the CA network is a large connected 
component of the arXiv collaboration network in high-energy physics theory29; the Facebook network is an 
anonymised social networks with 4039 users, where the data can be downloaded in http://snap.stanford.edu/
data/; and the Hamster network is a friendship and family connections network among website users30. With 
respect to the unweighted-directed networks, the Email network includes 1133 email users of the University at 
Rovira i Virgili, URV31; the PGP network is a communication network32; Router is a topological network of the 
Internet33; and the Wiki-Vote network is a who-votes-on-whom network from Wikipedia, where the data can be 
downloades from http://snap.stanford.edu/data/. With respect to the weighted-directed networks, the data of the 
P2P and PHD networks can be obtained at http://vlado.fmf.uni-lj.si/pub/networks/data/.

We will verify the accuracy of our algorithms by computing the proportion of independent parts of networks 
by removing the different proportions of nodes. Obviously, the larger the proportion of independent parts is, 
the more seriously the network is destroyed, and the higher the identification accuracy of vital nodes is. For 
undirected networks, we selected five other centralities as benchmark indices, namely, betweenness central-
ity (BC), eccentricity centrality (EC), closeness centrality (CC), structural holes centrality34 (SH) and degree 
centrality (DC). For simplicity, we call our algorithm for unweighted-undirected networks URank and that for 
weighted-undirected networks WRank. The X-axis is the different proportions of removed nodes. The Y-axis is 
the proportions of independent parts of corresponding networks. The results of the different centralities after 

Figure 5. Network efficiency experiments for undirected networks. In (a), as the proportion of removed nodes 
increases, the network efficiency gradually declines after removing the nodes ranked by different metrics. 
Node removal ranked by URank makes the network efficiency decrease the fastest, and the network efficiency 
corresponding to URank is the smallest when the same proportion of nodes are removed. In (b), after removing 
approximately 20% of the nodes ranked by the algorithm in this paper, the network efficiency is reduced to 
the lowest, while the other metrics need to remove approximately 70% of the nodes. Panel (c) shows that the 
performance of our metric is more uniform. Panel (d) clearly shows the performance of URank compared with 
the other metrics.

https://doi.org/10.1038/s41598-020-59616-w
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removing different proportions of ranked nodes in the four different unweighted-undirected networks are shown 
in Fig. 4. From Figure 4, it is clear that our algorithm is more significant. Similarly, Supplementary Fig. S1 shows 
the experimental results for weighted-undirected networks. In addition, according to the importance of the 
nodes, we also remove the different proportions of nodes from high to low to test the efficiency of the undirected 
networks. As is well known, the higher the network efficiency is, the smaller the average distance between the 
nodes in the network is. If the removed nodes cause the network efficiency to decline more, the impact of the 
removed nodes on the network is greater, the removed nodes are more important. Figure 5 shows the experimen-
tal results of the network efficiency curves of undirected networks after removing different proportions of nodes.

For directed networks, we also selected five other centralities as benchmark indices, namely, PageRank cen-
trality (PR), eigenvector centrality (VC), eccentricity centrality (EC), closeness centrality (CC) and degree cen-
trality (DC). Similarly, for simplicity, we call our algorithm for unweighted-directed networks DRank and that for 
weighted-directed networks WDRank. Supplementary Figs. S2 and S3 show the independent parts experimental 
results in unweighted-directed networks and weighted-directed networks, respectively.

To further prove the effectiveness and applicability of the proposed algorithms, we implemented the larg-
est component experiments using the four different types of networks. When some nodes in the network are 
deleted according to the importance of the nodes, different sized components will be formed. If the size of the 
component is smaller, the removed nodes are more destructive to the original network. The largest component 
experiments can illustrate the accuracy of the vital node identification algorithms from another perspective. The 
X-axis is the different proportions of removed nodes. The Y-axis is the largest component sizes of the different 
networks when the corresponding proportion nodes were removed. Figure 6 shows the experimental results for 
unweighted-undirected networks. Figure 6, shows that the URank algorithm performs well for most networks. 
The results of the same largest component experiments for unweighted-directed networks, weighted-undirected 
networks and weighted-directed networks are shown in Supplementary Figs. S5–S6, respectively.

Figure 6. Largest component experiments for unweighted-undirected networks. In (a), after removing 
approximately 40% of the nodes ranked by our algorithm, the largest component size is reduced to the lowest, 
while the other metrics need to remove approximately 80% or 90% of the nodes. Panel (b)clearly shows that the 
performance of URank compared with other metrics. In (c), the figure shows the performance of our metric is 
more uniform, and there is little difference in the removal ratio of nodes when each metric makes the largest 
component size reach the lowest. In panel (d), when removing the first 40% of the nodes, our metric makes the 
largest component size decline the fastest until it reaches the minimum.
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Figure 7. Independent parts experiments for spatial networks and classical networks. In (a), as the number of 
removed nodes increase, the proportion of parts corresponding to URank is significantly more than those of the 
other metrics. From (b,d,e), we can see that the performance of URank is less obvious than that in (a). In (c), 
URank performs better than the other metrics except the SH metric. In (f), the URank performs as well as DC, 
and it is better than the other metrics.
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Figure 8. Network efficiency experiments for spatial networks and classical networks. In (a), compared with 
the other metrics, removing nodes ranked by URank makes the network efficiency decline the fastest, and the 
extent of the decline is also the largest. However, in (b–f), the advantage of URank is not obvious and, generally 
speaking, the performance of the metric in this paper is better than those of other metrics.
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To verify the applicability of our algorithms to other kinds of networks, we further carry out the three verifi-
cation experiments described above using spatial networks and classical networks, such as a small world network 
and scale-free network, respectively. Figures 7, 8 and 9 present the results of the independent parts experiments, 
the network efficiency experiments and the largest component experiments, respectively. The corresponding sta-
tistical properties of the spatial networks and classical networks are listed in Table 2. Euroroad and Minnesota 
are road networks, and the data can be downloaded from http://networkrepository.com/road.php. Power Grid35 
contains an undirected unweighted representation of the topology of the Western States Power Grid of the United 
States, which was compiled by Duncan Watts and Steven Strogatz. The data are downloaded from the web site 
of Prof. Duncan Watts at Columbia University, http://cdg.columbia.edu/cdg/datasets. The Scale-Free and Small 
World networks are generated by the Pajek software. World Cites is a network of 415 cities, and the data can be 
obtained from http://www-personal.umich.edu/mejn/netdata/.

To investigate the relations between our algorithms and other centralities in different networks, we conducted 
correlation analysis experiments. We use the Kendall’s Tau to describe the relationship between different central-
ities. The relevant definitions are as follows36.

Assuming that two random variables are X and Y (they can also be regarded as two sets), their number of ele-
ments is N, where Xi and Yi represent the i-th element of each random variable, respectively. The corresponding 
elements in X and Y form an element pair set XY, which contains the elements (Xi, Yi)(1≤i≤N). When Xi > Xj 
and Yi > Yj or Xi < Xj and Yi < Yj, these two elements are considered to be concordant. When Xi > Xj and Yi < Yj 
or Xi < Xj and Yi > Yj, these two elements are considered to be discordant. When Xi = Xj or Yi = Yj, the two ele-
ments are neither concordant nor discordant. Kendall’s Tau is defined as.
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Figure 9. Largest component experiments for spatial networks and classical networks. In (a), we can see that 
when the nodes in the network are removed according to URank, removing approximately 10% of the nodes 
reduced the largest component size of the network by approximately 90%. If the nodes are removed after being 
ranked by other metrics, more than 30% of the nodes need to be removed to achieve the same effect. In (b), the 
performance of our metric is slightly better than other metrics. In (c,f), URank and SH perform equally well. 
In (d,e), the performance of URank gradually gets better as the node removal ratio increases until the largest 
component size of the network reaches the minimum.

Other networks n m  < k >   < d >  C

Euroroad 1174 1417 2.414 18.371 0.020

Minnesota 2642 3303 2.500 35.349 0.017

Power Grid 4941 6594 2.669 18.989 0.107

Scale-Free 10000 187396 18.740 3.223 0.042

Small World 10000 100000 10.000 4.443 0.090

World Cites 415 7518 36.231 2.238 0.003

Table 2. The statistical properties of spatial networks and classical networks, where n and m are the total 
numbers of nodes and edges, respectively.  < k >  and  < d >  denote the average degree and the average 
distance, respectively, and C denotes the clustering coefficient.

https://doi.org/10.1038/s41598-020-59616-w
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Figure 10. Correlation analysis experiments in unweighted-undirected networks.

Figure 11. Correlation analysis experiments in weighted-undirected networks.
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τ =

−
−

N N
N N( 1) 2 (9)

c d

where Nc and Nd are the number of concordant and discordant pairs, respectively. N is the number of nodes 
in the network.

In undirected networks, from Figs. 10 and 11, we can see that our centrality index is negatively correlated 
with EC and SH, because EC considers the node with the largest distance from the node, while SH considers 
the constraint coefficient of the node. The smaller the constraint coefficient is, the more important the node is, 
contrary to our centrality index in this paper. In unweighted-undirected networks, we can see from Fig. 10 that 
there is no obvious correlation between our centrality index and other centralities, but in the Facebook network, 
our centrality index has a high positive correlation with BC, CC and DC. The reason may be that Facebook is a 
social network, and the propagation between nodes is similar to that of the adjacency entropy algorithms in this 
paper. In weighted-undirected networks (Fig. 11) and directed networks (Supplementary Figs. S7 and S8), we can 
clearly observe a high correlation between our centrality index and DC. The reason may be that our centrality 
index and DC are designed based on the local properties of nodes. Similarly, we can find that our centrality index 
has low correlation with BC, CC and EC in the four different types of networks because BC, CC and EC are global 
metrics. By comparing the correlations between our centrality index and PR, VC and other centralities in directed 
networks (Supplementary Figs. S7 and S8), we can find that the correlations between our centrality index and PR 
and VC are greater than those of other centralities (except DC) because PR and VC are both centralities designed 
for directed networks, while other centralities are applicable to both directed networks and undirected networks.

Computational efficiency. The adjacency information entropy algorithm has two steps: the calculation of 
the adjacency degree and the adjacency information entropy. Since every node’s adjacency degree and adjacency 
information entropy in the network needs to be calculated, the computational complexity of the first cycle is 
O(N), where N is the number of the network nodes. In the calculation of the node adjacency degree, it is also nec-
essary to traverse the neighbouring nodes of the network nodes; thus, the total computational complexity of our 
algorithm is O(N2). Since the metric used in this paper involves the first-order neighbour of the node, the algo-
rithmic complexity is lower than those of the global metrics, such as betweenness centrality(BC) with complexity 
O(MN3) and closeness centrality(CC) with complexity O(MN2), where M is the number of edges in the network. 
The number of network nodes applied by our algorithm could be further scaled up under the High Performance 
Computing (HPC) environment.

conclusion
In this paper, we design two vital node identification algorithms for four different types of networks. By calculat-
ing and comparing the adjacency information entropy of nodes, the importance of nodes is ranked. The larger the 
entropy value is, the more vital the nodes are. The algorithms highlight the different characteristics of the different 
types of networks. For weighted networks, the strength of the nodes is used to calculate the adjacency information 
entropy instead of the degree of the nodes. For directed networks, the influence coefficient of a node’s in-degree 
and out-degree value is used, which further refines the influence of a node’s in-degree and out-degree on the 
node’s importance. The experimental results show that our proposed algorithms outperform several benchmark 
methods. In the future, we will consider identifying vital nodes for more realistic network types, including tem-
poral networks, etc.
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