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overlapping connectivity patterns 
during semantic processing of 
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causality analysis
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Abstract, unlike concrete, nouns refer to notions beyond our perception. even though there is no 
consensus among linguists as to what exactly constitutes a concrete or abstract word, neuroscientists 
found clear evidence of a “concreteness” effect. This can, for instance, be seen in patients with language 
impairments due to brain injury or developmental disorder who are capable of perceiving one category 
better than another. even though the results are inconclusive, neuroimaging studies on healthy 
subjects also provide a spatial and temporal account of differences in the processing of abstract versus 
concrete words. A description of the neural pathways during abstract word reading, the manner in 
which the connectivity patterns develop over the different stages of lexical and semantic processing 
compared to that of concrete word processing are still debated. We conducted a high-density eeG 
study on 24 healthy young volunteers using an implicit categorization task. From this, we obtained 
high spatio-temporal resolution data and, by means of source reconstruction, reduced the effect of 
signal mixing observed on scalp level. A multivariate, time-varying and directional method of analyzing 
connectivity based on the concept of Granger causality (partial Directed coherence) revealed a dynamic 
network that transfers information from the right superior occipital lobe along the ventral and dorsal 
streams towards the anterior temporal and orbitofrontal lobes of both hemispheres. Some regions 
along these pathways appear to be primarily involved in either receiving or sending information. A clear 
difference in information transfer of abstract and concrete words was observed during the time window 
of semantic processing, specifically for information transferred towards the left anterior temporal 
lobe. Further exploratory analysis confirmed a generally stronger connectivity pattern for processing 
concrete words. We believe our study could guide future research towards a more refined theory of 
abstract word processing in the brain.

Abstract thought and verbal information transfer are two innate cognitive functions of human beings. However, 
how our brains understand abstract language and how the underlying neural pathways and systems differ from 
those involved in processing concrete, tangible concepts is not yet clear1. Abstract words refer to notions which 
cannot be touched or sensed, which is why their processing cannot merely rely on the motor and perceptual sys-
tems. Experimental data coming from behavioral, neuroimaging (fMRI) and electrophysiological (EEG, MEG) 
studies of both healthy individuals2 and patients suffering from brain disorders3–5 show that abstract and concrete 
words are likely to be processed differently. For example, concrete words have been shown to be learned at an 
earlier stage of life and understood and retrieved faster1. This mechanism is known as the concreteness effect6,7. 
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Since it is still unclear how exactly the processes underlying this effect work, various methods and tools have been 
employed to study them.

Among these methods and tools are neuroimaging techniques such as PET and fMRI which can assess the 
spatial activation of brain regions during concrete and abstract word processing. These neuroimaging studies 
have examined a series of hypotheses8. For example, one popular hypothesis is that the verbal and nonverbal 
systems are generally and respectively attributed to the left and right cerebral hemispheres9. This idea goes hand 
in hand with the dual coding theory10–12 which states that processing abstract words mainly relies on the verbal 
while that of concrete words on both verbal and nonverbal systems9,13. Accepting these claims, neuroimaging 
studies suggest that the left hemisphere plays a more prominent role in the processing of abstract and the right 
hemisphere in that of concrete words. In this respect, some fMRI studies13–15 indicate a higher activation in the 
left temporal and inferior frontal gyri for abstract compared to concrete words and consider these findings to sup-
port the dual coding theory. Another well-known theory, the context availability theory, used in similar studies 
suggests that both abstract and concrete words are processed in one broader contextual system where every word 
is understood in context16. Since the context of abstract words is, unlike that of concrete words, mainly tied to an 
individual’s experience, their combinations of the underlying neural systems are weighted differently than those 
of concrete words. Along these lines, several studies have found evidence that seemingly contradicts the pattern 
predicted by the dual coding theory. Some indicate that greater activation can be observed in the left temporal 
areas, such as the left basal temporal cortex, for concrete and stronger activations in the right temporal areas for 
abstract words17,18. Others have found greater activity for abstract words in the right hemisphere7 (for a com-
prehensive review see19,20). Currently, these studies do not offer a converging answer as to which neural patterns 
underly word-processing, which is why existing data can be interpreted in the context of either the dual coding 
or context availability theory7. These inconsistencies can be attributed to many factors, including the variation in 
task or stimulus material17 and the limited temporal resolution of tools such as fMRI and PET which fall short in 
capturing the temporal development during word comprehension.

Electrophysiological tools such EEG and MEG ((M)EEG), by contrast, provide more insight into the tem-
poral dynamics of the electrophysiological processes that underlie word processing. Even though this temporal 
accuracy comes at the expense of a lower spatial precision compared to neuroimaging techniques such as fMRI, 
source reconstruction techniques in (M)EEG are continually improving their spatial resolutions21. In search for 
the concreteness effect, EEG studies have successfully shown a decrease of a negative amplitude deflection for 
concrete words around 400 ms post stimulus (the time window associated with semantic processing)9,22,23 which 
indicates a facilitated semantic processing of these words. This deflection is assumed to be responsible for word 
encoding and retrieval, and is called the N400 component2,24,25. Retrieval of context details in concrete words is 
related to a later, positive amplitude (P600-like component). Due to greater retrieval of contextual information 
at distinct temporal stages, these results could explain the advantage of concrete over abstract words26. Similar to 
fMRI/PET studies, those relying on (M)EEGs have been inconclusive in their support or rejection of current the-
ories. For example, studies have attributed the observation that N400 amplitudes for concrete words are smaller 
over the right but not the left hemisphere to the dual coding theory, as they assume that this reflects an increased 
facilitation in the nonverbal system of the right hemisphere9,27–29. In another study, an increased MEG response 
in the left frontotemporal areas for concrete and in the right anterior temporal areas for abstract words has been 
observed during the stage of semantic processing. While this appears to diverge from the dual coding pattern, the 
authors still consider their results to concur with this theory, as they assume that decreased MEG activity suggests 
a more “efficient” representation of these word types in the left and right hemispheres30. Other studies seem to 
favor the context availability theory. For example, using high-density EEG and source localization, abstract words 
have been shown to have a larger area of activation compared to concrete words in areas limited to the left hemi-
sphere2. An overall larger activation of abstract words under certain task conditions has also been observed31 and 
has been shown to increase even more during the stage of semantic processing32.

In summary, the inconclusiveness of the current evidence indicates that there is a clear need to fill the gap 
between the hypotheses of language processing and the neuroscience behind it33. More recent theories have 
already tried to emphasize the grounding of abstract words in either the same sensory and motor systems as for 
concrete words34, in emotion35,36 or in social systems8. However, given the complexity and controversial nature of 
the issue as well as the theoretical shortcomings, our tools have been too limited conclusively to support or reject 
any theory of word processing. The above-mentioned controversy would suggest that there is a need for a clearer 
method to investigate the differences between the processing of concrete and abstract words. It is worth estab-
lishing a more complete picture of not only the temporal, spatial and spectral dynamics of brain areas, but also of 
the nature of the interactions between them. It would therefore be beneficial to conduct a connectivity analysis 
of high spatio-temporal resolution data, such as that generated by EEG, to understand the dynamic interactions 
that support language processing37,38.

In general, however, little is mentioned about interactions between brain regions during word comprehen-
sion. This lack of knowledge can lead to a misinterpretation of the obtained results, also in view of the lingering 
ambivalence. In the last decade, the scientific community has been increasingly investigating brain connectivity 
for a better understanding of cognitive processes39,40. Indeed, since cognitive functions rely on connectivity within 
large-scale networks41, approaching cognitive processes from the point of view of connectivity can resolve fun-
damental questions in language processing, such as whether word processing is modular or interactive, parallel 
or serial37. This can then also help distinguish between feedforward and feedback processes in language42. For 
example, study43 showed that different frequency bands are involved in the bottom up and top down processing 
of natural reading states. Other studies have used symmetrical connectivity measures to analyze linguistically 
complex words and have found a left-lateralized frontotemporal cross-cortical interaction44.

By investigating the connectivity between different brain areas during the processing of concrete and abstract 
words, it is possible to improve the current neurobiological models for these observations. So far, only a few 
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experimental studies have investigated the functional connectivity for abstract and concrete word processing. For 
instance, when testing the imaginability of characteristics of auditorily-presented animals, the authors of study45 
found higher engagement of the linguistic and visual regions in the right hemisphere when imagining concrete 
(e.g. long ears of a rabbit) compared to abstract characteristics (e.g. braveness of a lion). According to the authors, 
this result supports the dual coding theory. Additionally, a stronger connectivity pattern for concrete character-
istics was found in both the left and right hemispheres. However, since the study tested imagery rather than an 
actual reading process, the question remains as to what happens in the brain when abstract or concrete words are 
read. Furthermore, as the study was done with fMRI, the authors could not describe the spectral and temporal 
characteristics of the identified networks. State-of-the-art high-density EEG systems provide a spatial resolution 
sufficient for examining the brain areas involved in word processing25,32. To the best of our knowledge, there is 
only one (M)EEG connectivity study that compared brain connectivity when processing concrete and abstract 
words46. Using combined EEG and MEG with an explicit concreteness task, the authors observed significant 
differences in connectivity between the left anterior temporal lobe and the angular gyrus. The issue in this study 
is that the explicit task might influence the results since, in natural settings, we do not judge particular character-
istics (in this case concreteness) of a word that is read. Hence, it is still not clear whether the brain would respond 
differentially to abstract and concrete words in more natural conditions and without imposing a task.

In our study, we investigated the spatio-temporal dynamics of visual word processing both in terms of neural 
activation, frequency and directionality of information flow. We additionally determined how concreteness of a 
word affects these processes. To do so, we adopted a comprehensive approach. For optimal spatial resolution, we 
opted for a high-density EEG setup32. In EEG connectivity studies, spurious connectivity can occur due to the 
spatial spread (resulting from volume conduction) during which signals coming from different neural sources 
are mixed before reaching the scalp surface. Thus, connectivity measured on this surface could reveal artificial 
or spurious connections which do not result from true neuronal interactions47. Source localization attempts to 
“unmix” the recordings to arrive at the location and the activation patterns of the underlying neural source. To 
capture true connectivity, we thus conducted our analysis at the source rather than at scalp level48. We defined our 
brain regions of interest (ROI) empirically to allow the inclusion of ROIs not predicted by current theories37. We 
also selected ROIs based on two distinct measures of neural activation in order both to distinguish between dif-
ferences in connectivity and differences in activation, and to identify common and differential activation between 
abstract and concrete word comprehension.

For our connectivity measure, we adopted a method based on the concept of Granger Causality (GC)49,50 
called partial directed coherence (PDC)51. Note that Granger Causality should not be confused with causality in 
the conceptual sense of “A brings about B”. Rather, it is an estimation of causal statistical influences without the 
need for a physical intervention52,53. Functional connectivity measures such as GC belong to a branch of popular 
connectivity methods which include information on the directedness of information flow47 enabling scientists to 
estimate the temporal precedence of the influence of one variable in a system on another52,53. Additionally, as GC 
is a data-driven approach it does not assume predefined connections between variables (in our case ROIs). This 
renders GC particularly attractive for our purposes. Apart from a few attempts54,55, the spatio-temporal patterns 
of interactions between brain areas on word processing has yet to be defined. Our method would thus enable us 
to address the issue of defining the spatio-temporal pattern without limiting ourselves to a prior definition of 
the ROIs. In the traditional definition of GC, connectivity is defined in the time domain and only between two 
variables. However, the PDC method accounts for multiple brain areas (i.e. multivariate case)51, meaning that 
we can satisfy the requirement of GC to take all ROIs affecting the system into account49. Moreover, the PDC is 
computed in the frequency domain enabling us to find distinct patterns of connectivity in different frequency 
bands. Furthermore, we adopted an extended version of PDC that is time-varying and multi-trial, both character-
istics suited for this study. The former because in cognitive processes like word comprehension, functional brain 
networks change on a sub-second temporal scale56. In order to capture these transient alterations in connection 
strength, time-varying versions of the PDC algorithm have been developed57,58. The latter because our algorithm 
is trained on multiple trials (i.e. multi-trial approach). As our study requires the collection of multiple trials per 
word type, models are needed that can account for the trial-to-trial variability59,60. As far as we know, the current 
state-of-the-art method of connectivity has not yet been applied to understand the patterns of word processing. 
In this study, we thus attempt to investigate the dynamic and directional connectivity patterns elicited during 
implicit processing of abstractness when reading single words.

Materials and Methods
participants. Twenty-four healthy native Dutch speaking participants (13 males, 11 females, average age 
22 ± 4 years, all right handed, paid) participated in our study which was approved by the Ethics Committee of 
the Leuven University Hospital and conducted according to the latest version of the Declaration of Helsinki. All 
recruited subjects were given instructions regarding the task at hand and were informed about data collection and 
information privacy regulations. They were invited to read and sign the informed consent form. No participant 
reported any history of neurological or psychiatric disorders. All participants had normal or corrected-to-normal 
vision.

Materials. For our task, we chose a categorization paradigm in which participants were asked to decide 
whether or not the presented word belonged to the semantic category of “colors.” The categorization task ensured 
that our subjects were attentive and involved in semantic processing and not merely in lexical access (as would be 
the case with a lexical decision task). At the same time, this task, devised to distract participants, kept the subject 
unaware of the purpose of the experiment and therefore enabled a more natural setting for word comprehen-
sion. However, the color category itself served as a “filler” category with words that were colors discarded from 
further analysis (see experimental set-up). For the words of interest, we presented Dutch abstract and concrete 
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nouns taken from the database with concreteness ratings of 30,000 Dutch words61. Abstract words were selected 
with a concreteness rating of maximum 2.5 and concrete words with a minimum of 3.5 (on a scale from 1 to 5). 
This choice ensured that words on both sides of the concreteness spectrum are selected and that there is a high 
statistical difference between the concreteness rating of the two groups. Based on a t-test, concreteness ratings of 
abstract and concrete words were found to be statistically different [p < 0.1e-10, mean and standard deviation (in 
brackets) for concrete and abstract words were respectively 4.33/1.97 (0.43/0.28)].

Previous research has shown that abstract words tend to be more emotionally charged than concrete words35,62. 
Therefore, unlike previous studies30,46, we controlled our stimuli for the three dimensions of affective meaning, 
also known as Osgood values. These are three independent dimensions marked by the following polar adjec-
tives: “valence” (positive vs negative), “potency” (strong vs weak) and “activity” (active vs passive). Definitions 
of the individual stimulus groups and an example per group can be found in Table 1. These dimensions have 
been shown to quantify the affective meaning of verbal terms63 and to reveal a differential neural pattern of 
activation32,64. Ratings for Osgood values were obtained from database65 of 4,300 words with norms of valence, 
arousal and dominance. To be included in the stimulus list, words along each dimension needed to have a rating 
of a minimum of 4 or a maximum of 3 on a 7-point Likert scale [mean and standard deviation (in brackets) for 
concrete and abstract categories were 4.19/4.03 (1.04/1.03) for arousal, 3.74/3.74 (1.15/1.48) for potency and 
4.23/4.06 (0.81/1.03) for valence]. Additionally, word length (number of letters) and word frequency for both 
word types were controlled using the Dutch CLEARPOND software (word length mean = 7.7, std = 1.4 for con-
crete and mean = 8.5, std = 2.3 for abstracts; word frequency mean = 13.7, std = 34 for concretes and mean = 17.8, 
std = 60.3 for abstracts)66. These restrictions on word selection resulted in a total of 50 words per category group, 
except for the concrete passive and concrete weak group for which we could only retrieve 25 words in the database 
for each group. Furthermore, words were pseudo-randomly organized in such a way that no two consecutive 
words would have a forward association strength higher than 1, where forward association strength was taken 
from the Dutch free association network created by De Deyne & Storms67. A complete list of the words of interest 
presented during the task is given in supplementary material section F.

experimental set-up. Participants were tested in a sound-attenuated, darkened room with a constant 
temperature of 20 degrees, sitting in front of an LCD screen at a distance of about 70 cm. In accordance with 
the international extended 10–20 system, EEG was recorded using 128 active Ag/AgCl electrodes (SynampsRT, 
Compumedics, France). Two of these electrodes served as ground (AFz) and reference (FCz). The EEG signal was 
recorded at a 2 KHz sampling rate. All electrodes were mounted on an electrode cap placed on the subject’s head 
(Easycap, Germany).

During individual trials a single white word was shown in the middle of a black screen for 300 ms followed by 
a question mark lasting for 1 second. Prior to each trial a fixation cross appeared on the screen for 700 ms cueing 
subjects to fixate their gaze on the middle of the screen. Only when the presented word was a color (i.e. a categori-
zation paradigm), participants were asked to press the mouse button at the moment they saw the question mark. 
After that, participants received the visual feedback “kleur!” (color) when the button was pressed correctly and 
“fout!” (wrong) otherwise. Since words of the category color were not relevant to the task and required a motor 
response that could interfere with the electrophysiological response68, we removed these trials from our analysis. 
Therefore, we did not control for the characteristics of these (filler) words.

eeG signal pre-processing. EEG recordings from three participants were lost due to technical issues. For 
the remaining 21 participants, we re-referenced their EEG recordings offline from the original central reference to 
a linked mastoid reference. Eye movements were corrected using the method described in69. The recordings were 
then filtered with the help of a 4th order Butterworth filter in the range of 0.5–30 Hz to discard low and high fre-
quency noises. To reduce the computational effort, data were down-sampled to 200 Hz. These parameter settings 
for multi-trial ERP data have been validated previously70,71. The recordings were epoched with a window between 
200 ms pre- and 1000 ms post-stimulus intervals and baselined with the 200 ms pre-stimulus time-window. Based 
on visual inspection, recordings from bad channels of each subject were removed (36 ± 16 channels out of 128 
per subject on average). Of the remaining channels, we then eliminated all trials whose maximum EEG ampli-
tudes exceeded ±150 µV. On average, this eliminated about 17% of the trials per subject. As multivariate causality 
measures are generally sensitive to data pre-processing and are recommended only insofar as necessary to elim-
inate noise72, we opted to eliminate trials rather than apply an additional artefact reduction step. In total, we had 

Trial Type Abstract Concrete

Active ambitie (ambition) vloedgolf (tidal wave)

Passive pensioen (pension) tapijt (carpet)

Positive beroemd (famous) speelgoed (toy)

Negative vloek (curse) vulkaan (vulcano)

Weak armoede (poverty) kalkoen (turkey)

Strong competitief (competitive) spinazie (spinach)

Table 1. Examples of trials. All trials were presented in the participant’s native language (Dutch). Fillers 
constitute names of colors (not shown in the table). English translation (between brackets) is for illustrative 
purposes only.
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556 ± 132 trials remaining per subject. For abstract and concrete words, the total comes to respectively 251 ± 59 
and 212 ± 47 trials per subject.

Scalp analysis. Scalp analysis was conducted with the same methods as described in32, where a 
mass-univariate approach was adopted by means of a linear mixed effect model. In the current study, subjects 
were regarded as random, and abstract and concrete categories as fixed effects. The dependent variable was the 
EEG amplitude, averaged over 50 ms time bins between 0 and 700 ms. We corrected for multiple comparisons 
over the electrodes using cluster-based inference by taking a cluster size of 10 adjacent electrodes. Additionally, 
only clusters that were statistically significant for at least two consecutive time bins were considered. For a more 
detailed explanation on this method and its advantages see32.

Source Localization and Roi selection. Source localization. We conducted source localization using 
the Brainstorm toolbox73. For our head model, we took the ICBM-152 template and for the forward model 
OpenMEEG BEM74, where the source space was restricted to the cortical surface which we divided into 15,000 
dipoles. The noise covariance matrix was obtained by merging the matrices calculated from the baseline of all 
trials. We used source data to estimate the current density maps based on the minimum-norm estimate (MNE). 
These are the estimated time courses necessary for Granger causality analysis (see next section). However, prior 
to our connectivity analysis, we identified our regions of interest (ROIs) across the cerebral cortex.

ROI selection. ROI selection for connectivity analysis is a complicated and relatively neglected issue. Since it 
is a requirement to have all potentially causal signals included in the Granger causality analysis, one could be 
tempted to include the entire cortical surface. However, this is unrealistic since the computational complexity of 
the multivariate Granger causality quickly increases as O(M2p), where M denotes the number of variables and p 
the order of the model. Including many time series increases redundancy which could demote model sensitiv-
ity37. Redundancy is inherent in the spatially smooth solutions of source distributed algorithms used for source 
localization. This leakage between brain sources makes it difficult to distinguish true from spurious connections75. 
For this reason, we selected a few anatomically well-separated ROIs based on measures of neural activation (see 
below), which is one of the more common approaches37,76. The advantage of our data-driven method is that it can 
unveil ROIs when there is little prior information on which ones to choose. This is more in line with the explor-
atory nature of Granger causality. However, the downside is that our method could be blind to ROIs that play a 
causal role in neural dynamics but that are downregulated for the considered subject task37.

To find differences in the patterns of connectivity between abstract and concrete words, we were interested in 
seeing whether differences in connectivity would concur with a difference in activation or whether connectivity 
patterns can differ even when activation patterns are similar. For this reason, we identified ROIs based on two 
measures of activation, one to identify neural activity that is common between both paradigms (method A) and a 
second to identify differential activation between abstract and concrete words (method B).

 A. For ROI selection, we adopted an approach similar to that of30 where a noise-normalized version of MNE, 
called dynamic statistical parametric mapping (dSPM)77, was constructed for all collective trials (“col-
lective activation”). The dSPM technique yields an assessment of the signal-to-noise ratio of the current 
estimate. ROIs are then selected based on a careful examination of the map using anatomical landmarks, 
whereby we refrained from including deep cortical areas as the contribution of their activity to scalp EEG 
is still very controversial30,78. Additionally, time series originating from nearby areas were inspected to 
ensure that they were not redundant.

 B. To identify ROIs showing differential activity between abstract and concrete words, we adopted the 
mass-univariate approach with cluster-based correction for multiple comparisons. This method is de-
scribed in32, but for the sake of clarity we will briefly outline it here too. A mass-univariate approach using 
a linear mixed effect model was employed in79 with subjects taken as random and semantic abstractness as 
fixed effects. The dependent variable was the dipole amplitude, averaged over 50 ms time bins between 0 
and 700 ms. Averaging was performed for each of the 15,000 dipoles. Test results with p-values below 0.05 
were considered significant. Furthermore, we corrected for multiple comparisons using the cluster-based 
inference adapted from random field theory80, i.e. we only considered regions statistically significant for a 
minimum of two consecutive time windows over a connected cortical region with a minimum cluster size 
of 3 cm2.

The results of this analysis are shown in Table 2, where it can be seen that method A resulted in the 10 ROIs 
shown and method B was additionally able to replicate ROI 7 and 8. In both cases, within each anatomically 
well-separated ROI, we selected one representative time course by taking that with the highest power among 
all time courses in the ROI. This method has been shown better to capture the dynamics and phase of the signal 
which would otherwise become lost when averaging an already smooth distribution of sources78,81. To confirm 
that this chosen time course is a good representation of the ROI, we manually inspected our ROIs to ensure that 
they were small enough to have similar activation time courses throughout the region. Furthermore, some ROIs 
spanned both sulci and gyri, causing the orientation of the dipoles to be opposite within an ROI. This however, 
does not pose a problem for the Granger Causality analysis. GC is invariant under rescaling of variables in the sys-
tem and therefore only independent information of the past of one variable improves the prediction of another53. 
An example of the time series within an ROI is shown in supplementary material section A.
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Granger causality. In this study, we adopted a multivariate time-varying directed connectivity approach 
based on Granger causality, called partial directed coherence. The time-varying multivariate process is defined 
as follows:

∑= − +y n A n y n k e n( ) ( ) ( ) ( ) (1)p
p

k

where ∈ × ×y Rm N T represents the multi-variate (m), multi-trial (T) timeseries of length N, and n the n-th time 
bin of the N samples in each trial. The order of the model is p, which determines the maximum number of delayed 
observations in the model. For example, since we were using a sampling rate of 200 Hz, a model order of 10 took 
the past 50 ms of the timeseries into account. Ak(n) represents the time-varying autoregressive parameters which 
we estimated by using a multi-trial adaptation of the General Linear Kalman filter. This has been shown to out-
perform other methods, including the recursive least squared method57,59,81. In the Kalman filter, autoregressive 
parameters are estimated using a linear state-space model, allowing for non-stationarity. This is a highly 
sought-out quality in our study, since EEG is essentially non-stationary82.

In the case of the General Linear Kalman Filter (GLKF) model, two parameters needed to be defined: the 
first was the model order which is the maximum number of lagged observations. The second was the adaptation 
coefficient which is common in recursive algorithms and regulates the adaptation speed of parameter estimation. 
Parameter estimation was crucial to reach a good estimation of connectivity. Indeed, a low model order can lead 
to a poor representation of the data, whereas a high order can lead to incorrectly rejecting the null hypothesis 
(type I error). To tune these parameters and validate the model, we took several steps as described in supplemen-
tary material section B.

Once the model order was established and the autoregressive parameters estimated, we inferred Granger-based 
connectivity from it. In the multivariate case, the Fourier transform of the multivariate time-varying autoregres-
sive parameters was computed to obtain the spectral density matrix ∈ × × ×f n R( , ) m m f n:
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Given the spectral density matrix, several connectivity metrics can be defined. We opted with the partial 
directed coherence (PDC), a spectral measure of directed information flow for a multivariate autoregressive 
(MAR) model based on the more fundamental concept of Granger Causality. This measure can distinguish 
between direct and indirect connections correctly identifying interactions even in relatively noisy data:
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where the following normalization properties hold:
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Note that, in the current definition of PDC, every connection πij is the information flow from region j to i and 
is normalized by the strength of all incoming connections to the i-region, which produces stable and interpretable 
results51,83.

Statistical analysis of Granger connectivity. All implementations of model estimation, validation and 
statistical analysis were done using custom-written scripts or scripts modified from available MATLAB packages 
such as the MVGC toolbox84, the SIFT toolbox85, the WOSSPA package86 and the ARfit package.

ROI MNI coordinates
Time window 
of difference

P value 
(corrected) Cohen’s d

Size 
(cm2) Polarity

Stronger 
Condition

1 right superior occipital gyrus [35.6, −55.6, 54.4] n.a n.a n.a 49.21 n.a n.a

2 left orbitofrontal gyrus [−47.4, 45.6, −18.9] n.a n.a n.a 35.64 n.a n.a

3 left anterior temporal lobe [−48.6, 11.9, −43.9] n.a n.a n.a 32.38 n.a n.a

4 right anterior temporal lobe [48.9, 13.5, −43.3] n.a n.a n.a 12.51 n.a n.a

5 left posterior middle temporal gyrus [−60.3, −68.4, 0.8] n.a n.a n.a 17.35 n.a n.a

6 right middle frontal gyrus [37.3, 9.6, 64.2] n.a n.a n.a 27.14 n.a n.a

7 left inferior temporal gyrus [−62.5, 25.6, −31.6] 300–650 ms 0.0225 0.022 35.23 Ab > Co |Ab| > |Co|

8 bihemispheric superior parietal lobule [13.0, −47.7, 79.8] 550–750 ms 0.0167 0.014 9.79 Ab > Co |Ab| < |Co|

9 right middle and superior temporal gyri [71.4, −22.3, −6.7] n.a n.a n.a 20.41 n.a n.a

10 right orbitofrontal gyrus [36.3, 33.7, −22.6] n.a n.a n.a 34.65 n.a n.a

Table 2. Anatomical label and MNI coordinates of vertices with 10 ROIs whose time courses were used for 
subsequent analysis. All ROIs were identified using method A. Regions 7 and 8 were identified by using both A 
and B. For method B, characteristics of the differential activity (time window, p value, effect size, polarity and 
strength of activation) are given which are not applicable (n.a.) for method A. Ab: Abstract, Co: Concrete.
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Testing for significant non-zero information flow. The multi-trial GLKF algorithm was trained on all trials for 
each subject simultaneously and presented as a single time-frequency plot per subject. To test for statistically sig-
nificant non-zero connections, we first calculated PDC values on grouped subjects of abstract and concrete words 
per subject. From the same dataset, we generated our null distribution by randomizing the phase of each trial 
while preserving the amplitude distribution87. Phase randomization was implemented by applying a fast-Fourier 
transform (FFT) to obtain the complex power spectrum, replacing the phases with those of a uniform random 
matrix. Then, to obtain the surrogate data we applied the inverse FFT (implemented using the SIFT toolbox85). 
Since information flow critically depends on phase information, the estimated connectivity observed should 
be statistically larger than the connectivity estimated from the surrogate data. The latter, in fact, represents 
the behavior of the null hypothesis case. The effectiveness of this technique has been validated on simulation 
examples88. In this way, we could conservatively discard a substantial set of connections for which the estimated 
Granger causality was likely to result from spurious connectivity due to volume conduction43. From the null 
distribution, we calculated once more the surrogate PDC values to test for significance using a one-sided within 
subject cluster-based permutation test as described in89. Clusters were defined as datapoints adjacent in time and 
frequency. The significance of all clusters was calculated under the permutation distribution of the maximum 
cluster statistics so as to control the family-wise error rate (FWER) for all clusters. The cluster-based permuta-
tion test was performed between all ROIs resulting in a total of 100 cluster-based permutation tests in which we 
corrected for multiple comparisons (10 ROIs resulted in 100 comparisons) using Bonferroni correction of the 
critical alpha level (α = 0.0005). The test statistics were obtained on 10000 random partitions. In addition to the 
level of significance, we reported the effect size (Cohen’s d) between the surrogate and real PDC values, which was 
estimated as an indication of the strength of the connection.

Testing for significant differences in information flow between abstract and concrete trials. Once significant 
non-zero information flow had been determined with the help of the cluster-based permutation method 
described above, we tested for differences between information flow of abstract and concrete words using a paired 
sample t-test. In this case, we only analyzed the connections that were statistically significant in the cluster-based 
permutation test with the effect size in the “very large or huge” range (see section results: Granger Causality, 
experimental data). We believe these connections to be the most robust and strongest, which is why we focused 
our analysis on them. For simplicity, we also excluded edges showing this range of effect size for only abstract or 
concrete words. For visualization purposes, an alternative representation of the same results is also shown as a 
bar plot where an averaged sum of the incoming and outgoing connection strengths is represented (see section 
Results: Granger Causality, experimental data). We limited our statistical analysis to comparing connectivity only 
during the time-span where significant differences were observed in amplitude using method B in ROI identifica-
tion (see section results: source localization and ROI selection). In order to reduce the number of pairs included 
in the multiple comparison analysis, we analyzed only the time-span where a significant difference in neural acti-
vation was observed. Within this time-span, we averaged over 100 ms time bins with 50 ms overlap. Furthermore, 
we only considered results that were significant for a frequency range of at least 3 Hz. An exploratory analysis of 
these connections for the whole timespan is reported in supplementary material section D.

Consistency of PDC. An important question is how consistent our PDCs are. Since the entire set of available 
trials is used to estimate Granger causality per subject and condition, there is no estimate of its variability. To 
accommodate this, we performed bootstrap resampling per subject and condition, and generated 100 resampled 
datasets, i.e. we repeated the exact same analysis procedure as we did with our original dataset but randomly 
resampled by replacing the trials within each condition and subject. The size of the resampling dataset was the 
same as in the original analysis. From this, we calculated the average connectivity over all subjects per bootstrap 
resampling. The standard deviation over all connectivity pairs in time-frequency showed a maximum of 0.05 (5% 
of the maximum estimate). A z-score analysis of all bootstrap trial showed that 95.91% of the estimates lie within 
2 standard deviations of the mean for each estimate. A further detailed analysis of the inter-subject variability for 
different connection pairs can be found in supplementary material section E.

In addition to the above-mentioned analysis, we were also curious to see how this variability would differ if a 
sample smaller than the whole dataset were used. As mentioned in the pre-processing section, we had an average 
of 550 trials per subject for both conditions, meaning that around 270 trials per condition were used to estimate 
the autoregressive parameters. We repeated the bootstrap analysis for 15, 25, …, to 95% of all available trials to 
estimate the variability. Results show a slow decline in standard deviation from 0.09 to 0.08 up until 85% of the 
trials are used, after which the standard deviation drops from 0.08 to 0.05, ultimately reaching 0.03 at 95%. As 
85% of trials corresponds to ~230 trials, we propose that this be the minimum amount of trials required for a 
reliable estimation of the autoregressive parameters in our case.

Results
Scalp results. An initial analysis of the scalp electrodes already revealed some details of the differences 
between abstract and concrete words. Linear mixed effect analysis on scalp electrodes with subject as random 
effect and cluster-based correction for multiple comparisons (only effects were taken into account that lasted for 
at least 100 ms over several adjacent electrodes) showed a left-lateralized difference between the two conditions 
during the 300–500 ms time window (p = 0.0085). Figure 1 shows a map of the scalp regions significant during 
this time-window together with the time series of some representative channels for the mentioned effect. Some 
differences can already be noticed at 100 ms, where a more negative deflection is observed for abstract words 
in most electrodes. However, a statistical significance for the difference is only reached from 300 ms onwards. 
This significance lasts until 600 ms in the left centroparietal electrodes like C1 and Cz, and until 500 ms in left 
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frontal electrodes like F7. In this time window, the concreteness effect is expressed by a more positive amplitude 
for abstract words during this time window compared to concrete words. Similar to9, differences between word 
types are greater over anterior than over posterior sites (average Cohen’s d effect size between 300–500 ms 0.0318 
of anterior versus 0.0022 for posterior sites). In that study9, however, the differences were greater over the right 
compared to the left hemisphere, which could be due to the implicit task of word categorization.

Source localization and Roi selection. Having found confirmation in the scalp analysis that there is 
indeed a difference between abstract and concrete words, we performed source space analysis to obtain the ROIs 
that would be taken into our model of connectivity analysis in later steps. Table 2 shows the anatomical label and 
Montreal Neurological Institute (MNI) coordinates of ROIs, with the grand average time courses shown in Fig. 2 
(Note that columns “polarity” and “stronger condition” are only defined in method B, respectively representing 
the relation for the dipole amplitude and the strength of the rectified amplitudes32). When searching for patterns 
of common activity using method A (see Materials and Methods, section on Source localization and ROI selec-
tion), 10 ROIs were identified. These ROIs represent areas where collective activity of both conditions exhibited 
a significant source signal to noise ratio30. Very interesting to note is that when searching for differential patterns 
of activation (method B), ROIs 7 and 8 (left inferior temporal gyrus and bihemispheric superior parietal lobule) 
were re-identified. This shows that despite a statistically significant difference in amplitudes, the combined activ-
ity of both conditions was high enough for these ROIs to exhibit a strong power compared to the baseline activity. 
Using the methods as described in the methods section, we endorsed – at least partially – the regions hypothe-
sized by Lau et al.’s model of semantic processing54.

Furthermore, Fig. 2 also shows the respective time course for each of these ROIs which were obtained by 
taking the dipole with the highest power for each region. Similar to the results of the scalp analysis, a significant 
difference between abstract and concrete words starts at 300 ms. This difference is localized at the left inferior 
temporal gyrus. Additionally, a statistical difference can be observed in the superior parietal lobule of both hem-
ispheres at a slightly later time window. For other ROIs, none of these differences reached statistical significance 
even though some differences can be seen, such as in the case of the right anterior temporal lobe starting at 
600 ms.

Granger causality. Simulated data. After having selected our ROIs, we first validated our time-varying, 
multivariate and multi-trial connectivity method using a ground truth, i.e. simulated data. The simulation exam-
ple was taken from90, a multivariate autoregressive model of order 2 with 3 variables, x1, x2, x3. The method we 
used is largely similar to that of90 except that in our case the PDC technique was adapted for multiple trials of the 
same phenomenon, whereas in90 it was applied to continuous data:

= . − − . − + − +x n x n x n c n x n w n( ) 0 5 ( 1) 0 7 ( 2) ( ) ( 1) ( )1 1 1 12 2 1

= . − − . − + . − + − +x n x n x n x n c n x n w n( ) 0 7 ( 1) 0 5 ( 2) 0 2 ( 1) ( ) ( 1) ( )2 2 2 1 23 3 2

= . − +x n x n w n( ) 0 8 ( 1) ( )3 3 3

Figure 1. Scalp EEG plots for abstract and concrete word trials for seven representative electrodes (F7, F8, C1, 
C2, CCP3h, CCP4h, and Cz).
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Figure 2. ROIs selected for connectivity analysis. All areas have been found by means of method A, which 
shows common activity between abstract and concrete trials. Regions 7 and 8 have been re-identified using 
method B, i.e. they represent regions with statistically significant differences between abstract and concrete 
trials obtained by a mass-univariate linear mixed effect model with cluster-based correction.
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Trial length L is equal to 1000 data samples per trial of which we generated 100 trials. Figure 3 illustrates our 
PDC estimates using the multi-trial general linear Kalman filter for parameter estimation. The figure features 
3 × 3 time-frequency windows each of which displays information flow between two variables. Some patterns of 
information flow change with time. This can, for example, be seen in window (b), where a flow of information 
from variable 2 to 1 appears after passing half the time window (variable c12(n) varies with time). These simula-
tions confirmed the validity of our method in capturing the varying nature of the connectivity pattern for the next 
stage of our analysis.

Experimental data. We further estimated PDC values for the abstract and concrete trials of our 10 ROIs (see 
Materials and Methods) using the model estimation parameters described in supplementary material section B and 
the statistical analysis described in the section on Statistical analysis of Granger connectivity. Time-frequency plots 
of the PDC estimates can be found in supplementary material section C. For significant values of PDC, we estimated 
Cohen’s d effect sizes as shown in Fig. 4. Effect sizes are color-coded based on the rule of thumb91. We only discuss 
results with effect sizes larger than 0.8, as these are most likely to be replicated during the bootstrap resampling and 
Granger analyses with varying network sizes (shown in Fig. 4). Additionally, when testing for differences between 
our two conditions, we constrained our analysis only to the strongest connection (marked by accentuated connec-
tions with thick lines in Fig. 4) and corrected for multiple comparisons (number of connections) using Bonferroni’s 
correction. An exploratory analysis of these connections is reported in supplementary material section D.

For a concise overview of the connectivity pattern (for visualization purposes), we also plotted the results from 
Fig. 4 as a bar plot of averaged incoming and outgoing information flow. In Fig. 5, outgoing information flow for 
each region is represented as an average of all information coming from that region, which can also be seen in 
Fig. 4. Likewise, sent information is an average per region of information coming into a region, which can be gath-
ered from the rows of Fig. 4. As Figs. 4 and 5 demonstrate, some regions play a bigger role in sending or receiv-
ing information compared to others. Results show that the right occipital lobe (ROI 1) is a main sender widely 
transferring information to the anterior parts of both hemispheres (Fig. 5) temporally and frontally, i.e. to left and 
right anterior temporal lobes (ROI 3 and 4), right middle frontal gyrus (ROI 6), left inferior temporal gyrus (ROI 
7), bihemispheric superior parietal lobules (ROI 8) and right middle temporal gyrus (ROI 9). Similarly, the left 
and right orbitofrontal gyri (ROI 2 and 10) send information mostly to the same regions except for the superior 
parietal lobules (ROI 8). Furthermore, two regions largely receiving information are the left anterior temporal 
lobe (ROI 3, receiving from almost all areas except from the right middle and superior temporal gyri) and the 
right middle and superior temporal gyri (ROI 9, receiving from all areas). The remaining regions seem to be both 
senders and receivers of information.

Difference in information flow between abstract and concrete trials. Since our method of Granger analysis was 
based on time-varying autoregressive parameter estimation, we detected changes in connectivity strength over time 

Figure 3. Multivariate Granger causality of simulated data plotted in terms of partial directed coherence (PDC) 
(cf. color scale) in the time-frequency domain.
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Figure 4. Effect sizes (Cohen’s d) for abstract and concrete trials for each ROI, given for significant connections 
(n.s. = not significant). Shades of green indicate magnitudes (0.01–0.2 small; 0.2–0.5 medium; 0.5–0.8 large; 
0.8–2 very large or huge, colored from light to dark green, see color code below). All non-zero values are 
significant with p < 0.0001. The columns represent the senders of information, the rows the receivers.

Figure 5. Total amount of outgoing (top, in blue) and incoming (bottom, in yellow) information flow for each 
region of interest. ROI 1 to 10 respectively represent the right superior occipital gyrus (1), the left orbitofrontal 
gyrus (2), the left anterior temporal lobe (3), the right anterior temporal lobe (4), the left posterior middle temporal 
gyrus (5), the right middle frontal gyrus (6), the left inferior temporal gyrus (7), the bihemispheric superior 
parietal lobule (8), the right middle and superior temporal gyri (9), and the right orbitofrontal gyrus (10).
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and frequency. We investigated differences in information flow using the statistical analysis described in Materials 
and Methods (testing for significant difference in information flow between abstract and concrete trials).

Time window of significant difference in source activation (300–750 ms). Evaluating 100 ms time-bins in the 
given time-interval during which a difference between connectivity of abstract and concrete words was observed, 
we witnessed a statistically stronger information flow for abstract than concrete words from the right occipital 
lobe to the left anterior temporal lobe during the 550–650 ms time interval in the alpha band (p = 0.0008, effect 
size = 0.565 in the 8–13 Hz frequency range, see Fig. 6). Note that we consider the alpha band to range from 
8–13 Hz and the beta band from 13–30 Hz. During a later time window (650–750 ms), several routes of informa-
tion flow towards the left anterior temporal lobe exhibited stronger connections for concrete over abstract words 
(Fig. 7). These connections originated from the right anterior temporal lobe in the early beta band (p = 0.0092, 
effect size = 0.3609, frequency range = 12–16 Hz, 600–700 ms) and the right orbitofrontal gyrus in the beta band 
(p = 0.0046, effect size = 0.532, frequency range = 17–20 Hz, 650–750 ms). Interestingly, our exploratory analysis 
(for details, see supplementary material section D) additionally showed a stronger transfer of information in the 
beta band from the left posterior temporal and bihemispheric parietal lobules to the left anterior temporal lobe 
(p = 0.0036 and 0.0013 respectively, uncorrected). This demonstrates a general increase in beta band information 
flow towards the left anterior temporal lobe for concrete words during the 650–750 ms time window.

In addition to the above-mentioned analysis, we tested how the information flow varies in the time win-
dow which revealed a significant difference in activation between abstract and concrete words (the time span of 
300–750 ms). Here, we found a general trend of increased alpha and early beta activity in the connections flowing 
towards the left anterior temporal lobe for concrete words (p < 0.0005 for all comparisons, Bonferroni corrected 
for the number of connection pairs).

Discussion
The main goal of our study was to investigate and compare the network dynamics of abstract and concrete word 
processing. Our results on the scalp-level revealed a centro-frontal difference in EEG amplitudes between abstract 
and concrete words starting from around 300 ms after the words were presented9,92. Having moved on to inves-
tigate differences on the source level, we found that visual word processing does not entail a simple bottom-up 
process but includes both bottom-up and top-down connections. This was also suggested by Zhou et al.93,  
who investigated functional connectivity during text reading using fMRI and observed top-down regulation 
and prediction for the upcoming word. In our case, subjects were processing single words, which alleviates 
the amount of prediction. Furthermore, our results showed that reading activity mainly originates in the right 
extra-striate occipital cortex (visual cortex), ramifies to the right and left temporal lobes, medial superior parietal 
cortex and right middle frontal gyrus, and transfers itself further from the middle part of left inferior tempo-
ral gyrus and posterior temporal cortex to the left anterior temporal lobe. These connections encompass both 
ventral (occipito-temporal) and dorsal (occipito-parietal) streams of written-word processing. Observing infor-
mation flow from the occipital cortex to both temporal and parietal cortices was not surprising, given that the 
extra-striate cortex is considered “a starting point” for both ventral and dorsal streams, respectively involved in 
semantic and phonological reading94. We also witnessed information flow between the visual cortex and the pos-
terior temporal gyrus, the latter of which is known to be involved in lexical processing of reading95. Furthermore, 
we observed information transfer between the two anterior temporal lobes which, among others, are involved in 
semantic processing of word familiarity96.

Cognitive control during reading97 is exerted in areas of the ventral and dorsal streams. We observed an 
additional feedback system consisting of more anterior temporal areas (e.g. anterior temporal lobes), the left of 
which is believed to assume a semantic hub function98 sending information to posterior temporal regions assum-
edly regulating how the word form maps to its semantics. Overall, we can conclude that the right occipital lobe 
(bottom-up), and the bihemispheric orbitofrontal and right anterior temporal regions (top-down) are the strong-
est information senders, dispatching information to almost all other brain areas active during word processing. 
Areas mostly receiving information are the left anterior temporal and right middle temporal lobes, suggesting 
that the output of different processes converges in these areas (see Fig. 5). Several studies on general word and 
sentence reading uncovered similar characteristics of the network. For example, Schoffelen et al.43 used MEG 
data during sentence reading. Using Granger causality, they identified that the anterior temporal lobe on both 
hemispheres is a substantial receiver of information. While that was consistent with our results in the left anterior 
temporal lobe, in our study the right anterior temporal lobe seemed to be almost equally involved in sending 
and receiving information. Schoffelen et al. found that these areas receive information from the inferior frontal 
cortex, and the superior and middle temporal regions. Even though these results are very much in line with our 
findings, some differences can be observed given that their stimuli were sentences rather than single words. Other 
studies have shown an exceptional predominance of the occipito-temporal (OT) cortex in sending information41 
and have, consistent with our findings, emphasized the importance of OT as the main entrance point from visual 
analysis to the language network. Furthermore, our study confirms that the medial, inferior and anterior temporal 
cortices are important for semantic processing, as previously suggested by Catani and Mesulam99.

comparison of connectivity patterns for abstract and concrete word comprehension. When 
comparing the connectivity structure of reading between abstract and concrete words, a higher connection 
strength during abstract word processing was only observed in the alpha band during the 550–650 ms time win-
dow. This can be explained by the presence of increased attention at this time for abstract words100 and the fact 
that abstract, compared to concrete, words have a more pronounced linguistic component8. Since abstract words 
are less imaginable they might additionally activate the anterior temporal lobe in the phase of early detection of  
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the word category. It is important to note that the anterior temporal lobe is presumed to have a graded speciali-
zation where the superior part is predicted to be more active for abstract and the ventromedial part for concrete 
words. The spatial resolution of this study does, unfortunately, not allow for more fine-grained distinctions within 
the anterior temporal lobe101. This was the sole connection exhibiting a larger strength of connectivity for abstract 

Figure 6. 550–650 ms time window: Granger causality of strongest connections for both abstract and concrete 
trials shown in the frequency domain. Bottom figure: Connections in green display a significant difference 
between abstracts and concretes (for the frequency range highlighted in the green area in the top figure). Top 
figure: For the PDC values of abstracts and concretes, the 95% confidence interval is shown in shades of red and 
blue respectively.
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word reading, as all remaining differences exerted a stronger connection during the reading of concrete words 
in the alpha and beta bands in a later time window. As the results showed, a stronger connection was observed  
during the time window of 650–750 ms from the right to left anterior temporal lobe in the alpha band and from 
the right orbitofrontal to the left anterior temporal lobe in the beta band. Additionally, our exploratory analysis 

Figure 7. 650–750 ms time window: Granger causality of strongest connections for both abstract and concrete 
trials shown in the frequency domain. Bottom figure: Connections in green display a significant difference 
between abstracts and concretes (for the frequency range highlighted in the green area in the top figure). Top 
figure: For the PDC values of abstracts and concretes, the 95% confidence interval is shown in shades of red and 
blue respectively.

https://doi.org/10.1038/s41598-020-59473-7


1 5Scientific RepoRtS |         (2020) 10:2803  | https://doi.org/10.1038/s41598-020-59473-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

for all time windows showed a consistently stronger network, predominantly in the beta band, during concrete 
word reading (see supplementary material section D). If the context availability theory would be extended in such 
a way as to account for connectivity, we hypothesize that abstract and concrete words would be processed in the 
same connectivity patterns but with differently weighted connections. As such, our findings would thus partly 
support the context availability theory. Abstract and concrete words are processed in bihemispheric, partially 
overlapping networks with the right hemisphere functioning as a sender and the left hemisphere as a receiver. The 
generally higher connectivity strength for concrete words can serve as a plausible explanation for the concreteness 
effect observed in behavioral studies (faster retrieval of concrete words).

A handful of studies have attempted to reveal differences in connectivity patterns of abstract and concrete 
words. In a series of studies, Weiss et al.102–104 measured the functional coupling using coherence analysis – a 
statistical measure for the correlation of signals within a certain frequency band. They found significantly higher 
coherence in the beta band (13–18 Hz) for concrete words, independent of presentation modality (visual or audi-
tory), while the early alpha band (8–10 Hz) revealed identical coherence patterns. Despite both of them being 
spectral measures of connectivity, Granger causality based on PDC adopts, unlike coherence, a more stringent 
criterion for establishing information flow. Furthermore, coherence does not indicate the directionality of the 
flow. As such, there is not necessarily correspondence between coherence and causality (i.e. one does not imply 
the other)105,106. Similar to the studies conducted by Weiss, our exploratory analysis, despite the discrepancy 
in these methods, exhibited consistently higher beta band information flow that is stronger for concrete words 
(though unlike Weiss102–104, we also found differences in the alpha band).

Very recently, studies have specifically investigated connectivity differences between abstract and concrete 
single word reading45,46. Even though these studies relied on very different methods compared to ours, the results 
were more or less converging. In one study45, fMRI data was analyzed using group-ICA, uncovering an overall 
stronger connectivity for concrete words. In another study47, simultaneous MEG/EEG data was analyzed using 
dynamical causal modeling to reveal a modulation of the left anterior temporal lobe by word concreteness starting 
as early as 150 ms (but also during later stages). Moreover, they found a stronger connection between the left ante-
rior temporal lobe and the right orbitofrontal cortex for abstract words, contemplating that this might be a result 
of abstract words being rated as more emotional (higher valence) than concrete words. Since we controlled for 
the affective dimensions of valence, activity and potency, we, unsurprisingly, did not make the same observations. 
Importantly, the above-mentioned studies employed an explicit concreteness task, i.e. participants were aware of 
the purpose of the study, which was shown to increase the evaluated concreteness effect9. Our participants, how-
ever, were instructed silently to read the words for comprehension and press a button upon seeing the arbitrary 
category “color” (implicit categorization task) after which the corresponding data was removed. Therefore, we 
believe that the EEG patterns evoked by our paradigm reflect the processing of words in more natural conditions.

Suggestions for future research and limitations of the study. In the current study, we used a mul-
tivariate, time-varying adaptation of Granger causality on source localized EEG data in order to investigate the 
spatial, spectral and temporal dynamics of the information flow during single word reading. Such a model is 
computationally complex as it requires many data points to be trained. The complexity of a multivariate model 
is known to be relative to the number of variables to the power of two multiplied by the order of the model 
(O(m2p)). Therefore, even a small number of variables can dramatically increase the need for more trials to ensure 
a good fit. We did not attempt to create a large network with many regions of interest even though other regions 
reported in the literature could have potentially been of interest to our study. We also do not recommend ana-
lyzing GC with only a portion of all ROIs to decrease computational complexity. As all causal factors need to be 
incorporated in the model, Granger Causality may produce misleading results when the true relationship involves 
more variables than those that have been selected107. In our case, the network constituted all regions with either 
common or differential neural activation between our two paradigms. We can, however, not preclude that not all 
ROIs playing a causal role in neural dynamics have been successfully identified, as some may have been downreg-
ulated during task performance37.

Furthermore, along with high model complexity, estimating a large network can also be problematic in terms 
of the multiple comparisons problem. Therefore, we limited our analysis to the alpha and beta frequency bands 
during the time windows for which significant differences in activation were observed. In our exploratory anal-
ysis, reported in supplementary material section D, we analyzed all consecutive time windows. It is important to 
note, though, that we do not suggest that there be a simple relationship between difference in activation and dif-
ference in connectivity. In fact, an exploratory analysis has demonstrated connectivity differences during earlier 
time windows. Even during the selected time windows, areas showing a difference in activity were not necessarily 
those involved in connectivity differences between conditions. An interesting future study would be to investigate 
the interaction between local measures of activation and connectivity. Another would be to explore an adaptive 
model order. In our current parameter estimation, the model order was kept constant. However, it is very well 
possible that some connections have faster information flow than others, therefore requiring a smaller time lag 
when assessing their connectivity. Knowing the optimal model order for each connection could indicate a dif-
ference in the speed of information transfer for particular routes in the network and might be able to explain the 
faster reaction time and retrieval of concrete words.

Finally, in this study we have limited ourselves to sources localized on the cortical surface even though many 
subcortical structures such as the thalamus and some parts of the basal ganglia are suggested to contribute to lan-
guage processing108,109. Despite the fact that it is still unclear how activity from deeper structures can be detected 
by means of EEG source reconstruction, more studies are now claiming that activity from subcortical structures 
can reliably be estimated using high-density EEG110,111. How subcortical structures are posited in the Granger 
network of information flow during word processing is another question for future research.
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conclusion
We have provided evidence for directed interactions between cortical regions in the language network of the 
human brain during single word processing and have investigated differences in activation and interactions of 
information flow when reading abstract versus concrete words. Our state-of-the art approach allowed us to inves-
tigate patterns of information flow in the spatial, temporal as well as spectral domains. Our results showed a net-
work of interactions involving regions located along both ventral and dorsal pathways where areas at both ends of 
the stream were mainly involved in sending information (right superior occipital lobe and orbitofrontal gyrus on 
both hemispheres). By contrast, areas which were largely recipients of information were the left anterior temporal 
lobe and right middle temporal gyrus. Further comparison between network interactions during abstract and 
concrete single word reading revealed increased information flow (stronger network) for both beta and alpha 
bands during processing of concrete words around 550–750 ms and an increase in alpha interactions for abstract 
words in the 550–650 ms time window. These differences all concerned information transfer routes flowing to 
the left anterior temporal lobe (ATL), suggesting that this area is largely involved in the processing of abstract 
words. Given the previous suggestions that the left ATL is considered a semantic hub98 and our observations 
of its stronger connections with other brain regions for concrete compared to abstract words, we propose that 
this information flow reflects the matching of the lexical representation of the concrete words with its semantic 
knowledge. Further exploratory analysis revealed generally higher connectivity during concrete word processing. 
These findings suggest that abstract and concrete words are processed in partially overlapping networks even 
though the strength of their connectivity exhibits different spectral and temporal properties.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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