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Multi-domain cognitive assessment 
of male mice shows space radiation 
is not harmful to high-level 
cognition and actually improves 
pattern separation
Cody W. Whoolery1,5,10, Sanghee Yun   2,3,10, Ryan P. Reynolds1,2, Melanie J. Lucero1, 
Ivan Soler6, Fionya H. Tran2, Naoki Ito1,7, Rachel L. Redfield1, Devon R. Richardson1,  
Hung-ying Shih4, Phillip D. Rivera1,8, Benjamin P. C. Chen4, Shari G. Birnbaum   1,  
Ann M. Stowe5,9 & Amelia J. Eisch   1,2,3,6*

Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum 
of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies 
show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given 
astronaut use of touchscreen platforms during training and space flight and given the ability of rodent 
touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a 
non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation 
and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation 
did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, 
or object-spatial paired associates learning, suggesting preserved functional integrity of supporting 
brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern 
separation task; irradiated mice learned faster and were more accurate than controls. Improved  
pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-
dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task 
and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the 
broadly-held view that space radiation is detrimental to cognition.

Interplanetary missions - such as to Mars - are a high priority for many space agencies. The crew of future mis-
sions will face hazards1–3, such as exposure to galactic cosmic radiation4–7 a spectrum of low and high-(H) atomic 
number (Z) and high-energy (E) particles such as 56Fe and 28Si. Fast-moving HZE particles cannot be effectively 
blocked by modern spacecraft shielding8–11. Therefore, it is concerning that studies with laboratory animals gen-
erally conclude HZE particles are detrimental to brain and behavior12–14. Such preclinical data suggest HZE par-
ticle exposure may be harmful to astronaut cognition and impede mission success.
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However, there are reasons to revisit the conclusion that HZE particle exposure is detrimental to cognition. 
First, age at the time of irradiation matters. Most preclinical data that led to the Probabilistic Risk Assessment of 
HZE particles being detrimental to cognition were from tests performed on young adult rodents (~2-3 months 
[mon] at exposure)14; in many cases, age at testing was not reported14. To more accurately reflect the average age 
of astronauts, NASA now requires ground-based space studies to be performed in mature animals (~6-mon-old 
at irradiation)14–24. Indeed, some studies now directly compare the cognitive impact of HZE irradiation in early 
life vs. maturity25–28, although the results are mixed. Second, type of behavioral test matters. Recent work with 
mature rodents shows HZE particle exposure decreases performance in some - but not all - behavioral tests; 
even tests that engage similar neural circuits produce distinct results14–20,29. A potential contribution to these 
task-dependent discrepancies is task-specific testing environment. In humans (including astronauts), auto-
mated computerized cognitive assays help control for the influence of testing environments30–32. However, such 
an approach has not been used to assess cognition in mature rodents after HZE exposure. Third, breadth of 
testing matters. Preclinical studies on space radiation typically assess one or two cognitive domains33–35. In con-
trast, astronauts repeatedly undergo test batteries - often on a touchscreen platform - to assess integrity of many 
cognitive domains over time30,36. To this end, many aspects of neuroscience have employed rodent touchscreen 
testing, a platform extensively validated for its ability to provide multidimensional assessment of functional integ-
rity of brain circuits in a highly-sensitive and translationally-relevant way37–39. In regard to space radiation, it is 
known that head-only exposure of young adult rats exposed to protons (a low energy particle) does not change 
acquisition or reversal learning on a touchscreen line discrimination task40. However, given the power of touch-
screen testing, it is surprising that it is not known how whole body exposure of mature rodents to HZE particles 
influences performance on a battery of rodent touchscreen tests. This is particularly notable as the touchscreen 
platform permits analysis of many higher cognitive functions - such as pattern separation - which are part of the 
astronaut’s mission-critical skill set yet which have not been preclinically assessed for their sensitivity to space 
radiation.

To address these major knowledge gaps, mature C57BL/6J male mice received either Sham irradiation (IRR) 
or whole body 56Fe particle IRR and were assessed on a battery of touchscreen cognitive tasks to assess complex 
learning, cognitive flexibility, visuospatial learning, and stimulus-response habit learning39,41–43. This touchscreen 
battery revealed an unexpected finding: improved pattern separation in 56Fe IRR vs. Sham mice. To assess whether 
this improvement was dependent on touchscreen testing or on 56Fe IRR, we then assessed separate cohorts of 56Fe 
IRR vs. Sham mice for pattern separation performance in a non-touchscreen task, contextual discrimination fear 
conditioning (CDFC), and also assessed the impact of 28Si IRR vs. Sham on CDFC. Irrespective of whether tested 
on a touchscreen or non-touchscreen platform, or whether CDFC mice received to 56Fe or 28Si IRR, IRR mice 
had better pattern separation than Sham mice. Taken together, these data show whole body exposure to HZE 
particles is not detrimental to high level cognition in mature mice and actually enhances performance in certain 
mission-critical tasks, such as pattern separation.

Results
Mice given whole body 56Fe IRR demonstrate overall normal perceptual discrimination, associ-
ation learning, and cognitive flexibility in touchscreen testing.  Six-mon-old male C57BL/6J mice 
received either Sham IRR or fractioned (Frac) whole body 20 cGy 56Fe (3 exposures of 6.7 cGy every-other day, 
total 20 cGy) (Figs. 1a,c,e). This total dose is submaximal to that predicted for a Mars mission44,45, and the frac-
tionation interval (48 hours [hr]) was determined by the inter-fraction period for potential repair processes46. As 
previously reported47, this dose and these fractionation parameters do not interfere with weight gain or cause hair 
loss (Fig. S1a).

Beginning 1 mon post-IRR, Sham and 56Fe IRR mice began training on a touchscreen platform extensively 
validated in rodents39,41,43,48,49(Fig. 1a,b). Mice initially went through five stages of general touchscreen training 
(Fig. 2a), with performance reflecting instrumental or operant learning. Sham and 56Fe IRR mice completed most 
stages of the initial operant touchscreen training in similar periods of time (Fig. 2a). The exception was the final 
stage, Punish Incorrect (PI, where an incorrect trial to timeout); on average, 56Fe IRR mice finished PI in ~40% 
fewer days versus Sham mice (Fig. 2a, Table S1).

Mice then advanced to pairwise discrimination (PD, visual discrimination) and PD reversal (reversal learning, 
Fig. 2b,c), tests which reflect perceptual discrimination and association learning as well as cognitive flexibility, 
respectively, and rely on cortical (prefrontal, orbital frontal, perirhinal) and striatal circuits41,48. On average, both 
56Fe IRR and Sham mice completed PD and PD reversal in a similar number of days (Fig. 2d, Table S1). Analysis 
of the distribution of subjects to reach criteria each day revealed significant difference between Sham and 56Fe 
IRR mice (Fig. 2e). Specifically, 50% of Sham mice reached PD completion criteria at 9.5 days, while 50% 56Fe IRR 
mice reached criteria at 12 days. However, Sham and 56Fe IRR mice did not differ with regard to average session 
length, percent correct, or number of errors (Fig. 2f,h). In PD reversal, the distribution of subjects to reach com-
pletion criteria was not different between Sham and 56Fe IRR mice (Fig. 2i), with 50% of Sham and 56Fe IRR mice 
reaching PD reversal completion criteria at 15 and 14 days, respectively (Fig. 2i). As with PD, Sham and 56Fe IRR 
mice did not differ in PD reversal average session length, percent correct, or number of errors (Fig. 2j,l).

Mice given whole body 56Fe IRR demonstrate normal visuospatial learning and stimulus- 
response habit learning in touchscreen testing.  A parallel group of mice was used to assess the influ-
ence of 56Fe IRR object-location paired associates learning (PAL) and visuomotor conditional learning (VMCL) 
which reflect visuospatial and stimulus-response habit learning, respectively, and rely on intact circuits of the 
hippocampus41,43 (PAL) and striatum and posterior cingulate cortex41,43 (VMCL, Fig. 1b). Consistent with results 
in the first cohort of mice, Sham and 56Fe IRR mice completed most stages of operant touchscreen training in 
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similar periods of time (Fig. 3a), again with the exception of PI where 56Fe IRR mice finished in ~20% fewer days 
than Sham.

In PAL (Fig. 3b), Sham and 56Fe IRR mice were similar in session length, number of trials, percent correct, 
and number of errors over the 29-day testing period (Fig. 3c-f). In both VMCL train and test (Fig. 3g,h), Sham 
and 56Fe IRR mice had similar average days to completion (Fig. 3i). In VMCL train, Sham and 56Fe IRR mice 
performed similarly in regard to distribution of subjects to reach criteria each training day (50% subjects reached 
criteria at 10 days in Sham mice vs. 9 days in 56Fe IRR mice), session length, number of trials, percent correct, 
and number of errors (VMCL train; Fig. 3j-n, Table S1). In VMCL test, Sham and 56Fe IRR mice had similar dis-
tribution of subjects to reach criteria each training day (50% of subjects reached criteria at 22 days in Sham mice 
vs. 23 days in 56Fe IRR mice), session lengthpercent correct, percent missed, and number of errors (VMCL test; 
Figs. 3o-s, Table S1). However, the time to complete the session on the last day of VMCL test was longer in 56Fe 
IRR relative to Sham mice (Fig. 3p).

Whole body 56Fe IRR improves pattern separation in an appetitive-based location discrimina-
tion touchscreen task.  A brain region commonly studied with regard to space radiation-induced deficits 
in function and activity-dependent processes (i.e. neurogenesis) is the hippocampal dentate gyrus47,50–52. Based 
on prior work, we hypothesized whole body 56Fe IRR impairs pattern separation, a cognitive function reliant on 
dentate gyrus integrity53,54. To test this hypothesis, Sham and 56Fe IRR mice were assessed on a touchscreen pat-
tern separation task: location discrimination (LD)39(Fig. 1a). In the LD training portion of the assessment (LD 
train, Fig. 4a), Sham and 56Fe IRR mice had similar distribution of the proportion of subjects reaching criteria 
(Fig. 4b), average days to completion, session length, and percent correct (Fig. 4c,e). However, Sham and 56Fe IRR 

Figure 1.  Timeline of experimental groups and behavior tests. (a-e) Separate, independent cohorts of C57BL/6J 
male mice (JAX Cat. #000664) received whole-body exposure to particles of 56Fe (a-c, e), 28Si (d), or Sham 
exposure at 6-months (mon) of age (0-mon post-irradiation [IRR]). (a) 56Fe or Sham mice subsequently were 
run on TS training, PD, PD rev, and LD. (b) 56Fe or Sham mice were run on TS training, PAL, and VMCL. 
(c) 56Fe or Sham mice were run on CDFC. (d) 28Si or Sham mice were run on CDFC. (e) 56Fe or Sham mice 
were run on LM, CFC, D/L, and PT, and brains were collected for DCX + cell quantification. For each set of 
mice shown (a-e), the interval between radiation exposure and behavioral testing was equal between Sham 
and IRR groups. Specifically, the beginning of each major behavioral test shown above was synchronized 
in Sham and IRR cohorts. CDFC = contextual discrimination fear conditioning, CFC = contextual 
fear conditioning, D/L = dark/light box test, Frac = fractionated, IRR = irradiation, LD = location 
discrimination, LM = locomotor, mon = months, Non-Frac = non-fractionated, PAL = paired associates 
learning, PD = pairwise discrimination, PD rev = PD reversal, PT = pain threshold, TS = touchscreen, 
VMCL = visuomotor conditioning learning.
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mice differed in LD performance (LD test, Fig. 4f) in several aspects. First, the distribution of proportion of sub-
jects reaching criteria was distinct in 56Fe IRR mice vs. Sham mice (Fig. 4g). 56Fe IRR mice reached criteria at >3x 
faster rate vs. Sham mice, and 50% of 56Fe IRR mice reached criteria by 4 days versus Sham mice reaching criteria 
by 6 days. Second, 56Fe IRR mice completed LD test in fewer days than Sham mice (Fig. 4h), although both groups 
showed similar session length and number of completed trials (Fig. 4i,j). Third, 56Fe IRR mice performed LD test 
more accurately than Sham mice both overall (Fig. 4k) as well when presented with stimuli separated by either 
large or small distances (Fig. 4l).

We next behaviorally-probed reasons why 56Fe IRR mice had improved pattern separation relative to Sham 
mice. For example, the improved location discrimination in 56Fe IRR mice may be reflective of unintentional 
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Figure 2.  Mice exposed to 56Fe IRR at 6-month of age complete the final stage of general touchscreen 
training in fewer days compared to Sham mice, but perform similarly to Sham mice overall in the Pairwise 
Discrimination (PD) and reversal (PD rev). (a) Sham and 56Fe IRR mice performed similarly in the first four 
steps of general touchscreen training with two windows: Habituation (Hab), Initiate Touch (IT), Must Touch 
(MT), and Must Initiate (MI). However, 56Fe IRR mice completed the Punish Incorrect (PI) stage of general 
touchscreen training in fewer days than Sham mice. (b-c) Sample touchscreen images for PD and PD reversal 
tests. (d) Sham and 56Fe IRR mice completed PD and PD rev in similar number of days. (e) Cumulative 
distribution function showing the difference in the rate of days required to complete PD between Sham and 56Fe 
IRR mice. (f–h) Sham and 56Fe IRR mice performed similarly in PD. (f) session length, (g) percent (%) correct, 
(h) Error number (#). (i) Cumulative distribution function showing no difference in the test days required to 
complete PD rev between two groups. (j–l) Sham and 56Fe IRR mice performed similarly in PD rev. (j) Session 
length, (k) % correct, (l) Error #. Sham: n = 12, IRR: n = 12. Mean ± SEM. Two-way RM ANOVA in a,d,f–h,j–l, 
*p < 0.05, ****p < 0.0001, post hoc: Bonferroni a p < 0.05 in Sham vs. 56Fe; Mantel-Cox test in e,i, *p < 0.05. 
s = seconds.
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Figure 3.  Mice exposed to 56Fe IRR at 6-month of age complete the final stage of general touchscreen testing in 
fewer days than Sham mice, but perform similarly to Sham in tests of rule-based learning and stimulus-response 
habit learning. (a) Sham and 56Fe IRR mice performed similarly in the 4 first steps of general touchscreen 
training stages with three windows, including Habituation (Hab), Initiate Touch (IT), Must Touch (MT), and 
Must Initiate (MI). However, 56Fe IRR mice completed the Punish Incorrect (PI) stage of general touchscreen 
training in fewer days than Sham mice. (b) Sample touchscreen images for Paired Associates Learning (PAL). (c–
f) Sham and 56Fe IRR mice performed similarly in PAL. (c) session length, (d) completed trials, (e) percent (%) 
correct, (f) Error number (#). (g,h) Sample touchscreen images for Visuomotor Conditional Learning (VMCL) 
train and test phases. (i) Sham and 56Fe IRR mice performed similarly in VMCL train and test. (j) Cumulative 
distribution function showed no difference in days required to complete training. Distribution of Sham and 56Fe 
IRR mice (n = 11/group) did not differ in days required to complete VMCL training. (k–n) Sham and 56Fe IRR 
mice performed similarly in VMCL train. (k) session length, (l) completed trials, (m) % correct, (n) Error #. (o) 
Cumulative distribution function showed no difference in days required to complete VMCL test. Distribution of 
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screen touches, perhaps due to IRR-induced alteration of attention to stimuli or motivation to obtain reward. 
However, the number of blank touches (Fig. 4m), reward collection latency (Fig. 4n), and choice latency 
(Fig. 4o,p) were not different between 56Fe IRR mice and Sham mice. Also, since the location of the rewarded 
stimuli changed daily but maintained within each session, it is possible that pattern separation is progressively 
improved within a session, particularly on the last test day. Sham and 56Fe IRR mice had similar last day block 
duration and left/right touches during intertrial interval, but 56Fe IRR mice had a greater percent correct during 
the 4th 10-trial block relative to Sham mice (Fig. 4q,r,t). In addition, while Sham mice did not differ between the 
1st and 4th 10-trial blocks on the last day, 56Fe IRR mice had fewer blank touches in the 4th 10-trial block relative 
to the 1st 10-trial block. These data suggest that on the last day of LD, 56Fe IRR mice demonstrate within-session 
enhanced pattern separation (Fig. 4s).

Whole body 56Fe and 28Si IRR improves pattern separation in a foot shock- based contextual 
discrimination task.  To assess whether 56Fe IRR-induced improvement in pattern separation was restricted 
to appetitive tasks, a parallel cohort of mice was exposed to Sham or 56Fe IRR and tested on pattern separation 
using a classic pattern separation behavior paradigm: contextual discrimination fear conditioning (CDFC)54,55. To 
specifically assess whether particle inter-fraction interval influenced behavioral outcome, 6-mon-old C57BL/6J 
mice received Sham IRR, whole body fractionated 20 cGy (Frac 20 cGy; 3 exposures of 6.7 cGy) 56Fe IRR, or 
whole body non-fractionated 20 cGy (Non-Frac 20 cGy; 1 exposure of 20 cGy) 56Fe IRR (Fig. 1c). As previously 
reported47, Sham IRR, Frac 20 cGy, and Non-Frac 20 cGy mice had similar weight changes over time (Fig. S1a).

Beginning ~2-mon post-IRR (8 mon of age), mice underwent CDFC (Figs. 5, S2) to learn that one context 
(Context A) was paired with a foot shock while another similar context (Context B) was a non-shock context. 
When tested in CDFC, Sham mice discriminated the two contexts by Days 9–10 (Block 5), as they froze more in 
the shock-paired context (Context A) compared to the non-shock context (Context B; Fig. 5a, Table S1). However, 
mice exposed to either Frac 20 cGy or Non-Frac 20 cGy of 56Fe IRR discriminated the contexts by Days 3–4 (Block 
2, Fig. 5b,c, Table S1). Direct comparison across treatment groups revealed Frac 20 cGy and Non-Frac 20 cGy 
mice froze more in Context A vs. Context B in Blocks 2 and 4, earlier than Sham (Fig. 5d,f, Table S1). Possible 
explanations for these results include differential activity, anxiety, or pain sensitivity in Sham vs. 56Fe IRR mice. 
To address these possibilities, parallel groups of mice underwent assessment for locomotion (Fig. S1b), dark/light 
testing (Fig. S1c,d) and pain threshold (Fig. S1e,g). However, Sham, Frac, and Non-Frac mice performed similarly 
on all these tests (Fig. S1b,g). Thus, both Frac and Non-Frac 20 cGy 56Fe IRR mice learned to pattern separate 
earlier relative to Sham mice without overt changes in locomotion, anxiety-like behavior, or sensitivity to pain.

To determine if the improvement in CDFC pattern separation generalized to other fear-based hippocampal- 
and amygdala-based learning, a parallel cohort of mice received Sham or 56Fe IRR and underwent classical con-
textual fear conditioning (CFC; Fig. 1e, Fig. S3a,b). Sham and 56Fe IRR mice (both Frac and Non-Frac 20 cGy 
groups) performed similarly in the context test (Fig. S3c) and in the cue test both pre-tone and during tone 
(Fig. S3d). Importantly, to see if the space radiation-induced improvement in CDFC was dependent on the type 
of heavy particle used, CDFC was also performed with mice exposed to whole body 28Si IRR (Figs. 1d and 6), a 
particle with a smaller track structure than 56Fe56. Sham mice spent more time freezing in Context A vs. Context 
B only on Days 9–10 (Block 5) and Days 15–16 (Block 8, Figs. 6a). Mice exposed to 20 cGy of 28Si discriminated 
between the two contexts as early as Days 11–12 (Block 6; Fig. 6bf). Notably, mice exposed to 100 cGy of 28Si were 
able to discriminate between the two contexts as early as Days 5–6 (Block 3; Fig. 6ce,f). Taken together, these data 
show that exposure to two different HZE particles - either 56Fe or 28Si - results in earlier separation ability relative 
to Sham mice on the shock-based CDFC pattern separation test.

56Fe IRR decreases dentate gyrus neurogenesis 4 mon post-IRR.  Pattern separation ability is 
dependent on new dentate gyrus neurons as well as dentate gyrus activity, and an inducible increase in adult 
neurogenesis improves pattern separation54,57,58. To assess whether the IRR-induced improvement in pattern sep-
aration reported here was correlated with increased neurogenesis, we used stereology to quantify the number of 
cells in the dentate gyrus immunoreactive for doublecortin (DCX, Fig. 7a), a widely-accepted marker for neuro-
genesis59. Although mice exposed to either Frac or Non-Frac 56Fe IRR had improved context discrimination com-
pared to control mice (Fig. 5), these mice had fewer DCX + cells compared to control mice (Fig. 7b,c, Table S1).

Discussion
Astronaut training and in-mission assessment rely on touchscreen testing due to its flexibility in probing a variety 
of cognitive functions. Rodent touchscreen testing similarly allows researchers to probe the multidimensional 
functional integrity of brain circuits in a highly-sensitive and translationally-relevant way37,39,41,60, but prior to 
the present work it was unknown how exposure to the HZE particles that comprise space radiation influences 
touchscreen performance. Based on the large literature with young animals and the negative impact of HZE 
particle exposure on the central nervous system13,61, we hypothesized whole-body exposure to ground-based 
HZE particles would diminish the performance of mice in touchscreen-based behaviors, particularly those 
behaviors reliant on the dentate gyrus, such as pattern separation. The results of our multi-domain cognitive 
assessment showed our hypothesis was wrong. Mature mice exposed to either Sham IRR or HZE particles 

Sham and 56Fe IRR mice (n = 11/group) did not differ in VMCLtest. (p–s) Sham and 56Fe  
IRR mice performed similarly in VMCL test. (p) Session length, (q) % correct, (r) % missed, (s) Error #. Sham: 
n = 12 (a–f), 11 (i–s), IRR: 12 (a–f), 11 (i–s). Mean ± SEM. Two-way RM ANOVA in a,c–f,i,k–n,p–s, *p < 0.05, 
**p < 0.001, ****p < 0.0001, post hoc: Bonferroni a p < 0.05, a’ p < 0.01 in Sham vs. 56Fe; Mantel-Cox test in j,o.
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performed similarly in touchscreen tasks of visual discrimination, cognitive flexibility, rule-based learning, and 
object-spatial associated learning, in classical hippocampal- and amygdala-based tasks (i.e. CFC), and in tasks 
that detect anxiety-like behavior (i.e. D/L). Surprisingly, IRR mice performed better than Sham IRR mice in 
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Figure 4.  On an appetitive pattern separation task, mice exposed to 56Fe IRR at 6-month of age distinguish 
two similar visual cues earlier and with greater accuracy on the last test day relative to Sham mice. (a) Sample 
touchscreen images for location discrimination training (LD train). (b–e) Sham and 56Fe IRR mice performed 
similarly in LD train. (b) Distribution of subjects reaching criteria, (c) days to completion, (d) session 
completion time, (e) % correct. (f) Sample touchscreen images for LD testing (LD test). (g–j) 56Fe IRR mice 
completed the LD test earlier than Sham (g,h), but no difference in session completion time (i) or number 
of completed trials (j). (k,l) 56Fe IRR mice were more accurate overall (k) and on both “Large” and “Small” 
separation trials compared to Sham mice (l). (m–p) Sham and 56Fe IRR mice made similar number of blank 
touches to non-stimuli windows (m) and had similar reward collection latency (n), correct image response 
latency (o), and incorrect image response latency (p). (q–t) Sham and 56Fe IRR mice had similar block duration 
in each 10-trial block (q). However, 56Fe IRR mice had higher accuracy in the 4th 10-trial block (31st–40th trial) 
compared to Sham mice (r). Sham and 56Fe IRR mice made similar number of blank touches in each block (s) 
and left and right touches during inter-trial interval (ITI) (t). Sham: n = 12, IRR: n = 12. Mean ± SEM. Mantel-
Cox test, *p < 0.05 in b, g; Unpaired, two-tailed t-test in c-e, h-i, k, m-p; Two-way RM ANOVA,*p < 0.05, 
**p < 0.01, post hoc: Bonferroni in j, l, q-t, a p < 0.05, a’ p < 0.01 in Sham vs.56Fe mice in l, r, c’ p < 0.01 1st and 
4th block in 56Fe mice in s. s = seconds.
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pattern separation tasks when assessed on either appetitive (LD test) or aversive (CDFC) platforms. Both 56Fe and 
28Si IRR resulted in earlier and more consistent pattern separation in CDFC vs. respective Sham groups, showing 
that HZE-induced improvement is not specific to a particular HZE particle. While this study was not powered to 
assess dose-dependence, 20 cGy 56Fe IRR (either fractionated or non-fractiationed) appeared to improve pattern 
separation in CDFC more effectively than 20 cGy of 28Si and roughly similar to 100 cGy of 28Si, a result which mer-
its additional future study. Taken together, our study suggests whole body exposure of HZE particles in maturity 
is not detrimental to high-level cognition, and actually enhances performance specifically in the mission-critical 
task of pattern separation.

There are three aspects of the present results that are notable from the perspective of behavioral neuroscience 
in general, and multiple memory systems in particular62,63. First, in both humans and rodents, hippocampal 
damage can actually facilitate behavioral performance on certain tasks64,65. For example, when amnesic patients 
with partial hippocampal injury are given extended exposure to study materials, they can improve their rec-
ognition memory to the level of control subjects. Such an improvement is not seen after severe hippocampal 
injury. Thus, it is reasonable to consider whether the improved pattern separation ability presented here result 
from HZE particle-induced partial damage to the hippocampus. This is unlikely, as the HZE particle parameters 
used here do not induce detectable damage to post-mitotic neurons in the adult rodent brain66,67 or, as shown 
here, deficits in other tasks that engage the hippocampus (PAL, CFC). Second, as memory mechanisms in the 
medial temporal lobe (i.e. hippocampus) and basal ganglia (i.e. dorsal striatum) may sometimes compete63, it is 
possible the improved dentate gyrus-based pattern separation reported here is associated with decreased dor-
sal striatum-based ‘habit’ learning. However, we find pattern separation is improved in 56Fe relative to Sham 
mice without a change in VMCL habit learning, suggesting normal dorsal striatal function. Finally, the improved 

Figure 5.  On an aversive pattern separation test, mice exposed to whole body 56Fe IRR at 6-month of age 
discriminate two contexts earlier than mice exposed to Sham IRR. (a) Sham mice discriminate Context A 
(shock context) from Context B (non-shock context) by Block 5. (b,c) Frac (b) and Non-Frac (c) 56Fe mice 
discriminate Context A from Context B by Block 2. (d–f) When examined at Block 2 (d), Block 4 (e), and Block 
6 (f), Frac and Non-Frac 56Fe discriminate by Block 2. Sham: n = 10, Frac:n = 10, Non-Frac: n = 9. Mean ± SEM. 
Two-way RM ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Bonferroni post-hoc tests in a–f. 
a p < 0.05, a’ p < 0.01, a” p < 0.001, a”’ p < 0.0001 in Context A vs B. Frac = fractionated, Non-Frac = non-
fractionated.
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pattern separation reported here is reminiscent of the excessive attention seen in some psychiatric disorders - 
such as autism or obsessive compulsive disorder (OCD) - and in animal models for these disorders68,69. Evaluation 
of autistic- or OCD-like behavioral patterns after HZE particle exposure using other touchscreen paradigms 
(i.e. extinction, 5-choice serial reaction time test, 5-choice continuous performance reaction task) would clarify 
whether the improved pattern separation ability demonstrated here is accompanied by maladaptive behaviors (i.e. 
impaired attention and increased impulsivity)70,71.

What might be the neural mechanism underlying the improved pattern separation in HZE-irradiated mice 
reported here? One possibility is an HZE-induced shift in underlying brain circuit activity. In rodents and 
humans, pattern separation requires the appropriate balance of activity in the entorhinal cortex-dentate gyrus 
network57,72–74. In aged humans, a decline in pattern separation is proposed to be due to a hypoactive anterolateral 
enthorhinal cortex and hyperactive dentate gyrus/CA375. Thus, it is possible the HZE-induced improved pattern 
separation reported here in mouse results from an opposite activity shift: a hyperactive enthorhinal cortex and 
hypoactive dentate gyrus/CA3. Indeed, in rodents, pattern separation performance is correlated with dentate 
gyrus activity; better performance results in a hypoactive dentate gyrus, and worse performance results in a 
hyperactive dentate gyrus54,72. As pattern separation engages distinct hippocampal networks relative to other 
hippocampal-dependent tests (such as novel object recognition)76,77, such an HZE-induced shift in hippocampal 
networks may explain why we see improved pattern separation - while other groups see decreased novel object 
recognition - after HZE exposure.

Another possibility is that the improved pattern separation we report in HZE-irradiated mice is due to 
HZE-induced conditions in the dentate gyrus that favor “sparse encoding” of entorhinal cortical input. Sparse 
encoding is the concept that information - a stimulus, context, experience, memory, etc. - is represented by a rel-
atively small number of simultaneously-active neurons78. Sparse encoding in dentate gyrus granule cell neurons 
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Figure 6.  On an aversive pattern separation test, mice exposed to a different HZE particle - 28Si - at 6 month of 
age also discriminate two contexts earlier than mice exposed to Sham IRR. (a) Sham mice discriminate Context 
A (shock context) from Context B (non-shock context) by Block 5. (b,c) While 20 cGy 28Si mice (b) discriminate 
Context A from Context B by Block 5, 100 cGy 28Si mice (c) discriminate by Block 3. (d–f) When examined 
at Block 2 (d), Block 4 (e), and Block 6 (f), 100 cGy Si mice by Block 4 and both 20 cGy and 100 cGy 28Si mice 
discriminate by Block 6. Sham: n = 8, Frac:n = 8, Non-Frac: n = 8. Mean ± SEM. Two-way RM ANOVA, 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Bonferroni post-hoc tests in a-c,e-f, #p = 0.05–0.06, a 
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is critical for pattern separation, as it minimizes interference between memory representations of similar but 
not identical experiences79–83. This sparsity is due in part to inhibition of dentate gyrus granule cell neurons by 
GABAergic interneurons and mossy cells84,85. It is unknown how the HZE particle parameters used here influence 
dentate gyrus GABAergic interneurons and mossy cells in mature mice. However, exposure to other energetic 
particles that comprise space radiation alters the inhibitory network in the dentate gyrus and other hippocam-
pal subregions of young adult rodents86,87. In the future, evaluation of GABAergic signaling and other meas-
ures relevant to sparse encoding (e.g. number and functionality of hilar interneurons and mossy cells, pattern of 
memory-induced immediate early gene activation) after Mars-relevant exposure to space radiation would allow 
testing of the hypothesis that HZE-induced improvement in sparse encoding contributes to the HZE-induced 
improvement in pattern separation reported here.

A third possibility - and related to conditions that favor sparse encoding - is that HZE particle exposure 
increases dentate gyrus neurogenesis. In young adult rodents, inducible increase in hippocampal neurogenesis 
improves pattern separation, while inducible decrease in neurogenesis impairs pattern separation54,58,88. However, 
here we show that improved pattern separation is not correlated with the number of new hippocampal neurons, at 
least when examined 4 mon-post IRR (when the touchscreen pattern separation testing began in a parallel group 
of mice). The present study did not assess the number of new neurons 2 mon-post IRR (when CDFC testing 
began), and did not assess if IRR influences other measures of neurogenesis, such as synaptic connectivity and 
dendritic integration. However, these data add to the growing evidence that the number of new neurons does not 
always predict pattern separation performance, particularly in older rodents89,90. In fact, decreased hippocam-
pal neurogenesis is proposed to diminish sensitivity to memory interference and thus improve performance 
in certain memory tasks90,91. Computational models support that decreased neurogenesis may enhance sparse 
encoding92,93, which as mentioned above may explain why we see improved pattern separation after HZE particle 
exposure yet other groups see decreased performance in their behavioral tests.

The disconnect shown here between pattern separation and hippocampal neurogenesis raises interesting 
future directions. Although historically tied to learning and memory, hippocampal neurogenesis also plays a 
role in forgetting94 with high levels of hippocampal neurogenesis facilitating the forgetting of prior memories, 
resulting in greater cognitive flexibility95. In converse, lower levels of hippocampal neurogenesis - as seen with 
age - facilitate the persistence of prior memories, lead to more interference with new memory formation, and 
thus may decrease cognitive flexibility95. As here we show irradiated mice have decreased neurogenesis relative 
to control mice (4 mon post-IRR), it is possible irradiated mice have consequently decreased forgetting (greater 
memory persistence) and also experience more proactive interference from past memories and would have less 
cognitive flexibility. Rodent cognitive flexibility can be directly tested using a reversal learning paradigm similar 
to the PD reversal learning task presented here. However, this task does not test rodent memory retention, and 
as we have shown, this relatively simplistic reversal learning is not affected by HZE radiation exposure. If the PD 
memory load were to be increased - for example, by training with more pairs of images - the rodent’s ability to 
then perform reversal with this larger number of stimuli would provide a more robust interrogation of cognitive 
flexibility. Alternatively, future experiments can hone in on dentate gyrus-specific cognitive flexibility via assessed 
LD reversal39,42,58, which contrasts with the PD reversal reliance on non-dentate gyrus brain regions (primarily 
PFC, perirhinal cortex, striatal circuits). Specifically, a challenging LD within-session reversal test would provide 
clarity as to whether IRR mice have decreased dentate gyrus specific-cognitive flexibility relative to controls42. 
Finally, future experiments could probe the influence of HZE particle exposure on the converse of pattern separa-
tion: pattern completion (i.e. formation of an accurate generalization of partial sensory input). Pattern separation 
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Figure 7.  Stereological quantification reveals fewer immature dentate gyrus neurons (doublecortin (DCX)+ 
cells) 4 months post-whole body 56Fe particle IRR relative to Sham mice. (a) Representative photomicrograph 
of DCX+ cell in the mouse dentate gyrus subgranular zone. Insets: higher magnification of boxed areas in main 
image. Scale bar = 100 um in a, 10 um in inset ii. (b,c) Relative to Sham mice, Frac, and Non-Frac 56Fe mice 
have fewer DCX + dentate gyrus cells. Sham: n = 10, Frac:n = 10, Non-Frac: n = 9. Mean ± SEM. One-way 
ANOVA Bonferroni posthoc. *p < 0.05 in b, Two-way ANOVA, Bonferroni posthoc. a’ p < 0.01 Sham vs. Frac, 
b p < 0.05, b” p < 0.001 Sham vs. Frac in c. Frac = fractionated, Non-Frac = non-fractionated.
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and pattern completion abilities have a reciprocal relationship in both mice and aged humans88,96. As we show 
HZE particle exposure improves pattern separation (fine detail discrimination) and may increase proactive inter-
ference (given the decreased neurogenesis), it is possible irradiated mice have improved pattern separation yet 
worse pattern completion ability. If that were true, we could then further explore the possibility that the func-
tional switch from pattern completion to pattern separation is driven in part by a slowing of the development of 
adult-generated neurons88,97. However, pattern completion relies on memory recall88, which is assessed in our 
PAL paradigm41 and is normal in our irradiated mice.

In conclusion, it is understandable that HZE particle exposure is presumed to have a negative influence on 
some lower and high-level cognitive functions, as many studies support this conclusion12,14,33,40,98,99. However, our 
study shows this is not universally true. Mature male mice that receive whole-body exposure to two different HZE 
particles perform similarly to control mice on many high-level cognitive tasks, reflecting the functional integ-
rity of key neural circuits (i.e. PFC-perirhinal cortex-striatum, dorsal striatum, posterior cingulate cortex, hip-
pocampus). Strikingly, mice irradiated with either 56Fe or 28Si actually perform “better” than control mice in both 
appetitive and aversive pattern separation tasks. Whether this HZE exposure-induced dentate gyrus-selective 
functional enhancement is compensation to earlier irradiation-induced neuromorphological changes100 remains 
to be tested, as does the task-, dose-, particle-, and LET-dependence of this functional enhancement. However, 
our work urges revisitation of the generally-accepted conclusion that space radiation is detrimental to cognition.

Methods
Animals.  Animal procedures and husbandry were in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals, and performed in IACUC-approved facilities at UT Southwestern 
Medical Center (Dallas, TX), Children’s Hospital of Philadelphia (Philadelphia, PA), and Brookhaven National 
Laboratories (BNL, Upton NY). 2-month(mon)-old male C57BL/6J mice (JAX stock #000664) were housed at 
UTSW and shipped to BNL for irradiation at 6 mon of age. At both facilities, food and water were provided ad 
libitum except during the appetitive behavior tasks (see also Supporting Information [SI] text).

Particle irradiation (IRR).  Mice received whole body HZE (56Fe or 28Si) particle IRR at BNL’s NASA Space 
Radiation Laboratory (NSRL). All mice were placed for 15 minutes (min) in modified clear polystyrene cubes (SI 
text). For 56Fe experiments, mice received Sham IRR (placed in cubes Monday, Wednesday, Friday, but received 
no IRR) or Fractionated (Frac) 20 cGy 56Fe (600 MeV/n, LET 174 KeV/μ, dose rate 20 cGy/min; placed in cubes 
and received 6.7 cGy on Monday, Wednesday, and Friday), and some experiments (Fig. 1) also included a group 
that received Non-Fractionated (Non-Frac) 20 cGy 56Fe (placed in cubes Monday, Wednesday, and Friday but 
received 20 cGy only on Friday). For 28Si IRR, mice received Sham IRR (placed in cubes, but received no IRR) or 
a single exposure of either 20 cGy or 100 cGy 28Si (275 MeV/n, LET 72 KeV/μ, dose rate 20 cGy/min or 100 cGy/
min).

Overview of behavioral testing.  All mice began behavior testing 1-2-mon post-IRR, but within each 
cohort (Fig. 1a,e), the interval between radiation exposure and behavioral testing was equal for Sham and IRR 
groups. Parallel groups of mice were tested for appetitive touchscreen behavioral tests (operant touchscreen plat-
form: touchscreen training; Pairwise Discrimination, PD; PD reversal; Location Discrimination, LD; different 
paired associates learning, PAL; Visuomotor Conditional Learning, VMCL) vs. aversive behavioral tests (con-
textual fear conditioning, CFC; contextual discrimination fear conditioning, CDFC). Subsets of mice were also 
tested for general activity (locomotor, LM), anxiety (dark/light box test, D/L) and pain sensitivity (pain threshold, 
PT; SI text).

Appetitive behavior testing.  The touchscreen platform used was Model 80614 made by Lafayette Instruments 
(Lafayette, IN). Additional touchscreen methods are in SI text.

Aversive behavior testing.  CDFC overview is provided below. See Figs. S2,S3 and SI text for additional CDFC 
information, and for detailed information about CFC.

Contextual discrimination fear conditioning (CDFC).  A modified CDFC behavioral paradigm was utilized in 
which mice were exposed daily to two contexts (Context A and B) that shared similarities (including a floor 
pattern, a high-salience contextual feature55,88,101 (SI text). Importantly, Context A was always paired with a foot 
shock, while Context B was never paired with a foot shock, as described below. Mice were exposed daily to both 
Context A and Context B for 16 days. The order of exposure to Context A and B alternated between days (Fig. S2).

Tissue collection.  After completion of behavioral tests, mice underwent intracardial perfusion, fixation, and 
tissue sectioning as previously described47,102 with additional detail provided in SI text.

Immunohistochemistry (IHC).  Immunohistochemistry was performed as previously described47,51 with 
additional detail provided in SI text.

Stereological cell quantification.  Unbiased analysis of DCX + cell number was performed via stereo-
logic quantification on a BX51 System Microscope (Olympus America, Center Valley, PA, USA) as previously 
described47,51.

Statistical analyses.  Data are reported as mean ± s.e.m. Testing of data assumptions (for example, nor-
mal distribution, similar variation between control and experimental groups, etc.) and statistical analyses were 
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performed in GraphPad Prism (ver. 8.2.0). Statistical approaches and results are provided in Table S1 for main 
figures and in Table S2 for supplementary figures, and statistical analysis summaries are provided in the figure leg-
ends. Analyses with two groups were performed using an unpaired, two-tailed Student’s t-test and analyses with 
more than two groups and one variable were performed using one-way ANOVA and Bonferroni post hoc test. 
Analyses with more than two variables were performed using two-way ANOVA with Bonferroni post hoc test; 
repeated measures (RM) were used where appropriate, as indicated in figure legends and Tables S1, S2. For the 
distribution of subjects reaching criteria between control and experimental groups, the Mantel-Cox test was used, 
and significance was defined as *p < 0.05. For behavioral studies, mice were randomly assigned to groups. Sample 
sizes were pre-determined via power analysis and confirmed on the basis of extensive laboratory experience and 
consultation with CHOP and PennMed statisticians.

Datasets.  Raw data are made available to researchers on written request.

Ethics.  Human subjects.  No

Animal subjects.  Yes

Ethics statement.  The study was approved by three Ethics committees (the Institutional Animal Care 
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