
1Scientific RepoRtS |         (2020) 10:2228  | https://doi.org/10.1038/s41598-020-59205-x

www.nature.com/scientificreports

Hinged-3D metamaterials with 
giant and strain-independent 
Poisson’s ratios
Mohamed Shaat1* & Ahmed Wagih2

Current designs of artificial metamaterials with giant Poisson’s ratios proposed microlattices that 
secrete the transverse displacement nonlinearly varies with the longitudinal displacement, and the 
Poisson’s ratio depends on the applied strain (i.e., tailorable Poisson’s ratio). Whereas metamaterials 
with tailorable Poisson’s ratios would find many important applications, the design of a metamaterial 
with a giant Poisson’s ratio that is constant over all the material deformation range has been a major 
challenge. Here, we develop a new class of bimaterial-3D-metamaterials with giant and strain-
independent Poisson’s ratios (i.e., Poisson’s ratio is constant over the entire deformation range). 
The unit cell is 3D assembled of hinged-struts. Specially designed spherical hinges were utilized to 
give constant Poisson’s ratios. This new class of metamaterials has been demonstrated by means of 
experimental and numerical mechanics. 15 material samples were 3D printed by Stereolithography 
(SLA) and tested. We revealed a robust anisotropy dependence of the Poisson’s ratio. A giant negative 
Poisson’s ratio of −16 was obtained utilizing a highly anisotropic unit cell of dissimilar materials and 
stiffnesses. Materials with giant and strain-independent Poisson’s ratios provide a new class of artificial 
metamaterials, which would be used to optimize the performance of many existing devices, e.g., strain 
amplifiers and gauges.

Artificial metamaterials are multiscale materials with exceptional macroscopic behaviors arising from the design 
of their microstructures beyond those of conventional materials found in nature1,2. The microstructure of a met-
amaterial can be tailored and optimized to promote the activation of nontraditional microscopic phenomena2,3. 
When these phenomena are activated, a metamaterial exhibits extraordinary behaviors beyond those observed in 
conventional materials. For example, membrane-type acoustic metamaterials with weak elastic moduli can give 
low-frequency oscillation patterns, which would produce an equivalent negative mass density of sound attenu-
ation in specific frequency ranges4–6. In addition, metamaterials of cubic symmetric 3D-unit cells with special 
topologies that promote microstructural buckling can give auxetic behaviors; i.e., an auxetic metamaterial is a 
material with a negative Poisson’s ratio7. Furthermore, metamaterials with crosslinked-3D unit cells can be fab-
ricated to give an equivalent negative static compressibility8. By tailoring the mechanism of interaction between 
the inclusions and the matrix, composite metamaterials with equivalent negative mass densities, moduli, and/or 
Poisson’s ratios can be obtained2,9–12. A unit cell of hexagonal sub-units has been proposed to give a mechanical 
metamaterial with negative stiffness and negative Poisson’s ratio13. Other approaches that have been used for mak-
ing metamaterials with negative Poisson’s ratios depended on hierarchical14, chiral15,16, kirigami17,18, and lattice19,20 
unit cells. Recently, mechanical metamaterials that exhibit non-reciprocity were designed (natural materials are 
reciprocal materials, which elastically deform symmetrically when the applied load direction is switched)21.

A new horizon of advanced materials that has come to the fore recently is metamaterials with giant Poisson’s 
ratios. The microlattices of these materials are specially designed to give Poisson’s ratios beyond those of natural 
materials. The Poisson’s ratio (ν) of a natural material is typically within the range ν< < .0 0 5. However, an early 
study revealed a giant Poisson’s ratio of −12 for a microporous foam of an open network of crosslinked-anisotropic 
disc-shaped particles of expanded polytetrafluoroethylene22. This microstructure was designed to activate 
micro-rotation fields, which led to the measured giant Poisson’s ratio. In addition, early investigations on the 
Poisson’s ratio of FCC and BCC cubic crystals revealed a Poisson’s ratio within the range ν− < <1 2, which were 
attributed to the contrast between the interatomic forces along the different crystal directions23,24. In a recent 
study, it was demonstrated that nano-interstitials would give auxetic FCC crystals of giant Poisson’s ratios25. 
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Lattice metamaterials with sinusoid-shaped beams gave high Poisson’s ratios that vary between −0.7 and 0.5 as 
functions of the applied strain26. 3D architected lattice system with curved beams was used to propose metama-
terials with negative Poisson’s ratios that vary with the applied strain from −1 to 020. It was revealed that carbon 
nanotubes can secrete materials with giant positive Poisson’s ratios. Yarns made of multi-walled carbon nanotubes 
gave a giant Poisson’s ratio of 4.227, and carbon nanotube aerogel sheets achieved a giant Poisson’s ratio of 1528. 
Slabs made of fiber networks reflected a giant auxetic behavior with −5.7 Poisson’s ratio. Molecular dynamics 
simulations demonstrated giant negative Poisson’s ratios of graphene ribbons of −1.5129,30 and corrugated 
graphene sheets of −1031. Recent studies demonstrated giant negative Poisson’s ratios of artificial metamaterials 
with microlattices of dissimilar materials32. For instance, 3D printed-multimodulus metamaterials gave −7 
Poisson’s ratio32,33.

Whereas previous studies proposed metamaterials with giant Poisson’s ratios22,27–29,32,33, the Poisson’s ratio 
being tailorable as the applied strain increases is a must. For example, the Poisson’s ratio of microporous foam 
varied between ∼1 and −12 when increasing the applied strain from 2% to 35%22. Although materials with 
tailorable Poisson’s ratio would find some important applications, the wider range of applications requires the 
material maintains its Poisson’s ratio over a wide range of strains. A material with a tailorable Poisson’s ratio 
is preferred to be implemented over a specific strain range. Outside this range, the material is conventional. A 
material with strain-dependent Poisson’s ratio is not preferred in some application, e.g., strain amplification. 
Metamaterials with giant negative Poisson’s ratios were proposed as strain amplifiers34. An efficient strain ampli-
fier has a constant amplification factor - that is bigger than −1 - for the different input strains. Therefore, mate-
rials with strain-independent (i.e., constant) and giant Poisson’s ratios are required for making strain amplifiers. 
Generally speaking, for the material design and implementation purposes, the Poisson’s ratio would be required 
to be constant over a wide range of applied strains.

Here, we develop a new class of hinged-3D metamaterials with giant and strain-independent Poisson’s ratio. 
The Poisson’s ratio is constant over the different material deformation patterns and deformation ranges. The 
Poisson’s ratio of our developed metamaterial only depends on the material composition and geometry of its unit 
cell. The new class of metamaterials developed here will find a wide range of applications that require materials 
with constant properties over a wide range of the material deformation, e.g., strain amplifiers.

Results
Our proposed hinged-3D metamaterial is shown in Fig. 1. The unit cell of this metamaterial consists of 12 hinged 
struts (Fig. 1(a)). Our metamaterial is a bimaterial with struts along −xz plane are made of a material with an 
elastic modulus E2 (MAT 2) while other struts are made of a material with an elastic modulus E1 (MAT 1). The 
struts are hinged together to allow a free rotation at their ends. The metamaterial is assembled such that hinges 1 
and 2 are aligned with −x axis, hinges 3 and 4 are aligned with −y axis, and hinges 5 and 6 are aligned with −z
axis, as shown in Fig. 1.

Our developed metamaterial can give Poisson’s ratios of two opposite algebraic signs when measured from two 
different planes. When <E E2 1, the distance between hinges 3 and 4 decreases due to a unit cell stretch along −x
axis (Fig. 1(b)). This indicates a positive in-plane ( −xy plane) Poisson’s ratio (νxy). As long as hinges 3 and 4 
approach each other, hinges 5 and 6 are pushed away indicating a negative Poisson’s ratio of −xz plane (νxz). In the 
case that >E E2 1, the distance between hinges 5 and 6 decreases while the distance between hinges 3 and 4 
increases due to a unit cell stretching along −x axis (Fig. 1(c)). For this case, νxz is positive while νxy is negative. 
However, both νxy and νxz are positive, when the unit cell is made of identical struts ( =E E1 2). When identical 
struts are used, hinges 3, 4, 5, and 6 are pulled-in equally due to a stretch along x – axis. This indicates that the 
Poisson’s ratio of the proposed metamaterial mainly depends on the contrast between E1 and E2.

The unit cell of the proposed metamaterial was designed to give a metamaterial with a constant Poisson’s ratio 
(see Supplementary Information – S1). Because of the spherical hinges, struts can freely rotate without bending. 
Struts are axially loaded due to a displacement in the longitudinal direction, which produces lateral displacements 
that depend on the unit cell geometry and the strut’s stiffness. Because struts do not exhibit bending, the transverse 
displacements are directly proportional to the applied longitudinal displacement. Therefore, the Poisson’s ratio is 
independent of the applied strain and constant for the different unit cell deformations (see Fig. 2c & Discussion).

To demonstrate the new class of metamaterials with giant Poisson’s ratios developed here, 15 samples of 
hinged-3D assembled unit cells were prepared (Fig. 2(a)). The struts and hinges were 3D printed by 
Stereolithography and then assembled to form a unit cell (see Methods & Supplementary Information – S2). The 
hinges were designed spherical with cut-outs to allow for the struts’ assembly (see Supplementary Information – 
S1). One unit cell was prepared with identical stiffnesses along x, y, and z – axes (Sample 15). This unit cell was 
made of identical struts (i.e., =E E1 2) and = =L W T  (where L, W, and T are the unit cell length, width, and 
thickness, respectively (see Fig. 1(a))). Other unit cell-samples (14 samples) were prepared with different struts. 
These unit cells were prepared with a high contrast between E1 and E2 (i.e., → ∞E E/1 2 ) and different T L/  and 
W L/  ratios (i.e., = . → .T L/ 0 24 4 21 and = . → .W L/ 0 58 2 45). The different unit cell samples are represented in 
Fig. 2(a). The geometries of these samples are summarized in Table 1.

The Poisson’s ratios (νxy and νxz) of the prepared samples were measured by means of motion analysis (as 
explained in Methods). The measured Poisson’s ratios for the different samples are represented in Fig. 2(b) and 
Table 1. A unit cell with identical struts (Sample 15) gives an isotropic-natural material with a positive Poisson’s 
ratio is the same when measured from different directions (the Poisson’s ratio of Sample 15 was determined by 
ν ν= ≅ 1/3xy xz ). However, a metamaterial with a negative Poisson’s ratio is obtained as long as its unit cell is made 
of different struts ( ≠E E1 2). For instance, the Poisson’s ratios of Sample 14 ( → ∞E E/1 2 , = =T L W L/ / 1) were 
obtained equal but with opposite signs (ν ≅ −1xz  and ν ≅ 1xy ). The Poisson’s ratio (νxy and/or νxz) is obtained with 
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a magnitude lower than one when the unit cell is made of different struts and >W L/ 1 and/or >T L/ 1 (see 
Samples 3,4,6,10-13). The smallest Poisson’s ratio values of ν ≅ .0 17xy  and ν ≅ − .0 066xz  were recorded for Sample 
8 where ≅ .W L/ 2 45 and ≅ .T L/ 4 21. In contrast, the magnitude of the Poisson’s ratio is higher than one if the 
metamaterial is made of a unit cell with different struts and <W L/ 1 and/or <T L/ 1 (see Samples 1,2,5,7,9,11). 
Here and for the first time, we report a hinged-3D metamaterial with constant and giant Poisson’s ratios of 
ν ≅ −16xz  and ν ≅ .2 6xy .

Our proposed metamaterial is of constant Poisson’s ratio that is independent of the applied strain (see 
Fig. 2(c)). To demonstrate this fact, a sample with = .L 29 4 mm, = .W 39 33 mm, and = .T 52 18 mm was exper-
imentally tested for different applied longitudinal strains, x. The transverse strains, y and z , were measured for 
the different values of the applied strain, x, and plotted in Fig. 2(c). The transverse strains, y  and z, were obtained 
linearly varying with the applied longitudinal strain, x . The obtained linear variations between the transverse 
strains and the longitudinal strain indicate constant Poisson’s ratios,  ν = − /xy y x and ν = − /xz z x  . For this 
sample, the Poisson’s ratios were obtained of ν = .0 59xy  and ν = − .0 314xz  by calculating the slopes of the two 
linear relations shown in Fig. 2(c). These linear relationships extend with excellent linearity for the considered 
strain range with R-squared values >92% and >97% for z and y, respectively. The Poisson’s ratio being constant 
for the entire material deformation range is attributed to the utilization of the spherical hinges. Because of these 
spherical hinges, struts freely rotate and are stretched without bending due to the applied longitudinal strain (see 
Discussions). It should be mentioned that the struts would, however, bend/buckle when the metamaterial is 
deformed at a strain higher than the strain limits considered in this study. Beyond the considered strain range, the 
metamaterial is definitely nonlinear-elastic, and the transverse strains, y  and z , nonlinearly vary with the longi-
tudinal strain, x, giving the Poisson’s ratio is strain-dependent.

Figure 1. Our proposed 3D metamaterial with giant and strain-independent Poisson’s ratios. (a) Schematic of 
the proposed hinged-3D metamaterial. The unit cell is a bimaterial with struts along xz-plane of a distinct 
material (MAT 2) with Young’s modulus (E2). Other struts are made of MAT 1 with Young’s modulus (E1). All 
struts are hinged via specially designed spherical hinges (see Supplementary Information – S1). The 
characteristic geometry of the unit cell was defined by L, W and T, which are the extreme dimensions of the unit 
cell along x, y, and z − directions, respectively. (b) Schematic of the deformation of a bimaterial hinged-3D unit 
cell with <E E2 1. Hinges 3 and 4 are pulled-in while hinges 5 and 6 are pushed out for a stretch along x − axis. 
(c) Schematic of the deformation of a bimaterial hinged-3D unit cell with >E E2 1. Hinges 3 and 4 are pushed 
out while hinges 5 and 6 are pulled-in for a stretch along x − axis.
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To give more insights into the role of the microstructure topology on the Poisson’s ratio of the developed met-
amaterial, a 3D truss numerical model was developed (see Methods & Supplementary Information – S3). The 
Poisson’s ratios of the 15 material samples were obtained by the developed 3D-truss model and compared to the 
experimentally determined ones in Fig. 2(b) and Table 1. In addition, the results of the proposed numerical model 
were compared to the results of ANSYS – a commercial numerical tool (see Supplementary Information – S4). 
Given the excellent agreement between our numerical and experimental results (Fig. 2), we further represent the 
Poisson’s ratios νxy and vxz as functions of E E/2 1, T L/ , and W L/  in Fig. 3. Results were developed for = →E E/ 0 22 1 , 

(a)  

(b) (c) 

Figure 2. New class of hinged-3D metamaterials with giant and strain-independent Poisson’s ratios. (a) 3D 
printed and 3D-assembeled samples of unit cells with giant and constant Poisson’s ratios. The different geometry 
and material topology of the prepared unit cells are summarized in Table 1. (b) Measured Poisson’s ratios (νxy 
and νxz) of the 3D printed samples. Experimental and numerical results are compared. (c) The transverse strains, 
y and z, as functions of the applied longitudinal strain, x, for a material sample with = .L 29 4 mm, 

= .W 39 33 mm, and = .T 52 18 mm. The experimental results (symbols) are compared to the results of the 
numerical model (solid lines). Curves of the linear fitting to the experimental results are represented by dashed 
lines.
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= . →T L/ 0 1 2, and = . →W L/ 0 1 2. It should be noted that the bounds of the unit cell dimensions L, T , and W  
depend on the sizes of the struts and the spherical hinges. Struts and hinges of smaller sizes would allow for a 
wider range of values of the geometrical parameters T L/  and W L/ . Nonetheless, using struts of small sizes would 
decrease the overall material stiffness and strength. Therefore, the optimum design of the metamaterial should be 
carried out taking into consideration the changes in the material stiffness and strength upon changing the sizes of 
the struts and the hinges.

An auxetic behavior was detected when a unit cell with ≠E E2 1, ≠T L, and/or ≠W L was used. An auxetic 
metamaterial with a negative νxy would be obtained if <T L/ 1 and/or >E E/ 12 1 . For a unit cell with =W L/ 1, νxy 
was determined of a negative value when < .T L/ 0 5 and >E E/ 12 1  (Fig. 3(a,c)). Generally, νxy is negative as long 
as ≤ .~T L/ 0 2 and ≥ .~E E/ 0 62 1 . On the other hand, a unit cell with <T L/ 1, <W L/ 1, and/or <E E/ 12 1  would 
give an auxetic metamaterial with a negative νxz . It follows from Fig. 3 that νxz  is negative if ≤ .~W L/ 0 5 (for 

=T L/ 1 and =E E/ 12 1 ) or ≤ .~E E/ 0 52 1  (for = =W L T L/ / 1). In general, νxz is negative if ≤ .~E E/ 0 282 1  and 
<T L/ 1 (Fig. 3(d)). It should be mentioned that a double negative Poisson’s ratio-metamaterial is not an option 

where either νxy or νxz would be positive (Fig. 3(c,d)).
It follows from Fig. 3 that the developed metamaterial is sensitive to small microstructural topology changes. 

For example, a slight change in E E/2 1 ratio from 2 to 0.2 led to significant increase in νxy by ~300% and decrease in 
νxz  by ~182% for a unit cell with = =T L W L/ / 1 (Fig. 3(a,b)). The change of Poison’s ratio is maximized by 
decreasing E E/2 1 ratio till the lower bound limit, 0, achieving increase in νxy by ~400% and decrease in νxz  by 
~243% for a unit cell with geometrical ratios of unity. From the practical point of view, this asymptotic lower limit 
( =E E/ 02 1 ) can be approached using a unit cell with E E2 1. For example, a unit cell made of metal and poly-
mer struts would achieve →E E/ 02 1 . In addition, the rate of change of the Poisson’s ratio due to a change in E E/2 1 
ratio increases as T L/  ratio decreases. For instance, νxz of a unit cell with = .T L/ 0 1 and =W L/ 1 changed from 
~78 to −~ 100 when E E/2 1 ratio was decreased from 2 to 0. Results in Fig. 3(c–f) indicate that the Poisson’s ratios 
νxy and νxz of the developed metamaterial can be significantly altered due to a slight change in W L/  and T L/ . For 
example, νxz was observed increasing from ~0 to −~ 70 due to a change in T L/  from 2 to 0.1 for a unit cell with 

= .E E/ 0 052 1  and =W L/ 1 (Fig. 3(d)). On the other hand, νxy was determined increasing from ~0 to ~60 due to a 
change in W L/  from 2 to 0.1 for a unit cell with =E E/ 12 1  and =T L/ 1 (Fig. 3(e)).

Our proposed metamaterial exhibits a giant Poisson’s ratio if it is composed of unit cells of a high contrast 
between E1 and E2 and of T L/ 1 and/or W L/ 1 (Fig. 3(c–f)). A unit cell with = .T L/ 0 1, =W L/ 1, and 

=E E/ 02 1  gave a metamaterial with a giant negative Poisson’s ratio of ν = −100xz  (Fig. 3(d)). On the other hand, 
a metamaterial composed of unit cells with = .W L/ 0 1, =T L/ 1, and =E E/ 02 1  exhibited a giant positive 
Poisson’s ratio of ν = 100xy  (Fig. 3(e)).

Discussion
Here, we developed a new class of 3D-metamaterials that can give giant and strain-independent Poisson’s ratios. 
The metamaterial is composed of 3D unit cells, which are assembled from struts and spherical hinges (see Fig. 1 
& Fig. S1). The material is isotropic with a positive Poisson’s ratio of ν = .0 33 if its unit cell is of identical stiff-
nesses when measured from x, y, and −z directions. However, it gives a negative Poisson’s ratio by achieving a 
contrast between the unit cell stiffnesses along x, y, and −z directions (see Fig. 2 & Fig. S4). The unit cell stiffness 

Sample #

Unit Cell Dimensions (mm)
Poisson’s Ratio 
(Experiment)

Poisson’s Ratio 
(Numerical Model)

L W T vxy vxz vxy vxz

1 52.18 39.33 26.85 2.28 −3.96 1.76 −3.78

2 52.30 38.78 17.16 1.82 −9.29 1.62 −8.77

3 17.16 38.78 52.30 0.19 −0.16 0.20 −0.11

4 26.85 39.33 52.18 0.53 −0.29 0.47 −0.27

5 66.10 39.51 22.14 2.34 −10.54 2.80 −8.91

6 22.14 39.51 66.10 0.22 −0.096 0.314 −0.112

7 67.67 39.39 16.09 2.54 −15.22 2.95 −17.69

8 16.09 39.39 67.67 0.17 −0.066 0.17 −0.057

9 59.94 46.03 42.07 1.61 −2.27 1.70 −2.03

10 42.07 46.03 59.94 0.70 −0.48 0.84 −0.49

11 33.38 33.75 22.18 0.97 −2.50 0.98 −2.265

12 22.18 33.75 33.38 0.39 −0.40 0.43 −0.44

13 29.00 33.60 30.87 0.64 −0.81 0.75 −0.88

14 31.33 31.33 31.33 0.99 −1.02 1 −1

15 31.33 31.33 31.33 0.31 0.32 0.333 0.333

Table 1. The geometry of the prepared samples and their measured and calculated Poisson’s ratios. *All the 
samples of the unit cell - except Sample #15 - were prepared such that the struts belong to the xz − plane were 
removed. This achieved a high contrast between E1 and E2 (i.e., → ∞E E/1 2 ).
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can be tailored by changing the strut’s geometry and/or material. The magnitude of the Poisson’s ratio increases as 
the contrast between the unit cell stiffnesses increases.

We experimentally and numerically demonstrated the microstructural topology dependence of the Poisson’s 
ratio of the developed metamaterial (Figs. 2 and 3). We revealed that the Poisson’s ratios, νxy and νxz , robustly 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3. Topology effects on Poisson’s ratio of the developed bimaterial-3D metamaterial. (a,b) Influence of 
the contrast between E1 and E2 on Poisson’s ratio. (a) νxy as a function of E E/2 1 ratio when =W L/ 1. (b) νxz as a 
function of E E/2 1 ratio when =W L/ 1. (c,d,e,f) Influence of the cell geometry on Poisson’s ratio. (c,e) νxy as a 
function of T L/  ratio (when =W L/ 1) and W L/  ratio (when =T L/ 1), respectively. (d,f) νxz as a function of T L/  
ratio (when =W L/ 1) and W L/  ratio (when =T L/ 1), respectively.
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depend on the geometrical and material parameters of the unit cell, i.e., T L/ , W L/ , and E E/2 1. The Poisson’s ratio 
would significantly decrease or increase for a slight change in T L/ , W L/ , and/or E E/2 1. Changes in these topology 
parameters lead to changes in the material stiffnesses along x, y, and −z directions. An increase in the material 
stiffness enhances the deformation along a certain direction and inhibits the deformation along another direc-
tion. Thus, the contrast between the deformations along the different directions results in significant changes in 
the Poisson’s ratios. For instance, the increase in E E/2 1 enhances the stiffness over the xz-plane (see Fig. 1(b,c)). As 
a result, the deformation along z-axis is enhanced while the deformation along y-axis is significantly inhibited. 
Because of this enhancement in the stiffness, νxz  has been increased while νxy has been decreased due to an 
increase in E E/2 1, as it can be seen in Fig. 3. It is not only the elastic modulus ratio that would change the stiffness 
but also the geometrical parameters T L/  and W L/ . It was observed that νxz  increases and νxy decreases upon 
increasing the W L/  ratio. This can be attributed to the decrease in the material stiffness along yz-plane due to an 
increase in the W L/  ratio (i.e., the stiffness of a truss element decreases as its length increases). The increase in the 
T L/  ratio decreases the material stiffness along xz- and yz-planes. This, in turn, enhances the Poisson’s ratio over 
xy-plane (νxy), while the Poisson’s ratio over xz-plane (νxz) would increase/decrease depending on the other 
parameters.

We experimentally demonstrated a giant negative Poisson’s ratio of −16 (Sample 7). This giant Poisson’s ratio 
has been achieved using a unit cell of dissimilar materials and stiffnesses. The significant dissimilarity achieved in 
the unit cell stiffnesses resulted in a huge anisotropy, which is the main cause behind the achieved giant Poisson’s 
ratio. According to Zener’s anisotropy ratio, = −A C C C2 /( )44 11 12 , and the Poisson’s ratio-stiffness relation, 
ν = +C C C/( )12 11 12 , of cubic crystals, the Poisson’s ratio is maximum of ν → 1/2 if the crystal is highly aniso-
tropic with → ∞A  and =C C11 12. In addition, early investigations on the Poisson’s ratio recommended highly 
anisotropic materials to give large negative Poisson’s ratios22,24. It was demonstrated that 69% of cubic crystals 
have negative and giant Poisson’s ratios when stretched along [110] direction. This has been attributed to the 
anisotropic nature of BCC and FCC crystals. The Poisson’s ratios of a cubic crystal measured from the transverse 
directions to [110] direction are maxima of −1 and 2 if the crystal is highly anisotropic with → ∞A  and 

=C C11 12. This has been achieved via our proposed design of the metamaterial where the material anisotropy is 
promoted by tailoring the unit cell geometry and/or using dissimilar materials.

In our developed 3D metamaterial, the giant negative Poisson’s ratio relies on microstrain fields at the 
unit cell, which produce because of the struts’ stretching. Previous studies demonstrated that giant Poisson’s 
ratios of magnitudes higher than 1 can be achieved by promoting microscopic fields, e.g., microstrains or 
microrotations. For example, the giant Poisson’s ratio of cellular materials has been attributed to flexural 
micro-deformations35. In addition, a giant Poisson’s ratio of −12 was determined for microporous foams, 
which has been attributed to micro-rotation fields22. Furthermore, the theoretical mechanics using Cosserat 
and micromorphic models demonstrated that metamaterials with exotic properties can be produced as long as 
their microstructures are designed to promote microscopic rotations or deformations2,36. These microscopic 
fields promote the transverse displacement for the material’s longitudinal deformation, and hence lead to giant 
negative Poisson’s ratios36.

Unlike existing designs of metamaterials22,27–29,32,33, our proposed metamaterial is of constant Poisson’s ratios. 
In our metamaterial, the transverse displacement is directly proportional to the applied longitudinal displace-
ment. Because of the spherical hinges, struts freely rotate and are axially stretched without bending due to a 
displacement in the longitudinal direction. This design has led to a constant Poisson’s ratio that is independent of 
the applied strain (Fig. 2(c)). In contrast, existing designs of metamaterials secrete Poisson’s ratios that strongly 
depend on the applied strain. The Poisson’s ratio of microporous foam is giant of −12 only when the material is 
subjected to a longitudinal strain of 15%, and the Poisson’s ratio value decreases for other strains different than 
15%22. In addition, the Poisson’s ratio of carbon nanotube-yarns increased from 3.3 to 4.2 due an increase in the 
tensile strain from 5% to 9%27. In a recent study, a multi-material 3D metamaterial exhibited different negative 
Poisson’s ratios when changing the applied strain between 3% to 18%32. These different designs secrete Poisson’s 
ratios that depend on the applied strain because the unit cell of the metamaterial exhibits a nonlinear relation 
between the longitudinal and transverse displacements. This nonlinearity produces due to flexural bending of 
the fibrils or struts of the unit cell. Unlike these designs, we implement spherical hinges, which avoid the struts’ 
bending; therefore, the longitudinal and transverse displacements are linearly related and the Poisson’s ratio is 
constant for the entire material deformation range.

In addition to the promising applications of auxetic metamaterials, which include the development of 
advanced sensors and actuators, our developed metamaterial would replace existing materials used for making 
strain amplifiers and strain gauges. A metamaterial with a Poisson’s ratio higher than 1 gives a good strain ampli-
fier with an amplification factor bigger than −1. Our metamaterial gives a linear relation between longitudinal 
and lateral strains and gives the amplification factor constant and equal to −ν.

Methods
3D printing and samples preparation. 15 samples of hinged-3D assembled unit cells were prepared to 
demonstrate the giant Poisson’s ratio of our developed metamaterial (Fig. 2(a)). The unit cell is composed of struts 
connected via spherical hinges (see Figs. 1 and 2 & Supplementary Information – S1). The struts and hinges were 
3D printed by Stereolithography (SLA) of Photoreactive polymer resin (FLGPGR04, density 1.09 g/cm3, viscosity 
900 cps) provided by Formlabs, Inc. A Stereolithography 3D printer (Form Labs-Form2) with 25 μm layer thick-
ness resolution and 140 μm laser spot diameter was used (see Supplementary Information – S2). Bottom-top 
building procedure was followed during the printing process. After printing, parts were rinsed in isopropyl alco-
hol (IPA) to remove uncured resin from the parts’ surface. Parts were post-cured by exposure to ultraviolet light 
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(using UV Nail Salon (see Fig. S2)) for 30 min. Afterwards, the interface-surfaces of the struts and hinges were 
ground using a series of fine sandpapers of 2000–4000 grit size. Then, struts and hinges were assembled to form a 
3D-hinged unit cell.

Poisson’s ratio measurements. The Poisson’s ratio of each of the prepared 15 samples of unit cells were 
measured by means of video and image analyses. The deformation of the unit cell was video recorded using a high 
resolution camera. Then, an image correlation software (ImageJ) was used to measure the unit cell deformation 
along x y, , and z – directions. The Poisson’s ratio was calculated based on the measured deformations, as 
follows:

ν
ε

ε

ν
ε
ε

= − = −
∆

∆

= − = −
∆
∆

y L
x W
z L
x T (1)

xy
y

x

xz
z

x

where ∆x, ∆y, and ∆z are the deformations of the unit cell along x y, , and −z directions, respectively. The defor-
mations ∆x, ∆y, and ∆z were determined as the average of 7 measurements. L, W, and T are the unit cell length, 
width, and thickness, respectively.

It should be noted that the Poisson’s ratios, νxy and νxz, are constants if the longitudinal displacement ∆x is 
linearly proportional to the transverse displacements ∆y and ∆z, i.e., ∆ = ∆y a x and ∆ = ∆z b x where a and b 
are two constants represent the slopes of the linear relations. The substitution of these relations into Eq. (1) gives:

ν ν= − = −aL W bL T/ and / (2)xy xz

It is clear that the Poisson’s ratios are constants as long as the transverse displacements are proportional and 
linearly vary with the longitudinal displacements.

Numerical model. To investigate the microstructural topology effects on the Poisson’s ratio of the developed 
hinged-3D metamaterial (Fig. 3), a 3D truss model was developed. The 3D metamaterial is discretized such that 
each of the struts is a two-nodes bar element that exhibits 6 degrees of freedom in the global-3D domain. The 
elastostatic equilibrium of the 3D metamaterial was expressed in the matrix form, as follows:

=KU F (3)

where F is the applied force vector, and U  is the nodal displacements global vector. K  is the global stiffness matrix, 
which was defined as follows:

∑= =
=

K C kC k T DTwith
(4)n

N
T T

1

e

where Ne is the total number of struts that form the metamaterial. C is the node connection matrix which maps 
the elements’ stiffness matrix into the global matrix. = 




−
−



D 1 1

1 1
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 is the strut’s local stiffness matrix. T  is a 
transformation matrix, which was defined as follows:

=








− − −
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where Le is the strut’s length. x y z( , , )i i i  and x y z( , , )j j j  are the coordinates of the ends of a strut-element in the 3D 
domain. E and A are the Young’s modulus and cross-sectional area of the strut.

According to Eqs. (3) and (4), the element stifness matrix, k, in the 3D space was determined in the form:
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3D domain discretization and FE implementation. A 3D elastic domain was considered to represent 
our proposed metamaterial with 3D assembled unit cells. The elastic domain was discretized into bar elements 
with 3D-hinged ends representing the struts (see Supplementary Information – S3). A distributed load was 
applied acting on a surface whose normal is x − axis, and the opposite surface was free to move only along y and 
z – axes. The other surfaces were free surfaces. The details of the discretization scheme are found in Supplementary 
Information–S3. The Poisson’s ratio was calculated using Eq. (1) where the average displacements along −x y z, ,
axes (∆x, ∆y, and ∆z) were determined. The developed numerical model was verified by a comparison to ANSYS 
(see Supplementary Information – S4).

Data availability
The data that support the findings of this study are included in the article and Supplementary Information.
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