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Disease Classification in Eggplant 
Using Pre-trained VGG16 and 
MSVM
Aravind Krishnaswamy Rangarajan & Raja Purushothaman*

Currently, the application of deep learning in crop disease classification is one of the active areas of 
research for which an image dataset is required. Eggplant (Solanum melongena) is one of the important 
crops, but it is susceptible to serious diseases which hinder its production. Surprisingly, so far no 
dataset is available for the diseases in this crop. The unavailability of the dataset for these diseases 
motivated the authors to create a standard dataset in laboratory and field conditions for five major 
diseases. Pre-trained Visual Geometry Group 16 (VGG16) architecture has been used and the images 
have been converted to other color spaces namely Hue Saturation Value (HSV), YCbCr and grayscale 
for evaluation. Results show that the dataset created with RGB and YCbCr images in field condition 
was promising with a classification accuracy of 99.4%. The dataset also has been evaluated with other 
popular architectures and compared. In addition, VGG16 has been used as feature extractor from 8th 
convolution layer and these features have been used for classifying diseases employing Multi-Class 
Support Vector Machine (MSVM). The analysis depicted an equivalent or in some cases produced better 
accuracy. Possible reasons for variation in interclass accuracy and future direction have been discussed.

The revolution of the modern technologies in the recent era has facilitated its application in agriculture to improve 
production. One of the applications is the diagnosis of plant diseases using a digital image from a camera which 
in turn will assist the farmers to control its prevalence in the fields. The availability of cheap cameras and the 
explosive growth on the internet have made the diagnosis relatively less complex with the availability of tools and 
information about the disease online1. But still, human diagnosis is prone to errors2. The scope for the automatic 
disease classification has improved due to the accomplishment in machine learning technologies. Traditionally 
shallow machine learning algorithms such as neural networks, Support Vector Machine (SVM), or other algo-
rithms were used which is a time-consuming process as it demands feature extraction from the images manually 
and fed as input to the algorithm for classification. But, the deep learning approaches consist of many layers of 
processing elements that process images and estimate features automatically for classification. There are four 
major types of deep learning algorithms namely Convolutional Neural Networks (CNN), autoencoder, restricted 
Boltzmann machines and sparse encoding, according to a study by Guo et al.3 Of these, CNN based architectures 
are most widely used for image classification problems3. Recent trends in the use of CNN for disease classification 
are on the rise and many studies have reported promising results1–17.

Training of the CNN based deep learning models from scratch is a time consuming (difficult) process and 
requires a large database. It is also challenging to categorize each image to a crop disease even with an expert 
opinion. Hence there is a lack of availability of large disease dataset which is a potential area for improvement. 
Also, it demands a costly system equipped with a Graphics Processing Unit (GPU) and large Random Access 
Memory (RAM) for training the models12,13,15. Some of the studies used an approach called transfer learning 
approach where the pre-trained models have been used for disease classification1,12,14–17. Transfer learning can 
be used when the available dataset has a lower number of samples for each class12. Further, in this approach, the 
weight has been previously initialized by training with other larger datasets such as ImageNet dataset which will 
be used for training the disease dataset12. Usually, fine-tuning of the model is done where the learning rate in last 
few-layers (specifically fully connected layers) were kept at a higher rate compared to the global learning rate 
of the previously trained convolution layers. It has been found to produce better results with this approach and 
showed a good generalization ability.

School of Mechanical Engineering, SASTRA Deemed University, Thanjavur, 613401, India. *email: raja_sastra@
yahoo.com

open

https://doi.org/10.1038/s41598-020-59108-x
mailto:raja_sastra@yahoo.com
mailto:raja_sastra@yahoo.com


2Scientific RepoRtS |         (2020) 10:2322  | https://doi.org/10.1038/s41598-020-59108-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Table 1 shows that many studies have been performed with CNN based models for disease classification in 
different crop species.

One of the interesting approaches followed by some researchers is to use the CNN based models as feature 
extractors and evaluate its performance using a shallow machine learning-based classification algorithm such as 
Multi-class Support Vector Machine (MSVM). Few studies have explored the models as feature extractors in a 
similar fashion11,14,17,18. One of the studies by Athiwaratkun and Kang18 extracted the features from the developed 
CNN based architecture and fed as input to the shallow machine learning algorithms namely SVM and random 
forest. This approach showed an improved performance compared to the original CNN based model where fea-
tures from the final CNN layers will be fed to the fully connected layer for classification.

A study by Liang et al.11, compared the performance of using original CNN based model and CNN with SVM 
for the recognition of rice blast disease. The performance of both methods was approximately similar with an 
accuracy of 95.83% for CNN and 95.82% for CNN with SVM. In another study by Shijie et al.14, fine-tuned Visual 
Geometry Group 16 (VGG16) model was compared utilizing VGG16 with SVM for classification of 10 tomato 
crop diseases. Although the fine-tuned VGG16 performance was marginally higher (accuracy of 89%) compared 
to VGG16 with SVM (accuracy of 88%), training of fine-tuned models takes a longer time. In the previous study 
by Aravind et al.17, feature parameters were extracted from the different layers of the pre-trained Alexnet model 
and accuracy (for classifying 3 diseases were) analyzed. The study showed an improvement in accuracy of 1.61% 
compared to the original AlexNet.

From the above literature survey, it is evident that the deep learning models with different methodologies are 
effective in various crops for the classification of diseases. But still, the dataset for few vital crops have not been 
found in the literature. One of the important crops, namely Solanum melongena (also known as brinjal, eggplant 
or aubergine in some part of the world) is a major horticultural crop which is consumed widely as an important 
source of nutrient for humans19. Due to the wide cultivation of these crops, it is susceptible to diseases which in 
turn affects the production of the crops. In this study, five major diseases of eggplant have been considered, for 
applying one of the deep learning models namely VGG16, for this classification problem. It has the capability 
to learn more complex features as more convolution layers are in the stack with smaller filter sizes compared to 
AlexNet. It has shown good performance (in previous studies) compared to the models with fewer convolution 
layers9,14.

Most of the studies1,5,7,12,14,16,17 have utilized the dataset created using the leaf samples separated from the plant 
and acquired in a laboratory condition. In our study separate dataset has been created with the images of leaves 
from the field and the laboratory condition. Further, the dataset created under these various (i.e., laboratory and 
field) conditions have been converted into different color scales such as Hue Saturation Value (HSV), grayscale 
and YCbCr despite image dataset in Red Green Blue (RGB) scale. The performance of VGG16 with images of 
each color scale is analyzed. In addition, feature parameters have been extracted from the different layers and have 
been fed to MSVM to assess the ability of feature parameters in classifying the disease.

The article has been organized in such a way that Section 2 discusses briefly on the created image dataset, 
hardware and software, architecture and method adopted for the study. The results obtained using the proposed 
method is presented in Section 3 and discussed in Section 4. Conclusion provides a summary and scope for the 
improvement, in future works.

Materials and Methods
Disease dataset and configuration of the system. In this study, five major diseases (as shown in Fig. 1) 
due to pest and pathogen have been identified. These diseases caused extensive damage to the selected crop under 
favorable conditions19–23. A dataset for these diseases have been created with the images of isolated leaf samples 
using different smartphone cameras in laboratory condition. The leaf was placed on a uniform white background 

Authors Crops Approach Deep learning model Accuracy

Mohanty et al.1 14 crop species (Different crops of 
fruits, vegetables & pulses)

Transfer learning & 
training from scratch AlexNet, GoogLeNet >99%

Chen et al.4 Tea Training from scratch Own CNN 90.16%

Lu et al.5 Rice Training from scratch Own CNN 95.48%

Liu et al.7 Apple Training from scratch Own CNN 97.62%

Ma et al.8 Cucumber Training from scratch Own CNN 93.4%

Ferentinos9 25 crop species (Different crops of 
fruits, vegetables & pulses) Transfer learning AlexNet, GoogLeNet, Overfeat, VGG >98%

Picon et al.10 Wheat Training from scratch ResNet 50 96%

Liang et al.11 Rice Training from scratch Own CNN 95.83%

Brahimi et al.12 Tomato Transfer learning AlexNet,GoogLeNet 97.3–99.2%

Shijie et al.14 Tomato Transfer learning VGG16 89%

Barbedo15 12 crop species (Different crops of 
fruits, vegetables & pulses) Transfer learning GoogLeNet 87%

Too et al.16 14 crop species (Different crops of 
fruits, vegetables & pulses) Transfer learning VGG16, Inception V4, 

ResNet(16,50,101,152), DenseNet 76–99.7%

Aravind et al.17 Grape Transfer learning AlexNet 97.62%

Table 1. Literature survey employing deep learning for crop disease classification.
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with a glass sheet on top to ensure flatness during image acquisition. An another leaf dataset was created using the 
images acquired directly from the field, employing the same smartphones. All these images in the dataset were 
manually categorized to specific diseases with the consultation from the experts.

The images acquired in laboratory conditions were preprocessed in order to segment the leaves from the 
background. However, no segmentation was performed in the field images. The background of the leaf images 
mainly consists of other overlapping leaves of the same or other plants, weed and soil. The ambience of the images 
also varied within the image sets of same category. The dimension of the images were resized to 224 × 224 pix-
els according to the input requirement of the pre-trained VGG16. The created dataset of each disease with the 
reported loss is shown in Table 2 20–24.

The deep learning models trained with limited dataset will result in an overfitting of the model. Hence, aug-
mentation of the dataset has been performed to increase the number of sample images using image transforma-
tion such as random angular rotation and translation. This introduces additional uncertainties by which a robust 
trained model suitable for better disease predictive capability, can be created. The hardware used for carrying out 
the experiment has the following configuration:

Operating system: Windows 10
Graphics card: 4GB NVIDIA 1050GTX
Random Access Memory(RAM): 8GB

The software used for the experiment was Matlab 2017b and fine-tuning of the pre-trained VGG16 was per-
formed in the above platform.

Implementation. VGG16 architecture25 has 13 convolution layers stacked together designed for image clas-
sification. The convolution operation is performed using a kernel of dimension 3 × 3 with learnable parameters 
W and b passed over the pixels x of an each image which results in output y. The movement of the kernel is either 

Figure 1. An example images of leaf acquired in laboratory and field condition (a) Epilachna bettle, (b) 
Cercospora leaf spot, (c) Little leaf disease, (d) Tobacco Mosaic Virus (TMV), (e) Two spotted spider mite.

Disease Causal agent Production Loss

Laboratory condition Field condition

Dataset Augmented dataset Dataset Augmented dataset

Epilachna beetle Pest 80% 180 1080 298 1192

Cercospora leaf spot Fungi 60–80% 102 510 77 308

Little leaf disease Phytoplasma 40–100% 148 740 261 992

Tobacco Mosaic Virus (TMV) Virus 90% 126 630 273 1092

Two spotted spider mite Pest 13.64–31.09% 103 721 179 716

Total 659 3681 1088 4300

Table 2. Five major diseases selected for the study.
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pixelwise or skipping of several pixels which is determined by the stride. The simplified version of the convolution 
operation is represented by the function as follows:

y f(Wx b) (1)= +

The convolution layers act as an automated feature extractor that extracts pattern for discriminating each 
disease class. Initial convolution layers learn simple features such as edges which combine these features in the 
later convolution layers to form complex features. Each convolution layer is generally followed by a non-linear 
activation layer, Rectified Linear Unit (ReLU) to introduce uncertainty. Downsampling is performed using max-
pooling layer to reduce the size of activation map. This stack of convolution layer ends with a classifier. In this 
case, it is a fully connected layer consisting of 4096 neurons. There are two fully connected layers followed by an 
another fully connected layer which has 5 neurons corresponding to the number of classes. The output is provided 
to softmax layer which provides a probability score for each class and classification layers assign it to a class based 
on cross-entropy function.

The study has been conducted with two different approaches. In the first approach, the image dataset was 
converted from Red Green Blue (RGB) space into different color scale namely Hue Saturation Value (HSV), 
YCbCr and gray and these images are stored as Joint Photographic Expert Group (JPEG) format. HSV color 
space has been used traditionally in few studies for identification of diseases and it is the closest system to human 
experience on color26–29. These studies reported an improved identification of certain diseases which promoted 
the feature extraction. However, the YCbCr color space is widely unexplored for disease classification that has 
prominent luminance information in component Y along with Cb and Cr which is the difference between blue 
and red channel value from a reference value26.

These image datasets are then provided as input separately to the pre-trained VGG16 architecture and the 
training process is carried out with the fully connected layer. The training process has a forward and backward 
pass. During the backward pass (i.e., backpropagation), the derivative of the loss function is propagated back to 
the initial layers and the gradient corresponding to a neuron which significantly influence the output is found. 
Based on these gradients, the learnable parameters are updated using stochastic gradient descent algorithm and 
the resulting error is estimated. The number of iteration is a user-defined setting beyond which the training stops 
and then the validation is performed.

In the second approach, features are extracted from these previously trained different layers of VGG16 begin-
ning at the 8th convolution layer and fed as input to the MSVM. The experiment is performed for each color space. 
An earlier study by Liang et al.11, demonstrated the recognition of rice blast disease using CNN with SVM. But the 
features are extracted from the last convolution layer and classification using the SVM were analysed.

In our case, the ability of features from each layer beginning at the 8th layer in classifying the diseases were 
evaluated. The reason for the selection of the 8th layer is due to the limitation in the capacity of RAM as feature 
parameter from the previous layers demands more memory space (greater than 8GB). Also, the features from the 
earlier layers show poor performance in classifying the images to its respective category17. The two approaches 
have been performed with VGG16 which has been fine-tuned in Matlab 2017b. The hyperparameters settings for 
the fine-tuned architecture of the experiment are as follows:

Number of epochs: 10
Minibatch size: 16
L2 regularization: 0.0001
Initial learn rate: 0.0001
Weight learning rate (Last fully connected layer): 0.003
Bias learning rate (Last fully connected layer): 0.002
Weight L2 factor (Last fully connected layer): 2
Bias L2 factor (Last fully connected layer): 1
Momentum: 0.9

The obtained results using the above approaches will be discussed in the following section.

Results
The created dataset was split into training and test set with 80% and 20% respectively. The images were selected 
randomly for each set and hence accuracy varies according to the selected images. As consistency is questionable, 
five trials were carried out to verify its performance. The images in four different color spaces were analysed in 
terms of classification accuracy using VGG16. The obtained results using the leaf images from laboratory and field 
conditions are discussed in the following section.

Leaf images in laboratory condition. Using VGG16 directly. The mini-batch accuracy converges rather 
quickly using RGB images and stabilizes at epoch 8 compared to the other categories. With the images in other 
color spaces, the architecture requires few additional iterations for convergence and stabilization to occur within 
10 epochs. An earlier study has pointed that in most cases convergence occurs within 30 epochs1. Training beyond 
10 epochs did not improve the accuracy hence it was stopped as it may result in overfitting. When the model is 
excessively trained, it memorizes the patterns of the training dataset leading to a poor generalization15,30. The 
architecture trained with RGB images resulted in a maximum mean classification accuracy of 95.1% and when 
the proportion of samples for each class was taken into consideration, the accuracy was 94.7% as shown in Fig. 2.

The classification accuracy using the RGB images was the highest compared to the images in other color spaces. 
The result was in agreement with the earlier study which used visible RGB images for disease classification1. It 
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was surprising that the architecture trained with HSV had lower accuracy (87.8%) compared to RGB and YCbCr 
images as HSV was found to be one of the widely used color space for discriminating disease region from the 
healthy region27,28,31. With the grayscale image, the observed accuracy was lower (87.1%) as expected, compared 
to the images in other color spaces. The observation with YCbCr images was interesting as the accuracy was better 
than the gray and HSV color space. Most of the studies have not explored YCbCr and HSV for the classification of 
diseases using deep learning algorithms. These color spaces perform reasonably good but still not efficient enough 
to surpass architecture trained with RGB images.

The confusion matrix shown in Fig. 2 depicts the inter-class variability in disease classification accuracy. In all 
the cases, i.e. with different color spaces, the most misclassified disease was Epilachna beetle. The accuracy of this 
class was approximately 5–9% less than the mean classification accuracy. With the RGB image, it was misclassified 
as little leaf disease and TMV. Although the symptoms of this misclassified disease do not appear similar to the 
target class, the possible reasons may be due to the size and shape of leaves, variation in illumination, etc. In case 
of other color spaces, Epilachna beetle was further misclassified as two spotted spider mite. The attributed reason 
for this misclassification may be due to the loss of some key features in other color spaces that resulted in poor 
learning. The other classes which significantly affects the overall accuracy were TMV and two spotted spider mite 
which were misclassified to other classes. The only class which was classified with 100% accuracy was little leaf 
disease.

Using VGG16 as feature extractor and MSVM for classification. In the second part of the study, features were 
extracted from the convolution layer 8 to the last dropout layer of one of the trained VGG16 model which 

Figure 2. Confusion matrix for images in (a) RGB, (b) HSV, (c) YCbCr, (d) Gray scale.
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produces the best result among the five trials. This procedure is repeated for image datasets from different color 
spaces. These features are given as input to the MSVM for classification of disease. In general, the accuracy of 
classification increased gradually as the features are obtained from the deeper layers. In other reported studies fea-
tures have not been extracted from the fully connected layer where this study was interested in evaluating it11,14. 
It was surprising to observe that features from fully connected layers were able to produce equal or better results 
compared to the classification layer of the original VGG16 model. In the case of RGB, YCbCr and grayscale, the 
accuracy improved marginally whereas in HSV it remained more or less equal to the value resulting from the 
original model.

In the case of YCbCr, the features extracted from the activation unit of 11th convolution layer produced a peak 
accuracy of 90.5% which is approximately 2% greater than mean classification accuracy of the original model. 

Figure 3. Accuracy of each class with features from different layers (a) RGB, (b) HSV, (c) YCbCr, (d) Gray, (e) 
Average accuracy of all color spaces.
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Similarly, features extracted from the activation unit of 12th convolution layer for grayscale image resulted in an 
accuracy of 90.2% which is better than the accuracy of the original model. Similar improved results were reported 
in the literature when these CNN based models were used as feature extractors. It was performed with standard 
plant village dataset (Grape crop disease) and AlexNet17. In one of the other study, the accuracy was found to be 
approximately equal to the value obtained through softmax and classification layer14. The features from the last 
few layers of the models did not have significant changes in the accuracy.

When the inter-class accuracy was analysed for different color spaces, the performance of the architecture for 
Epilachna beetle was primarily affecting the overall accuracy (as shown in Fig. 3). Even with the features from the 
last drop out layer, the accuracy of this disease class was approximately 1–9% lesser than the overall accuracy in 
different color spaces. Little leaf (disease) class was discriminated with 100% accuracy and was consistent in most 
layers and color spaces. It was interesting to observe that features from the initial layers were able to discriminate 
the above class with higher efficiency. The performance of the features from the RGB images were able to classify 
effectively even with the features from the initial layers as shown in Fig. 3.

Leaf images in field condition. Using VGG16 directly. In the case of leaf images in field condition, the 
convergence occurred within 5 epochs for all the color spaces. This clearly indicates that it has learned features 
faster compared to the leaf images in laboratory condition. The average accuracy for classification using RGB, 
HSV, YCbCr and grayscale were 99.4%, 98.5%, 99.4% and 98.1% respectively which demonstrates superior 

Figure 4. Confusion matrix for images in (a) RGB, (b) HSV, (c) YCbCr, (d) Gray scale.
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performance over the prior case as shown in Fig. 4. It is interesting to observe that YCbCr performance was 
equivalent to the images in RGB color space.

When the confusion matrix was examined, the disease class which was affecting the classification accuracy 
was Cercospora leaf spot with RGB, HSV, YCbCr and grayscale images. In the case of HSV, TMV was mainly 
misclassified as Cercospora leaf spot and two spotted spider mite. The attributed reason for the misclassification 
is discussed in the “Discussion” section.

Using VGG16 as feature extractor and MSVM for classification. In the second part, the resulting accuracy by 
using the features extracted from the different layers and training with MSVM is shown in Fig. 5. In the case of 

Figure 5. Accuracy of each class with features from different layers (a) RGB, (b) HSV, (c) YCbCr, (d) Gray, (e) 
Average accuracy of all color spaces.
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RGB, features from 8th convolution layer reported an accuracy of 100% for Epilachna beetle, little leaf and TMV 
whereas the classes Cercospora leaf spot and two spotted spider mite reported a lower accuracy of 88.7% and 90%, 
respectively.

This shows that the features from the earlier convolution layer is sufficient for the above three classes which 
resulted in an accuracy of 100%. The accuracy for two spotted spider mite increased significantly compared to 
Cercospora leaf spot when the features from the subsequent layers were used for training and classification. The 
worst performance (i.e., 38.7%) was obtained for the Cercospora leaf spot using HSV images with features from 
8th convolution layer. In the case of YCbCr, the accuracy for Cercospora leaf spot was improved and reached 96.8% 
with the features from the last drop out layer.

In addition, a comparison study was done for both the images acquired from laboratory and field condi-
tions, employing the standard pre-trained architectures namely AlexNet32, GoogLeNet33, ResNet10134 and 
DenseNet20135. The accuracy resulting from the evaluation is shown in Table 3.

AlexNet, GoogLeNet, ResNet101 and DenseNet201 resulted in the overall best classification accuracy of 
97.4%, 99.9%, 97.8% and 99.8% respectively using the leaf images in RGB color space acquired from the field 
condition. In the case of leaf images from laboratory condition, ResNet101 and GoogLeNet resulted in a best 
classification accuracy of 97.8% and 97.6% with RGB images whereas AlexNet and DenseNet201 resulted in a 
relatively lower accuracy. The performance of all the architectures with HSV and gray images were reasonably 
lower compared to the RGB images. The accuracy was lowest (grayscale with 75.6%) in the case of AlexNet with 
all the color spaces.

Discussion
Although an earlier study by Mohanty et al.1, used fully connected, softmax and classification layers with the 
different color scale (namely RGB & gray) and segmented images, utilization of features from different layers with 
shallow machine learning algorithms were not analysed. In another study by Liang et al.11, classification of only 
single disease known as rice blast disease from healthy samples image by adding SVM instead of fully connected 
layer was reported. The study by Shijie et al.14, reported an accuracy of 89% for 10 different tomato diseases using 
VGG16 with MSVM which is lower than the current study. In our study, features from different layers including 
fully connected layers were analysed and in some cases our study was found to produce equivalent or improved 
results which is in agreement with the previous studies14,17. Also, indirectly the effectiveness of features from 
different layers were found and evaluated.

The overall performance using the leaf images acquired from the field condition was surprisingly better than 
the leaf images acquired from the laboratory condition. Specifically, the performance with RGB and YCbCr 
was better than the other color spaces using the images from the field condition. There are many possible rea-
sons which affected the classification accuracy in laboratory images. One of the important factors is the effect 
of lighting where certain symptoms of the particular disease was not visible. Especially in the case of TMV, the 
mosaic pattern in field condition was clearly visible. In addition, the uneven surface of leaf in laboratory condi-
tion resulted in shadowed region which resulted in the poor discrimination of Epilachna beetle, TMV and two 
spotted spider mite. In both the cases of laboratory and field conditions, there was a significant difficulty in the 
classification of Cercospora leaf spot. One of the possible solutions to improve the accuracy is to increase the data-
set size of Cercospora leaf spot. Earlier studies employing deep learning models, trained using leaf sample images 
acquired from controlled condition, demonstrated a significant drop in the performance when tested with the leaf 
images from the real field1,30. Hence the model trained with the laboratory images cannot be deployed for disease 
classification in field condition. As the field images are showing promising results, the deep learning method for 
real-time disease classification can be an effective solution for the control of the disease.

Conclusion
In this study, a dataset was created for five important diseases of eggplant using images obtained from the smart-
phone camera in laboratory as well as and field conditions, as no dataset for the crop was found. The images 
were categorized based on the input from the experts. The images from RGB color space were converted into 
different color spaces (i.e., HSV, gray, and YCbCr). With the created dataset, a pre-trained deep learning model 
namely VGG16 was used for training and validation. In addition, features from the different layers of VGG16 
were given to the MSVM for assessing the classification efficiency. This study has proved the superiority of (RGB) 
field images where the classification accuracy was highest for the five diseases. Surprisingly, the YCbCr also pro-
vided a competing accuracy in the case of images trained with VGG16. The classification accuracy was affected 
mainly due to Epilachna beetle infestation and Cercospora leaf spot in the case of laboratory images. In the case of 
field condition, Cercospora leaf spot was misclassified which affected the accuracy.

Architectures

Accuracy (%) in laboratory condition Accuracy (%) in field condition

RGB HSV YCbCr Gray RGB HSV YCbCr Gray

VGG16 94.7% 87.8% 88% 87.1% 99.4% 98.5% 99.4% 98.1%

AlexNet 86.2% 83.2% 77.3% 75.6% 97.4% 96.4% 95.7% 94.5%

GoogLeNet 97.6% 91.2% 92.3% 93.2% 99.9% 98.6% 98.7% 98.2%

ResNet101 97.8% 94.3% 95.9% 95.2% 99.7% 98.7% 98.7% 98.8%

DenseNet201 93.9% 87.7% 88.9% 87.4% 97.4% 97.4% 96.6% 96.9%

Table 3. Comparison of accuracy with other architectures.
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The dataset was also evaluated with the other popular deep learning architectures namely AlexNet, 
GoogLeNet, ResNet101 and DenseNet201. In many cases ResNet101 surpassed the accuracy of all the models 
especially in the case of laboratory images. The accuracy was always lower in the case of AlexNet with all the color 
spaces. Among the different color spaces, grayscale images offered a lowest classification accuracy of 75.6% with 
AlexNet.

The current study provides an opportunity for the farmers or amateur gardeners to identify the vital diseases 
of eggplant with the image of leaves from the isolated leaf samples as well as from field condition which was pre-
viously unavailable. Based on the literature study, few other diseases and crops are under consideration which has 
not been explored previously. Also, the study will be expanded to other deep learning models as feature extractors 
and will be evaluated for classification accuracy with variety of important diseases.

Data availability
The original image dataset of eggplant disease created for the study are available from the corresponding author 
on reasonable request.
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