
1Scientific RepoRtS |         (2020) 10:1858  | https://doi.org/10.1038/s41598-020-58992-7

www.nature.com/scientificreports

impact of refractive index 
increment on the determination of 
molecular weight of hyaluronic acid 
by muti-angle laser light-scattering 
technique
Ying Han1, Dejie Li  1,2, Deqiang Li1, Wenwen chen2, Shu’e Mu2, Yuqin chen1* & Jinling chai1*

Hyaluronic acid (HA) is applied in a number of medical applications and HA of different molecular weight 
(Mw) are used in different pharmaceutical preparations. In determination of Mw by muti-angle laser 
light-scattering (MALS), refractive index increment (dn/dc) is an important parameter for accuracy. 
Herein, the influence of dn/dc on the Mw of HA in stroke-physiological saline solution is investigated by 
MALS in this work. Additionally, the Mw variation of HA in the manufacturing process of preparations 
is measured. It is shown that each HA sample corresponds to a specific value of dn/dc, which is varied 
from 1.38 to 1.74 L/g with the Mw increasing from 13.5 to 2840 kDa in solution. It is indicated by the 
results from both MALS approach and viscometry that appropriate dn/dc should be selected for Mw 
determination. In steam sterilization process of preparations at 121 °C, the Mw and conformation of HA 
can be accurately and rapidly determined by MALS. This work provides a precise method to determine 
the Mw of HA in the medical applications and preparation industries.

Hyaluronic acid (HA), otherwise known as hyaluronan or sodium hyaluronate, is naturally abundant in 
mammalian tissues1. HA is a naturally occurring linear polysaccharide constituted by repeating units of 
N-acetyl-D-glucosamine and D-glucuronic acid with the monosaccharides linked together by alternating β-1,3 
and β-1,4 glycosidic bonds2. In nature, HA is found in a wide range of molecular weight (Mw), typically from 10 
to 3 × 103 kDa; in solution, chains of HA adopt random-coil conformations3. In these conditions, HA is highly 
hydrophilic and surrounded by water molecules linked through hydrogen bonds. Due to this conformational 
features, the solutions of this polysaccharide are very viscous and elastic4 and their presence in pharmaceutical 
formulations are characterized by specific Mw segments5.

An accurate Mw is a critical factor in the medical application of HA, especially in tumor therapy6. Nowadays, 
HA with different Mw is increasingly utilized for a number of medical applications. Calciu-Rusu et al. have inves-
tigated the rheology of ophthalmic viscosurgical devices used in cataract surgery and the experimental results 
were compared with commercial products7, the Mw of which is 1.40 × 103 kDa in average. Yeom indicated that a 
novel, biocompatible, and nontoxic dermal filler was successfully developed with HA of 234 kDa for tissue aug-
mentation8. Huh recognized HA of 1.5 × 103 kDa can be effectively used in the mucous membrane spray therapy9. 
Especially, different Mw of HA have different effects on tumor cells. Temieer et al. showed that only small mole-
cule HA (less than 5.0 kDa) could induce dendritic cells to mature and promote their production of interleukin 
and tumor necrosis factor, while HA with high Mw (more than 80 kDa) had no such effect10,11.

Based on clinical results, HA injection (1.0 × 103 kDa in average) is an effective drug to treat the osteoarthri-
tis12. Although it has been widely used, there are limited number of cases of side effects13. The pain and sensation 
of heaviness for a few hours/days are induced by the treatment of HA injections with high Mw14–17 (more than 
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2.0 × 103 kDa). In patients, the low Mw of HA injected is diminished because of the depolymerization of the long 
polysaccharide chain and the dilution of HA by arthritic synovial effusions18,19. The consequent compromise in 
viscoelasticity is considered to lead to altered joint mechanics, reduced lubrication and further damage to the 
diseased cartilage20,21. Even several factors may contribute to the occurrence of side effects22,23, Mw is still a very 
important factor that affects the feeling and effect of drug use24.

In the past, the Mw of HA was mainly determined by viscometry and empirical formula was used to calculate 
the Mw based on the data obtained25. A major drawback is that as the Mw increases, the viscosity of its aqueous 
solution increases exponentially, which makes the Mw determination by viscometry to be very difficult26. When 
the Mw of HA is lower than the conventional range, the HA solution is of little viscosity, that will lead to an inac-
curate result of Mw determined25. In addition, because of the complex pre-processing steps, it is not convenient to 
use this approach to monitor the Mw variation in the production process of HA preparations27. Later, Mw studies 
of HA have included size-exclusion chromatography experiments and the interference of manual operation is 
reduced to a certain extent28. However, size-exclusion chromatography approach is a purely relative measurement 
method because the chromatographic system must be calibrated with a series of standards known first29. If there 
is any change in the Mw of the purchased standards, the Mw result of the HA sample would be changed, resulting 
in a deviated result30.

Fortunately, recent investigations on biomacromolecules have employed light-scattering devices31. That 
proves advantageous because light-scattering is an extremely sensitive technique for measuring absolute Mw32. 
For example, Ricci et al. investigated the influence of Mw of HA by light-scattering device on the nanovector 
properties33; Botha et al. analyzed the Mw of hydrophobically modified HA by size-exclusion chromatography 
and light-scattering combination method34. No reference substances are required in the determination.

It is worth noting that the premise of accurate determination of Mw by light-scattering is to select an appro-
priate parameter, which is refractive index increment (dn/dc, L/g), because HA in specific polymerization corre-
sponds to an exclusive dn/dc parameter35. dn/dc, which is the change in refractive index of solutions as a function 
of solute concentration, is an essential parameter to several analytical techniques that are based on optical meas-
urements36. It is necessary to know dn/dc to characterize the Mw, sizes, shapes and the virial coefficients of pol-
ymers37. According to the determination principle, small change in dn/dc will greatly affect the result of Mw 
obtained from light-scattering38. Until now, for the selection of dn/dc there are two problems: studies mainly 
use one dn/dc parameter in Mw research for different HA samples or dn/dc is not properly selected for the Mw 
determination39–42. In addition, different dn/dc parameter in all the applied Mw segments of HA have not been 
reported yet43,44.

In this work, based on the advanced light scattering technology, the size-exclusion chromatography equip-
ment and muti-angle laser light-scattering (MALS) detector are combined to characterize the influence of dn/dc 
on the Mw of HA in stroke-physiological saline solution and further illustrate the Mw difference of HA sterilized 
by steam in the manufacturing process of preparations. The important dn/dc parameters of 23 different HA sam-
ples with increasing degree of polymerization, named HA1 to HA23, have been determined. Mw results obtained 
from MALS method and viscometry are compared. Besides, according to the formulation of HA preparations, 
three batches of preparation are manufactured and the Mw variation as well as the conformation of HA in the 
process of steam sterilization are monitored by MALS method. It is expected that this work could provide a pre-
cise method on the Mw determination of HA in the medical applications and the preparation production process.

experimental
Reagents and materials. 23 HA samples with different polymerization degree were obtained from 
Bloomage Biotechnology Corporation Limited (Jinan, China). Sodium chloride (NaCl), monometallic sodium 
orthophosphate (NaH2PO4) and disodium hydrogen phosphate (Na2HPO4) were obtained from Sinopharm 
Chemical Reagent Corporation Limited (Shanghai, China). All reagents used were at least of analytical grade. 
NaH2PO4 and Na2HPO4 buffer solution was adopted in order to ensure that the ionic strength and pH of the 
solution were the same as those injection preparations in pharmaceutical applications.

Instruments. The size-exclusion chromatography system consists of a high performance liquid chro-
matography pump unit (Agilent 1260, Agilent Corp., USA), an auto-inject unit (Agilent 1260, Agilent Corp., 
USA) fitted with a 900 µL quantitative loop and the following column TSK-GEL GMPWXL connected in series. 
Stroke-physiological saline solution was used as the eluent. The eluent was monitored by the MALS system 
(Wyatt Technology Corp., USA), which consists of a Dawn Heleos II light-scattering detector and an Optilab rEX 
Refractometer (RI). Chromatographic signals were captured and analyzed on a computer workstation using the 
dedicated Astra 6.3 software.

dn/dc determination. In a state of constant agitation, 8.0 g NaCl, 0.38 g NaH2PO4 and 1.02 g Na2HPO4 were 
added into 1000 mL water in a flask until completely dissolved. Then 1.0 g HA added and the flask was shaken to 
dissolve HA completely. To determine dn/dc of HA samples in the stroke-physiological saline solution, sample 
solutions were prepared with different concentrations (in mg/mL) as follows: 0.01, 0.02, 0.05, 0.10, 0.20, 0.50 and 
determined at 658 nm using the MALS system. The solutions were propelled by a peristaltic pump using a flow 
rate of 2.7 cm3/min. All the experiments were performed at 30 °C. Averaged value of three determination results 
was reported.

Viscometry. Viscosity measurements were made in the stroke-physiological saline solution at 30 °C using 
a four-bulb low-shear capillary viscometer, which is the conventional capillary viscometers of the Ubbelohde 
type. 0.1 g HA (dried substance) was accurately weighed into a 100 mL volumetric flask and dissolved with the 
stroke-physiological saline solution of a suitable amount. Then the solvent volume was set with the same solvent 
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to 100 mL, as a stock solution. The stock solution was diluted 10 times with the same solvent to the appropriate 
concentration on the basis of the flow time as a test solution.

The solvent and the test solution were filtered through a G3 sintered-glass filter and the first 10 mL solution 
was discarded. The flow time of the subsequent filtrate of the solvent (t0/s) and the test solution (t1/s) was deter-
mined. The test must comply with the requirements of t1/t0 = 1.3~1.5 and t0 >100.

The following formula (1) was used to calculate the intrinsic viscosity25:

η =
−( )
c

[ ]
2 ln
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t
t

t
t
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Where η is the intrinsic viscosity (L/g), c the concentration of the test solution (g/L), t0 and t1 are the flow time of 
the solvent and the test solution (s), respectively.

The following formula (2) was used to calculate the Mw25:

η = . × − .[ ] 3 6 10 Mw (2)4 0 78

Preparation monitoring. In a state of constant agitation, 0.80 g NaCl, 0.04 g NaH2PO4 and 0.10 g Na2HPO4 
were added into 100 mL water in a flask until completely dissolved. Then 1.0 g HA was added and the flask was 
shaken to dissolve the HA completely. Afterwards, 2 mL of the solution was hot sealed in an ampoule. A group of 
sealed HA solutions was sterilized in the steam sterilizer (Steris Corp., USA) at 121 °C in different duration. After 
naturally cooled down to room temperature, the sterilized samples were diluted by the stroke-physiological saline 
solution to make HA test solution of 0.05 mg/mL. Then, the test solution was filtered by 0.22 μm membrane. The 
test solution of 500 μL was injected into the size-exclusion chromatography system. The Mw and conformation of 
HA were recorded by the dedicated Astra 6.3 software on a computer workstation.

Results and Discussion
dn/dc and Mw of 23 HA samples. 23 HA samples propelled by the peristaltic pump using a flow rate of 
2.7 cm3/min were determined at the temperature of 30 °C. One of the graph of dn/dc determination is shown in 
Fig. S1 in the Supplementary Information. Limit of detection was calculated as the minimum refractive index 
change that can be detected over three times the noise standard deviation. The data of dn/dc comes from the 
average of three determination results. In Fig. 1, it can be found that with the increase of Mw of HA, the value 
of dn/dc is increasing. For example, HA of 27.6 kDa corresponds to 1.40 L/g and HA of 706 kDa corresponds to 
1.54 L/g as the Mw increasing. If the Mw increasing to 2.89 × 103 kDa, the value of dn/dc is further increased to 
1.72 L/g. In the experimental result, HA solution sample with Mw of 1.40 × 103 kDa corresponds to the value of 
1.60 L/g, which is in good agreement with the value reported in previous research45. Baggenstoss carried out the 
experiments in connection with MALS to make the analysis of HA (500 kDa), obtained a value of 1.53 L/g, which 
is also the same as our result46.

When a polymer with a low degree of polymerization is taken as research object by light scattering at different 
temperatures, the influence of temperature can not be ignored47. The dn/dc of polymer solution may have obvi-
ous temperature dependence. Therefore, the influence of different temperatures on the dn/dc parameters of 5 
HA samples (HA1, HA6, HA12, HA18 and HA23) are investigated at 20, 30 and 40 °C, respectively. As the result 
shown in Table 1, maximum difference value of dn/dc in the same polymerization is 0.03 L/g. According to the 
determination principle of MALS method, this difference is not sufficient to make any deviation to the result of 
Mw. For example, the Mw of HA1 at 30 °C is 13.5 kDa with the dn/dc of 1.38 L/g and at 40 °C that is also 13.5 kDa 
with the dn/dc of 1.41 L/g. Even for HA23 which has the largest degree of polymerization among the samples, 
this Mw difference is just 14 kDa. The deviation is only accounted for 0.6% of the actual Mw. It can be concluded 
that using the same dn/dc at different determination temperatures such as 20, 30 and 40 °C has little impact on 
the Mw result.

Figure 1. dn/dc profile obtained from 23 HA samples in stroke-physiological saline solution.
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It is worth mentioning that in the published research recently, using one value of dn/dc for a large range of 
Mw determination is very popular38–42. However, different selections of dn/dc can result in different Mw result 
obtained by the MALS system. The selected experimental data listed in Table 2 proves that it is not appropriate 
to use just one value of dn/dc to characterize the Mw of HA samples with different polymerization in solutions. 
For example, the averaged dn/dc of 1.58 L/g is used to calculate the Mw of HA1. If consensus value of 1.58 L/g 
is adopted, the Mw of HA1 is 12.2 kDa while the actual Mw is 13.5 kDa if the corresponding dn/dc of 1.38 L/g is 
taken into consideration. The former Mw is 1.3 kDa lower than the actual Mw with the relative deviation of 9.6%. 
More importantly, as the polymerization of HA increasing, the deviation will be amplified. If dn/dc of 1.38 L/g 
which belongs to HA1 is used for the determination of HA23, the Mw difference is up to 753.0 kDa and the rela-
tive deviation will increase to 26.5%.

Comparison of Mw obtained by viscometry and MALS. The Mw of 23 HA samples obtained from 
two methods including viscometry and MALS are listed in Table S1 and it is more clearly to exhibit the data in a 
profile. As it is shown in Fig. 2, in the range of 400~1.60 × 103 kDa, the two curves are basically coincident. It is 
indicated that the Mw obtained by two methods are basically the same within a certain range. The slight differ-
ence is at both ends of the curves, where the Mw is less than 400 kDa or more than 1.60 × 103 kDa, the two curves 
are separated. For the HA sample lower than 400 kDa, the Mw determined by viscometry decreases more than 
that of MALS; but in contrast, for the HA sample higher than 1.60 × 103 kDa, the Mw determined by viscometry 
increases more than that of MALS.

The separation is closely related to the nature of HA. In the solution, HA less than 400 kDa is of little viscos-
ity but strong liquidity. The outflow time in the viscometer is so short that the Mw obtained is lower than the 
real value; on the other hand, HA with high Mw can form a network structure to reduce the fluidity, so the Mw 
obtained is higher than the real value. Fortunately, MALS combined with the well-known separation technique 

Samples

Temperatures

20 °C 30 °C 40 °C

HA1 1.37 1.38 1.41

HA6 1.49 1.49 1.50

HA12 1.56 1.57 1.58

HA18 1.66 1.68 1.70

HA23 1.72 1.74 1.75

Table 1. The dn/dc (L/g) of HA solution samples at different temperatures.

Samples

Mw

Measured value dn/dc = 1.58 dn/dc = 1.38

HA1 13.5 12.2 13.5

HA6 213 208 238

HA12 937 937 1.07 × 103

HA18 1.94 × 103 2.10 × 103 2.40 × 103

HA23 2.84 × 103 3.14 × 103 3.59 × 103

Table 2. The Mw (kDa) of HA solution samples with different dn/dc (L/g).

Figure 2. A comparison of the Mw of 23 HA samples obtained from viscometry (a) and MALS (b).
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size-exclusion chromatography, can separate the HA molecular species on the basis of hydrodynamic size and 
then every fraction of the elution sample can be determined and statistically analyzed. Therefore, MALS is more 
suitable than viscometry for the determination of Mw and the result obtained from MALS is more reasonable 
and accurate.

Mw variation in the sterilization process. Control of thermal sterilization treatment for HA solution 
samples represents a great challenge because the Mw of HA in solution can degrade at a temperature more 
than 80 °C48. Therefore, according to the formulation of HA preparations, three batches of HA solution samples 
(named A, B and C, respectively) are prepared and the Mw variation is monitored by MALS in the process of 
sterilization, as depicted in Fig. 3.

The initial Mw of A, B and C are 1.94 × 103, 1.57 × 103 and 1.27 × 103 kDa, respectively. With the time exten-
sion, the Mw of HA decrease and they decrease greatly from 0 to 30 min, approximately 30% in average; the 
decrease rate slows down from 30 to 40 min, only decreases by 20~30 kDa; from 40 to 50 min, the decrease rate is 
more slower, only decreases by about 10 kDa and the Mw decreases only a little after 50 min. The key point is that 
when the sterilization time lasting for 40 min, the Mw of sample B will degrade to 1.05 × 103 kDa, which is the 
optimal Mw for the treatment of osteoarthritis12. At that time, the steam sterilization operation should be stopped. 
The result obtained by MALS method can accurately characterize the Mw variation of HA with the extension of 
sterilization time.

The chromatograms of sample A before, during and after sterilization are shown in Fig. 4. It can be found 
that all of the fractions of chromatographic peaks move to the right during the sterilization process, showing 
that every fraction of HA is degraded with the extension of retention time. The Mw variation of sample B and C 
is in consistent with sample A. All the signals are smooth and no other impurity peaks are found. In addition, 
the relationship between polydispersity (Mw/Mn) and sterilization duration are listed in Table S2. The greater 
the Mw/Mn value is, the wider the Mw distribution is, i.e., more dispersed; the smaller the Mw/Mn value is, the 
narrower the Mw distribution is, i.e., more concentrated. In this experiment, the Mw/Mn values of sample A, B 
and C before, during and after sterilization are all within 1.10~1.30, which also show good Mw uniformity in the 
sterilization process. These two facts above indicate that HA degrades uniformly during the sterilization process 
and no fractions other than HA being generated. Therefore, Mw determined by MALS is not disturbed by the 
sterilization operation and the result is accurate.

Figure 3. Mw variation of HA samples during the thermal sterilization process.

Figure 4. The chromatograms of HA sample before (a), during (b) and after (c) sterilization.

https://doi.org/10.1038/s41598-020-58992-7


6Scientific RepoRtS |         (2020) 10:1858  | https://doi.org/10.1038/s41598-020-58992-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

The detailed conformation factor (α) values of sample A, B and C sterilized at 0, 3, 6, 12, 24, 40, 60 min, 
respectively, are also listed in Table S2. α value between 0 and 0.4 indicates that HA in solution is in a spherical 
conformation; α value between 0.5 and 0.8 indicates that HA in solution is in a random coil conformation; α 
value close to 1.0 indicates that HA in solution is in a rod molecular conformation49. According to the profiles 
shown in Fig. 5, α values of sample A are between 0.62 and 0.68; B are between 0.59 and 0.64; C are between 0.57 
and 0.63. All the values are within 0.5~0.7, showing that HA molecules in solution are always in random coil con-
formation and the steam sterilization operation has little impact on the conformation of HA and also the values 
of the corresponding Mw determined.

conclusions
In this work, the impact of dn/dc on the determination of Mw of 23 HA biopolymer with different polymeriza-
tion in stroke-physiological saline solution is investigated by MALS method. It is found that with the Mw of HA 
increasing from 13.5 to 2.84 × 103 kDa, dn/dc varies from 1.38 to 1.74 L/g. Each Mw of HA sample corresponds to 
a specific value of dn/dc. Comparison of Mw data from MALS and viscometry shows that ranging from 400 kDa 
to 1.60 × 103 kDa, Mw result obtained by MALS is in good agreement with that of viscometry. It is also indicated 
that Mw result obtained by MALS with the appropriate dn/dc selected is reliable and accurate. In the steam ster-
ilization operation process, the multiple dispersed HA is degraded and the Mw of this biopolymer is uniformly 
decreased. Variation of conformation factor indicates that the random coil structure of HA is little influenced by 
the sterilization operation. Hopefully this investigation work, would be an important step for the understanding 
of the impact of dn/dc on the determination of Mw by MALS technique in the medical applications of HA and the 
industrial production processes of preparations.
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