SCIENTIFIC REPORTS

natureresearch

OPEN

A 124-plex Microhaplotype Panel Based on Next-generation Sequencing Developed for Forensic Applications

Jing-Bo Pang^{1,2,3,4}, Min Rao^{1,2,3,4}, Qing-Feng Chen^{1,2,4}, An-Quan Ji^{1,2,3}, Chi Zhang^{1,2}, Ke-Lai Kang^{1,2}, Hao Wu^{1,2}, Jian Ye^{1,2*}, Sheng-Jie Nie^{3*} & Le Wang^{1,2,3*}

Microhaplotypes are an emerging type of forensic genetic marker that are expected to support multiple forensic applications. Here, we developed a 124-plex panel for microhaplotype genotyping based on next-generation sequencing (NGS). The panel yielded intralocus and interlocus balanced sequencing data with a high percentage of effective reads. A full genotype was determined with as little as 0.1 ng of input DNA. Parallel mixture experiments and in-depth comparative analyses were performed with capillary-electrophoresis-based short tandem repeat (STR) and NGS-based microhaplotype genotyping, and demonstrated that microhaplotypes are far superior to STRs for mixture deconvolution. DNA from Han Chinese individuals (n = 256) was sequenced with the 124-plex panel. In total, 514 alleles were observed, and the forensic genetic parameters were calculated. A comparison of the forensic parameters for the 20 microhaplotypes with the top A_e values in the 124-plex panel and 20 commonly used forensic STRs showed that these microhaplotypes were as effective as STRs in identifying individuals. A linkage disequilibrium analysis showed that 106 of the 124 microhaplotypes were independently hereditary, and the combined match probability for these 106 microhaplotypes was 5.23×10^{-66} . We conclude that this 124-plex microhaplotype panel is a powerful tool for forensic applications.

The microhaplotype is a powerful new type of forensic genetic marker^{1,2}. It is the combination of two or more closely linked single-nucleotide polymorphisms (SNPs) within DNA segments of 200 base pairs (bp), and offers multiple forensic applications³⁻⁷. Short tandem repeat (STR) genotyping is currently the dominant technology in forensic DNA laboratories. Although it works well with single-sourced DNA samples, great challenges are encountered with DNA mixtures because stutters in the major donor DNA can be indistinguishable from alleles in the minor donor DNA^{3,8}. Stutters are unavoidable during the replication of repetitive DNA, and they severely interfere with mixture deconvolution. SNPs are not repetitive sequences, but are typically biallelic, which restricts their utility in the analysis of mixtures. Microhaplotypes have the advantages of both STRs and SNPs because they are multiallelic and do not produce stutters during amplification. Therefore, microhaplotypes are perfect genetic markers for mixture deconvolution.

Although capillary electrophoresis (CE)-based genetic analyzers are widely used in forensic DNA laboratories, these machines are unsuitable for microhaplotype genotyping⁸. Several methods have been used for microhaplotype detection. TaqMan assays have been used to type each SNP that constitutes a microhaplotype⁸, followed by a PHASE software analysis to determine the *cis/trans* relationships between individual SNP alleles. Single-strand conformational polymorphisms⁹ and high-resolution melting curves⁴ have also been used for microhaplotype genotyping. These methods are simple and inexpensive, but they can pose problems when multiplexing different loci or dealing with mixed samples. MinION, a nanopore sequencing machine, has also been used for microhaplotype lotype sequencing¹⁰, but the accuracy of sequencing for forensic applications must be improved.

¹National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, PR China. ²Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, PR China. ³School of Forensic Medicine, Kunming Medical University, Kunming, 650500, PR China. ⁴These authors contributed equally: Jing-Bo Pang, Min Rao and Qing-Feng Chen. *email: yejian77@126.com; 879456764@qq.com; wangle_02@163.com

Locus name	Primers for PCR amplification	С	AS	Locus name	Primers for PCR amplification	C	AS
mh01KK-002	TCTGGATAAGGGAGGAAGAAACT	0.20	135	mh11KK-037	TTTCCATCTCACCAGGCATCA	0.08	222
	GCCTTCTAGTTCTGAAGCCAATAT				CCTGGGATAACAGGAAAGAAATC		
mh01KK-070	CCCACTCCAGCATCACTCAC	0.04	152	mh11KK-038	CCCAGGGTTGTTGCTTCCA	0.08	269
	TTCTACCTGAAGAGCAAGTCCC				CTCTAAAACCCGACGCTGC		
mh01KK-072	CCCTTTTCCGAATTTTCCTG	0.08	115	mh11KK-039	TGTTCCTGCCAAACCATTCA	0.04	197
	GTATTCCCCTACTTTGTCTTCTGG				GACCTCGTTGTCACTGATGATACTA		
mh01KK-106	ATCCAGTCCCGCTGCCTG	0.04	244	mh11KK-040	TGAACTTCCTGCACAGCATTAA	0.04	126
	GATGTCAGATTTTCTTAGGACCGA	0.01	211			0.01	120
mb01KK 117	GTCTCCCCACAAAGCATTGC	0.04	243	mb11KK 041		0.04	01
million KK-117		0.04	245	IIIIIIIKK-041		0.04	91
1.011/1/ 205		0.04	2.40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.04	115
mn01KK-205		0.04	248	mn11KK-089		0.04	115
				1	GGAIGCEICEIGIGCEIGIA		
mh01KK-210	TCCAGAGTGGTTTGCAGGC	0.04	278	mh11KK-090	GTTGAGTCTGGGGGAGGTTGC	0.02	150
	AAGTAATTGGCTCCAGGTGACA				CTCCGTTCTCCACAGTGCTG		
mh01KK-211	AGATCAAGTCGGCCACGATG	0.04	243	mh11KK-091	CCCACCAAAGGAGCTGTACC	0.20	190
	CACCTCCTCCATAATCCACAAGT				GGAGAAGACTGGCGAGCAGA		
mh02KK-003	TGTGCAATGAAGAGCTAACTTGTG	0.04	178	mh11KK-180	GACCTGCCTGCTTTTCCTGA	0.08	288
	GCTGGGCTGGCTAGACCCT				TTGCACCCTCGCTTCCC		
mh02KK-005	GCTGGGCCCTAACAGTCTCA	0.08	259	mh11KK-187	CTGACTGTCAGCACTCCAGTATCA	0.04	250
	CAACAGCCATTGACTTTTCCC				TGGGTCTCGCCGCAAG		
mh02KK-073	TGGAAAATGGTTCTGAATCGG	0.04	127	mh11KK-191	GGGAAACAAAGGTATGTAAAGGC	0.04	296
	CACTTTATGGATTAACTCAACCTGG				CAGCAGTTCAGGCAAAGAGC		
mh02KK-102	ATCCTTAGTTGGGTAACCCTGTC	0.12	214	mh12KK-043	TCCTTAGGCAATGAGAAAACACTG	0.12	243
	AAATGCTCCTAGGTGAGTCTAATGT				GCAACCAAAAGAAGCCTCAGTC		
mh02KK-134	TTTGTGGCACTGGAGAACTG	0.04	198	mh12KK-045	GGTTATACCCTAAAACTAAAGTCTCGG	0.04	298
	CAATGTCCTTGAGGCTCGTAG				ATGTGCCTGCTCGTCTATCAA		
mb02KK-136	ATCCCCACTCCCCATGTTC	0.08	162	mb12KK-046		0.08	200
		0.00	102	111121010-040	TEGATTCAGEGECATEGA	0.00	200
mb02KK 201	TTTCACTATCCTCTACATCCTTC	0.12	160	mb12KK 002		0.20	102
IIII02KK-201		0.12	109	111112KK-092	TTOCTATCOCTTTOCCTAACTT	0.20	102
	CTCCCACCAACTTTCTCACA	0.00	277			0.04	226
mn02KK-202		0.08	2//	mn12KK-093		0.04	236
	GITGGGATTAGGGTTGGTATTG			1			
mh02KK-213	CCCACCATTIGCCATGCT	0.04	236	mh12KK-202		0.08	254
	CTCGGGTAGGGCTTTCTTTG				ACGTACAACCTGAGCCACTGAT		
mh03KK-006	TGACCGGACGCCATAGCC	0.04	132	mh13KK-047	ACAGTTACAACAAGAAGGAAATGGA	0.20	286
	GTCCTACATTACATGGTGTATAAAGCTCAG				GGGACGGGAAACAAATGATC		
mh03KK-007	TTTCAGTTTGTTCTTGGCAGC	0.12	94	mh13KK-213	GAGACAGCAAGGAGAACTTCAGTT	0.04	215
	TGCTGGAGATGTTATCAAGGCT				CTCAAATGGCGGGCTTCT		
mh03KK-008	CATGAACCTAGCAACAGACGAGC	0.20	272	mh13KK-217	TGCAAAATTTGGCTCAACAAGC	0.08	281
	GTGCAGAAAGATTCCAAAGGAGAAT				GGTGTATTGCCAAACAGAAAAGG		
mh03KK-009	GCCATTGCCGAAGACGAT	0.04	234	mh13KK-218	TAATAAAACTGGAATCATAAGCATAGC	0.08	209
	CAACCAAGCCCCAAAGAGTC				ACTAGAGTAATGCAGAACTCACATGTTA		
mh03KK-150	GTGCCATTTACTGACCACCTATTA	0.20	297	mh13KK-223	ACTAGAGTAATGCAGAACTCACATGTTA	0.08	280
	CCTGGGATCCACTGAAAGATT				TGACCAGCCTCTTTACATGGAGT		
mh04KK-010	TGAGCACAGAAGGAGCGATG	0.04	128	mh13KK-225	GAATTGGAGCTACAGCCACACT	0.08	203
	TGTGGGGTCACTTCAGGATAAT				CTGATGAAAAGGGAAGTGGAAA		
mh04KK-011	GTGTCTAATGGCCGCTGTAGTAA	0.04	142	mh13KK-226	AGTACAGTTTTCTCACCCCATAGG	0.08	191
	GCTCAGGAATTTTCATCTGCTTT				AATGGCTGTGGAAAGGGTAATA		
mb04KK-013		0.04	250	mb14KK-048	GCCGTGGTGTCTGGAAAAC	0.12	231
	TTCCAACCACCATACCACTCAC	0.01	250			0.12	231
mb04KK 015		0.04	226	mb14VV 069		0.04	159
111104KK-015		0.04	220	111114KK-008		0.04	156
	GGCAAAGGGGAAIGACTGAG	0.10	101	1.1.4****		0.51	
mh04KK-016	AGAIICAAGIIGAACITITAGACATCIG	0.12	196	mh14KK-101	CGGGAIAAGGAATTAATCAAGGA	0.56	284
					GCCATTAATATTTATTGTGATTACAACTG		\mid
mh04KK-017	ATTGTACTGGTCGGATAATGAGC	0.04	290	mh15KK-066	CGGGACAAGGAATAGCCAGT	0.20	238
	ACTTCACTATACACTGGCTTTCTCC		L		CTTACCTGCCAACATATTCACCATA		\mid
mh04KK-019	AACAATGATGCTACCTTCAGTGC	0.20	257	mh15KK-067	TTCTCCCCATTAAGCCATCCT	0.04	263
Continued							

Locus name	Primers for PCR amplification	C	AS	Locus name	Primers for PCR amplification	С	AS
	ATTCTTATTTGGAAGATTACAACAGG				CCAGAAGAAGCAAAGACATCAAGA		
mh04KK-021	ACCACAGCGCCAAATGATG	0.04	282	mh15KK-095	CCCTAAACACCAGGATAGCAGTT	0.04	189
	GGAGGGGATCCTTTAGGACAGT				TTGAGGACGCTGCTGTTACTGT		
mh04KK-028	GCTGACTAATCTTGTGATGGTGAA	0.04	104	mh15KK-104	TTCCCACCTCACCTACATAATCT	0.08	240
	CGGCATCGTGGAAAGTGTT				GATGGAGCAGTAGTGATGAAGACA		
mh04KK-029	CTGATGGGTTTGGTAGAGTCCTT	0.02	174	mh16KK-049	ACTGCCCTGGAGATTGTTTCA	0.08	270
	CACTTGCGTCGTCTTTGGC				TGCTAATCCTGTCCCGTTTCT		
mb04KK-074	CCATCTTGAGTGCATTGGTTTA	0.08	172	mb16KK-096	CCGTGGACCGCTACATCTC	0.04	115
		0.00	172				
mb05KK 022		0.04	101	mb16VV 255		0.08	226
111103KK-022		0.04	191	IIIITOKK-255		0.00	230
mb05VV 022		0.04	261	mb16VV 202	CTTATECTTCCCTCCATCTCAC	0.04	104
IIII03KK-023		0.04	201	IIIIIIOKK-302		0.04	194
whork oco		0.00	(2)			0.20	200
mh05KK-062		0.08	63	mh1/KK-052	GCICAGGCAGGAGGICA	0.20	288
1.0000000000	TCCCTTGCTAAGTCCCTCACT				GCGCCTACTGTGCGTG		-
mh05KK-078	TCAGGAAGGACAGGATAGACAGC	0.04	162	mh17KK-053	CGCTACTCTTTTGCCTGACCT	0.02	244
	AGTTCTCAGTGCCATTGCTTATC				TCCCAACTATTCTGATTCTCGC		
mh05KK-079	AAACCCTGCATATTTGCTATGG	0.08	158	mh17KK-054	CCCGCTGGAGGAGCAAAAGT	0.04	135
	GGCTCGGCGTTTTCTATTG				GAGCACGGAAGTTAGGATGGA		
mh05KK-170	GACACATGGAGGACAAAAGTGAACT	0.04	210	mh17KK-055	CCCAAAACTGACAGCCCAAG	0.20	234
	GCTGGTGATGACAAGTGAGATG				TGTGGGGTGAACAGCTCTGAC		
mh06KK-025	GGAGTTAGCCGTGGTATGTTTG	0.20	229	mh17KK-076	TCAAACCCAGAGCCATCCC	0.02	195
	CCATACGCTCCTGATAGTTGTTTA				AGGGCAAAGGACCGTGATG		
mh06KK-026	AAGGACTTTCCCTGCTGTTCTAT	0.04	158	mh17KK-077	ACAGCCTCTACCCACCAAATG	0.04	184
	ACGCAACACTCTTTTCGCTATT				AGATGTCAGCCAGAAGATCAGC		
mh06KK-080	CAGTAACACTTACTACATATGAATTGAGAA	0.20	192	mh17KK-105	CCCGTCCCTTCCAACCC	0.20	193
	CATGTCACATGTATTTTAATATCACAAA				TCTCACCTTCCCGCCTCC		
mh06KK-101	GCCTTGTAAGATTTCTCATCTGC	0.04	242	mh17KK-110	AGGTTTACCTTGGCATGTTCC	0.04	264
	AGCTGGGAGTGGCCCATG				CCAGCCCTGTTTCTAAAAGTGT		
mh07KK-030	CATTGGTAAGTTGAGTACATAACAGTTC	0.20	209	mh17KK-272	CCCTCTGGTTTTCCTTGGAT	0.20	261
	GCTTTTATGCAGTCCTAAGGAAAT				GGAACATCACGGGAATCTTTT		
mh07KK-031	GAAGGAAAGATGTCACAGATGCG	0.04	215	mh18KK-285	TCACATCATGACGTCTACTGGG	0.08	246
	GGAAAACCGCCAGCATAGC				GATCTGTTCCTCAAAGAAGAATTGG		
mh07KK-081	CCATCTGTACCACGGCATCA	0.04	245	mh18KK-293	CACCCACTGAAGTTTGAGCAGA	0.04	165
	TCTCCTACATTCATAACTCCTCCAC				CCTAATCAAGGCTATGGATACCTATCT		
mh07KK-082	AGCAGTAAAGCAGGCTGAGGC	0.08	235	mh19KK-056	CAAGCGGGAGCCCATG	0.08	289
	TTTTGGGATGTAGTGAAGAGGC				TCCCCGCCTCGGTCTC		+
mh08KK-032	ACACCTCCCTGGAAACAACC	0.12	260	mh19KK-057	AAATGTCCTGGTCTTGATGGC	0.04	244
	CAACTCTTACGTTCATCAATACCG				GGGGAAAGCAGTAGTGAATGG		-
mh09KK-033	TACACGGTTGCCAGAAGAAAA	0.04	175	mh19KK-299	CTCTATCATGTGGCCTGGCA	0.04	216
	GAGGTAACACTACGAGGGAAGATT				CTGGTGGGTCGCATGTCTC	-	-
mh09KK-034	TGGTCCTGTCCTCATAGCACTT	0.12	194	mh19KK-301	TCTCAAAGACAGACCCACTACGG	0.08	168
	GTATTGAAGTGATAGTTTTACAGTTTCCTA				GAAGATTCATGCTGGCTTCAATAGT	-	-
mh09KK-035	TTCTTTCAGCAAACCCACCC	0.04	298	mh20KK-058	TATAGAGCAGGGCCAGGCA	0.04	205
	GGCTCTGATCTGACGGCAA				GTGAAACCATCTCCAAGTCCAG		
mh09KK-152	AATGTGGTAACTGAGACTAGGAGAATC	0.08	241	mh20KK-059	TCATAGCAGCTGGTCTCGTTG	0.04	225
		0.00	211		TCCCTGGCTGTGCTCATGT		
mb09KK-153	GGGGATTGGCAGTCTTCATG	0.04	180	mb20KK-307		0.08	250
111109KK-155		0.04	100	IIII20KK-307		0.00	230
		0.04	222			0.04	205
IIII09KK-15/		0.04	255	IIIII21KK-315		0.04	
1.407777.000	GGACCATCAGCATCAATAGCC	0.01					-
mh10KK-083	GIGGITCIAITTAAIGIGAAGCCIG	0.04	224	mh21KK-316		0.04	208
	GCTGGCAGAACTGGGATTTG				CICCITAATATCITCCCATGTCCA		
mh10KK-084	CIGITGCTAATATCTTACCTGCTCC	0.02	126	mh21KK-320	TGACTGGGAGGCTGTGGAGA	0.04	283
	GCTCTTACACGAAGTTACATTAGGGA				TGCTGGAATTAGAGGCGTGA	_	
mh10KK-085	AAGGGGCAGAAACTGGGAG	0.04	117	mh21KK-324	GGGCGAGCAGGGGTCA	0.04	196
	GGGGATGGAAAACAGAGCC				GCATTTCCGCTGACGCTAT		
Continued							

Locus name	Primers for PCR amplification	С	AS	Locus name	Primers for PCR amplification	C	AS
mh10KK-086	TGGATTGGAGCCCAGGTATT	0.08	167	mh22KK-060	CGTGATTCAGGAGCACCAGC	0.08	213
	ACACTGATTTCCCTCAAGGTCA				TTTTCCAGGTCTGACAACGG		
mh10KK-087	AAAGACTTGCTCCATTCCCTATTC	0.12	231	mh22KK-061	CTTTAGGGGTGGCAAGTCTCC	0.02	218
	TGATTCTCCACGCTGCCA				CCACTTAGGGACTGGGGAACTC		
mh10KK-088	CAAAACTACATTCTTCACTGGGG	0.08	250	mh22KK-064	AAAGCGGTGAACAGGTGGA	0.04	263
	ACTGCCTCTGATCTTTCTCACCT				TGGTCACAGTTCTTGGTCCG		
mh10KK-101	CCCAGGACTGTCTGAGCATCT	0.02	170	mh22KK-069	GCAGCACTTTCTTTCATTCATTCC	0.04	144
	TGTCTCCCTCCACAGCATGA				AACCATGAGTGCTACAAAGGC		
mh11KK-036	GCCAAAGCTCCCTAATAGCTC	0.08	240	mh22KK-303	AGTTCATCCTGCAGCCCATC	0.02	181
	CAGAAATAAAAGGCTAAATGTATGGAT				CGGACCCCACCTTTCTTGT		

Effective reads number Total reads number -- Probability of effective reads

Figure 1. Read counts and percentage of reads representing the alleles for 10 reference samples. Number of effective reads (those called as microhaplotype alleles) are shown in orange, and the total reads are shown in blue.

Next-generation sequencing (NGS) is well accepted by the forensic community. Both the Illumina and Ion Torrent sequencers are high throughput, with appropriate read lengths for microhaplotypes^{11,12}, and NGS can directly determine the phase between SNP alleles. Based on these characteristics, NGS is considered the optimal strategy for microhaplotype genotyping, and the development of NGS has made microhaplotypes a powerful new type of genetic marker for forensic analyses². Zhu *et al.*¹³, Qu *et al.*¹⁴, Turchi *et al.*¹², and Kidd *et al.*¹⁵ have studied microhaplotypes for forensic applications on the Miseq, HiSeq, Ion Personal Genome Machine (PGM), and Ion S5[™] platforms, respectively. Attempts to develop NGS-based microhaplotype panels and microhaplotype population data have also been reported. In 2017, 89 microhaplotypes were sequenced with two primer pools in 73 Italian samples¹², and this panel was later optimized to 87 loci by the same research group¹⁶. Another research team constructed a 74-plex microhaplotype assay and sequenced 278 samples from three different populations¹⁵. In the present study, we developed and evaluated a multiplex amplification system containing 124 microhaplotype loci. Parallel mixture experiments were performed with CE-based STR and NGS-based microhaplotype genotyping methods to compare their capacities for forensic mixture deconvolution. Microhaplotype allelic diversity and forensic estimations were determined for a Han Chinese population.

Results

The 124-plex microhaplotype panel. A total of 124 microhaplotype loci were multiplexed in a single primer pool. The number of SNPs contained at each locus ranged from 2 to 5, and 52 loci contained \geq 3 SNPs (Supplementary Table S1). The molecular extent of the loci ranged from 13 to 210 nt, with an average of 108 nt. The primer sequences, primer concentrations, and amplicon sizes of the 124-plex panel are summarized in Table 1. The amplicons ranged from 63 to 298 bp, with an average size of 212 bp (Supplementary Fig. S1).

To evaluate the performance of this assay, we sequenced 10 reference samples. The numbers of total reads and reads representing microhaplotype alleles were calculated and are shown in Fig. 1. Around 100,000 total reads

Figure 2. Average allele coverage ratio (ACR) for each locus. Horizontal black line, number of heterozygotes for each calculated ACR. Error bars represent standard deviations.

were obtained for each sample. The reads representing alleles accounted for over 90% of the total reads, and even 99% for some samples, indicating that the quality of the sequencing data was good.

The allele coverage ratio (ACR) was used to evaluate the heterozygosity balance. The ACRs were calculated for the 10 reference samples by dividing the lower coverage allele by the higher coverage allele at each locus. All average ACRs were above 0.7, indicating that the heterozygosity balance of the 124-plex assay was good (Fig. 2). To examine the interlocus balance of this 124-plex panel, we calculated the average percentage depth of coverage (DoC) for each locus (Fig. 3). Each locus accounted for 0.2%–2% of the effective reads, 0.8% on average.

To evaluate the sensitivity of the 124-plex assay, a dilution series of genomic DNA 9947 A (1.0, 0.5, 0.2, and 0.1 ng) was sequenced. All 124 microhaplotypes were successfully genotyped with a sequencing depth of \geq 30 × when 1.0 ng, 0.5 ng, 0.2 ng, or 0.1 ng of input DNA was used (Supplementary Table S2 and Supplementary Figs. S2–S5), demonstrating the highly sensitive performance of the 124-plex assay.

Mixture study. To compare the effectiveness of microhaplotypes and STRs in the analysis of forensic mixtures, we prepared artificially mixed DNA samples with commercial genomic DNAs 9947 A and 2800 M, and performed parallel CE-based STR profiling and NGS-based microhaplotype genotyping experiments (Table 2 and Supplementary Figs. S5–S18). Representative data are summarized and compared in Fig. 4.

Allele dropouts can severely interfere with a mixture analysis. Therefore, we examined the dropout alleles of the minor contributor (9947 A), and calculated the number of loci with fully called 9947 A alleles for each artificially mixed sample. In the STR profiles, no allele dropout was observed for the 1:1, 1:3, or 1:6 mixture

(Table 2). Two alleles (D22S1045-11 and D2S1338-19) of the minor contributor dropped out in the analysis of the 1:9 mixture (Supplementary Fig. S12), and only 38% of the STR loci (8/21) reported full 9947 A alleles when the mixture ratio was 1:19 (Table 2, Supplementary Fig. S13). In contrast, 92% of the microhaplotypes (114/124) reported full 9947 A alleles for the 1:19 mixture (Table 2, Supplementary Fig. S18). No allele dropin was observed for the 1:3, 1:6, 1:9, or 1:19 mixture. Only two artefacts dropped in (mh02KK003-GTC and mh20kk059-AG) with low sequencing depths (40X and 30X, see Supplementary Fig. S19) when analyzing the 1:1 mixture. These data indicated that the NGS-based microhaplotypes were superior to the CE-based STRs in genotyping the alleles of the minor contributor.

We then investigated the effect of STR stutters on the analysis of these mixtures. When 9947 A and 2800 M were mixed at a 1:1 ratio, the alleles from both contributors were very similar in peak height or sequencing depth (Fig. 4, Supplementary Figs. S9 and S14). Neither STR nor microhaplotype was effective in mixture deconvolution. When the mixture ratio was 1:3, the peak heights of alleles from the minor contributor were significantly lower than those of the major contributor and significantly higher than the STR stutters (Fig. 4, Supplementary Figs. S10 and S15). Both STRs and microhaplotypes were effective in mixture deconvolution. However, at mixture ratios of 1:6, 1:9, and 1:19, the minor contributor STR alleles were indistinguishable from the stutters of the major contributor 9947 A) and CSF1PO-11 (a stutter of the major contributor 2800 M) were both at the n-1 stutter position, with similar intensities. Their peak heights were 5%-10% of those of their possible

Genetic marker	Mixtures	Number of loci with fully called 9947 A alleles	9947 A drop-out loci	Number of loci interfered by stutters in mixture deconvolution	Loci interfered by stutters in mixture deconvolution	Number of remaining effective loci	Percentage of remaining effective loci
	9947 A:2800 M = 1:1	21		0		21	100.00%
	9947 A:2800 M = 1:3	21		0		21	100.00%
STR	9947 A:2800 M = 1:6	21		7	D16S539, CSF1PO, D18S51, D19S433, FGA, D22S1045, D2S1338	14	66.67%
	9947 A:2800 M = 1:9	19	D22S1045, D2S1338	11	D3S1358, vWA, D16S539, CSF1PO, D18S51, D19S433, FGA, D5S818, D7S820, D10S1248, D12S391	8	38.10%
	9947 A:2800 M = 1:19	8	D3S1358, vWA, D16S539, CSF1PO, TPOX, D18S51, D19S433, TH01, D22S1045, SE33, D1S1656, D12S391, D2S1338	7	D8\$1179, D21\$11, FGA, D5\$818, D13\$317, D7\$820, D10\$1248	1	4.76%
	9947 A:2800 M = 1:1	124		0		124	100.00%
	9947 A:2800 M = 1:3	123	mh02KK-136	0		123	99.19%
	9947 A:2800 M = 1:6	123	mh02KK-136	0		123	99.19%
Microhaplotype	9947 A:2800 M = 1:9	123	mh02KK-136	0		123	99.19%
	9947 A:2800 M = 1:19	114	mh01KK-205, mh02KK-136, mh04KK-019, mh05KK-079, mh07KK-030, mh08KK-032, mh10KK-087, mh12KK-043, mh17KK-055, mh21KK-324	0		114	91.94%

Table 2. Summary of STR-based and microhaplotype-based analysis of artificially mixed biological samples.

parent alleles, which is typical for STR stutters. Incorrect allele/stutter interpretation can readily occur in such situations. However, with microhaplotype genotyping, the alleles from the major and minor contributors were easily distinguishable in the various mixture ratios based on their sequencing depths (Table 2, Supplementary Figs. S15–S18). Taken together, only 38.10% and 4.76% of the STR loci were effective in analyzing the 1:9 and 1:19 mixtures, respectively, whereas 99.19% and 91.94% of the microhaplotypes were effective in analyzing the same mixtures, respectively (Table 2). These data confirm that microhaplotypes are reliable genetic markers for the deconvolution of forensic mixtures.

Population data. A total of 256 Han Chinese individuals residing in Gansu Province were genotyped, and 514 alleles were observed (Table 3), with approximately four alleles per locus on average. Thirteen alleles were observed for locus mh01KK-117, which was the highest number in this dataset. Single alleles were observed for two loci, mh10KK-084 and mh17KK-076, indicating that there was no genetic diversity at these two loci in this Han Chinese population. Therefore, the forensic parameters were not calculated for these two loci. The forensic statistical parameters were calculated for the other 122 loci, and are summarized in Table 4.

The PD values ranged from 0.0232 to 0.9623, with an average of 0.6799. The PD values for 90 loci were > 0.6, indicating that the individual identification capacity of the panel was high. The PEs for 66 loci were > 0.2, with 0.7855 (mh13KK-218) the highest PE value. Observed heterozygosity (H_o) was 0.0070–0.8952, and expected heterozygosity (H_e) was 0.0117–0.8656. The A_e values for 28 loci were > 3 (Fig. 5), and for another 23 loci, A_e was 2.5–3. Notably, the A_e values for mh13KK-218 and mh05KK-170 were even higher than 7.

To compare the individual identification capacities of the microhaplotypes and STRs, we summarized the PD and A_e values for the 20 microhaplotypes with the highest A_e values in the 124-plex panel and 20 commonly used forensic STRs (data under review in another manuscript) in Supplementary Table S3. The PD values for the microhaplotypes were 0.8691–0.9623 (0.9036 on average), which were very close to the PD range for STRs, 0.7794–0.9592 (0.9094 on average). The A_e values for the microhaplotypes and STRs were also similar. These data suggest that these 20 microhaplotypes are almost as effective as the commonly used forensic STRs for the identification of individuals.

To examine whether the microhaplotypes located on the same chromosome were linked to each other, we calculated LD. The *p*-values for pairwise linkage analyses are presented in Supplementary Table S4. Among the 124 microhaplotypes, 28 were linked in 10 pairs or groups (Supplementary Table S5) after correction for multiple testing (p < 0.0000065565). The locus with the highest A_e value within each linkage pair or group was used to calculate the combined forensic genetic parameters, whereas the other microhaplotypes within the linkage pairs or groups were not. Thus, based on 106 independent microhaplotypes, the combined match probability (CMP) and combined power of exclusion (CPE) were calculated to be 5.23×10^{-66} and $(1-4.28 \times 10^{-16})$, respectively.

Figure 4. Representative STR profiles and representative microhaplotype genotyping histograms for the mixture experiments. Signal peaks for D16S539-12 and CSF1PO-11 in the 1:6 mixture are indicated as "Allele" and "Stutter", respectively, for comparison. Numbers under each microhaplotype allele are the numeral allele names assigned to allow the microhaplotype data to be read conveniently.

Discussion

Since the concept of microhaplotypes was introduced, their unique advantages as novel genetic markers in the field of forensics have been gradually demonstrated. Various research groups have conducted extensive research into microhaplotypes and provided data for different populations. Hiroaki *et al.* studied 27 multiple-SNP haplo-type blocks in a Japanese population⁴. Chen and coworkers presented a novel panel of 26 microhaplotypes, with relatively high A_e (>3.0) and small sequence lengths (<50 bp)¹⁷. Voskoboinik *et al.* reported a panel of 10 highly

Genot	Count	Fre	Genot	Count	Fre	Genot	Count	Fre	Genot	Count	Fre
mh01KK-0	02		mh01KK-0	70		mh01KK-0	72		mh01KK-1	06	
AA	323	0.6333	AG	97	0.1895	CG	351	0.6937	CAAG	1	0.0022
AG	120	0.2353	AT	415	0.8105	TC	155	0.3063	CAGA	251	0.5553
GA	19	0.0373	mh01KK-2	05		mh01KK-2	10		CAGG	68	0.1504
GG	48	0.0941	CCAG	130	0.2632	СС	82	0.1660	CGAG	5	0.0111
mh01KK-1	17		TCAG	87	0.1761	TC	143	0.2895	TAGG	127	0.2810
AACC	193	0.3955	TTAA	74	0.1498	TT	269	0.5445	mh01KK-2	11	
AACT	84	0.1721	TTAG	66	0.1336	mh02KK-0	73		ACT	30	0.0673
AAGC	12	0.0246	TTGG	137	0.2773	GC	358	0.7075	ATC	193	0.4327
AAGT	6	0.0123	mh02KK-0	05		GT	105	0.2075	ATT	127	0.2848
AGCC	54	0 1107	AG	195	0 3916	TC	2	0.0040	GCC	3	0.0067
AGCT	15	0.0307	GA	174	0 3494	TT	41	0.0810	GTC	93	0.2085
AGGC	3	0.0061	GG	129	0.2590	mb02KK-2	01	0.0010	mb02KK-1	02	0.2005
CACC	83	0.0001	mh02KK-1	36	0.2370	GA	14	0.0287	GAC	11	0.0259
CACT	5	0.1701	GTA	1	0.0116	GG	22	0.0287	GGT	11	0.0239
CACI	5	0.0102	GIA	4	0.0110		452	0.0431	TCC	409	0.9040
CAGC	15	0.0307	TCA	5	0.0145	IA	452	0.9262	IGC	4	0.0094
CAGI	1	0.0020	TCA	11	0.0320	mn03KK-0	0/	0.0600	mn02KK-2	02	0.40(1
CGCC	8	0.0164	TCC	185	0.5378	TC	184	0.3622	CA	255	0.4961
CGCI	9	0.0184	TIC	139	0.4041	TC	183	0.3602	CC	1	0.0020
mh02KK-0	03		mh03KK-0	06		TT	141	0.2776	GA	256	0.5020
GCC	2	0.0039	AA	288	0.5692	mh03KK-1	50		mh03KK-0	08	
GTC	18	0.0353	AG	169	0.3340	AACA	162	0.3476	CG	1	0.0020
TCC	396	0.7765	TA	49	0.0968	GACC	191	0.4099	СТ	21	0.0427
TTC	48	0.0941	mh03KK-0	09		GGCC	113	0.2425	TG	258	0.5244
TTT	46	0.0902	CC	19	0.0373	mh04KK-0	10		TT	212	0.4309
mh02KK-1	34		TC	144	0.2824	AA	292	0.5703	mh04KK-0	11	
ACCG	23	0.0456	TT	347	0.6804	AG	166	0.3242	AC	215	0.4674
ACTA	3	0.0060	mh04KK-0	13		GA	47	0.0918	AT	118	0.2565
ACTG	25	0.0496	AAGAT	48	0.0964	GG	7	0.0137	GT	127	0.2761
ATCA	19	0.0377	CAGAT	61	0.1225	mh04KK-0	15		mh04KK-0	16	
ATCG	234	0.4643	CAGGT	3	0.0060	AC	339	0.6673	CC	60	0.1172
ATTA	56	0.1111	CGAAT	2	0.0040	AT	112	0.2205	TC	116	0.2266
ATTG	56	0.1111	CGGAC	27	0.0542	TT	57	0.1122	TT	336	0.6563
TCTA	1	0.0020	CGGAT	64	0.1285	mh04KK-0	17		mh04KK-0	29	
TCTG	11	0.0218	CGGGT	293	0.5884	ACA	25	0.0912	TC	422	0.8242
TTCG	7	0.0139	mh04KK-0	21		GCA	18	0.0657	TT	90	0.1758
TTTG	69	0.1369	AG	160	0.3226	GCG	185	0.6752	mh05KK-02	23	
mh02KK-2	13		GA	162	0.3266	GTA	46	0.1679	GCG	26	0.0544
CAT	29	0.0566	GG	174	0.3508	mh04KK-0	28		TCG	297	0.6213
CGT	156	0.3047	mh05KK-02	22		CA	2	0.0039	TTG	140	0.2929
TGC	17	0.0332	CA	259	0.5078	СС	156	0.3047	TTT	15	0.0314
TGT	310	0.6055	СС	152	0.2980	ТС	354	0.6914	mh05KK-0	62	
mh04KK-0	19		ТС	99	0.1941	mh05KK-1	70		AA	136	0.2677
AA	226	0 4431	mh05KK-0	79		CAAA	49	0.0984	AC	248	0.4882
AG	262	0.5137	CC	275	0 5413	CAAG	50	0.1004	ТА	124	0.2441
GA	202	0.0431	СТ	273	0.4587	CAGA	12	0.0241	mb06KK-0	25	0.2111
mb04KK-0	74	0.0151	mb06KK-0	80	0.1507	CAGG	14	0.0281	AGG	43	0.1503
	1	0.0020	AG	8	0.0158	CGAA	63	0.1265	GGG	243	0.8497
AT	1	0.0020		409	0.0138	COAR	60	0.1205	mb07KK 0	245	0.0497
CT	440	0.0743	mb07VV 0	490	0.9642	CGAG	25	0.1203	ACC	150	0.6022
mh05VV 0	79	0.1233	C	2	0.0050	CCCC	16	0.0705	CAC	52	0.0025
	01	0.1592	-С Т	500	0.0059	TAAA	74	0.0521	GAC	52	0.19/0
GA	01	0.1582	-1	509	0.9941	TAAA	/4	0.1486	GUU	33	0.2008
	451	0.8418	mn09KK-0	54	0.0051	TAAG	123	0.2470	mnu8KK-0	52	0.1662
mh06KK-0	26	0.077	AA	14	0.0276	TAGG	1	0.0020	CG	67	0.1683
ACG	1	0.0020	GA	108	0.2126	TGAA	1	0.0020	TA	39	0.0980
ATG	17	0.0335	GG	386	0.7598	mh06KK-1	01		ſG	292	0.7337
GCA	12	0.0236	mh09KK-1	53		AA	413	0.8381	mh09KK-1	52	
Continue	ed										

Genot	Count	Fre	Genot	Count	Fre	Genot	Count	Fre	Genot	Count	Fre
GCG	461	0.9075	CAA	23	0.0477	GA	1	0.0020	AGCA	97	0.1964
GTG	17	0.0335	CAC	31	0.0643	GG	79	0.1599	ATCG	1	0.0020
mh07KK-03	31		CGA	5	0.0104	mh07KK-0	82		ATTA	31	0.0628
CA	269	0.5316	TAA	191	0.3963	TC	198	0.3898	ATTG	267	0.5405
CG	98	0.1937	TAC	116	0.2407	TG	310	0.6102	GTCG	98	0.1984
TG	139	0 2747	TGA	87	0.1805				mh10KK-0	83	
mb09KK-0	33	0.27 17	TGC	29	0.0602	mb09KK-0	35		GC	41	0.0807
ACG	164	0.3241	mb09KK-1	57	0.0002	CG	157	0.3257	TC	467	0.9193
GCG	181	0.3577	ACCAT	15	0.0305	СТ	195	0.3237	mb10KK-0	-107	0.9195
ССТ	0	0.0159	ACTAT	15	0.0015	TC	120	0.1010	CC	255	0.0402
CTC	0	0.0136	ACIAI	43	0.0913	ng mb10VV 0	130	0.2097	GC CT	10	0.9492
GIG	155	0.5024	GCCAC	239	0.4858	MILIOKK-0	0/	0.0004	GI	19	0.0508
mn10KK-08	54	1 0000	GUUU	2	0.0041	AG	351	0.6964	mn11KK-0.	38	0.5200
IG	512	1.0000	GCCCI	139	0.2825	GA	153	0.3036	CG	236	0.5388
mh10KK-08	35		GICAC	52	0.1057	mh11KK-0	37		TA	18	0.0411
CC	254	0.4961	mh10KK-0	86		ACG	202	0.4040	TG	184	0.4201
CT	258	0.5039	GA	302	0.5945	GCG	208	0.4160	mh11KK-08	89	
mh10KK-10	01		GC	149	0.2933	GTG	90	0.1800	AT	264	0.5156
AG	181	0.3620	TA	57	0.1122	mh11KK-0	41		CG	219	0.4277
CA	80	0.1600	mh11KK-0	36		AG	45	0.0893	CT	29	0.0566
CG	239	0.4780	AA	150	0.2941	GA	282	0.5595	mh11KK-18	87	
mh11KK-03	39		AG	155	0.3039	GG	177	0.3512	CCCA	226	0.4575
GG	36	0.0706	CG	205	0.4020	mh11KK-1	80		CCCG	6	0.0121
GT	221	0.4333	mh11KK-0	40		AACC	3	0.0066	GCCG	3	0.0061
TT	253	0.4961	AC	308	0.8324	AACG	1	0.0022	GCGA	2	0.0040
mh11KK-09	90		CG	62	0.1676	AATC	38	0.0830	GCGG	133	0.2692
AC	331	0.6490	mh11KK-0	91		AATG	1	0.0022	GTCA	1	0.0020
GT	179	0.3510	-C	78	0.1535	ACCC	200	0.4367	GTGG	123	0.2490
mh11KK-19	91		-T	430	0.8465	ACCG	13	0.0284	mh12KK-04	46	
CAGT	103	0.2239	mh12KK-0-	43		ACTC	54	0.1179	GA	144	0.2824
CGAT	65	0.1413	CCG	47	0.0925	ACTG	11	0.0240	GG	130	0.2549
TAAC	86	0.1870	СТА	251	0.4941	GCCC	5	0.0109	ТА	133	0.2608
TAAT	204	0.4435	CTG	209	0.4114	GCCG	128	0.2795	TG	103	0.2020
TGAT	2	0.0043	TCG	1	0.0020	GCTC	3	0.0066	mh13KK-04	47	
mh12KK-0	92		mh12KK-0	93		GCTG	1	0.0022	CC	103	0.2146
CT	183	0.3735	AT	402	0.7882	mh12KK-0	45	0.0022	CT	73	0.1521
TC	307	0.6265	ТА	102	0.2118	CT	35	0.0694	TC	15	0.0313
mb12VV 2	307	0.0203	mh12VV 2	100	0.2110	TC	304	0.0094	TT	280	0.0313
	07	0.2255		6	0.0121	TT	75	0.7017	11 mb12VV 2	209	0.0021
CCA	57	0.3233	AACC	26	0.0121	mb12KK 2	02	0.1400	CCCT	70	0.1561
TAC	54	0.1812	AACG	20	0.0526	IIIII12KK-2	02	0.1072	0000	19	0.1561
TAG	51	0.1/11	AAIA	1	0.0020	AACI	97	0.1972	CGCC	1	0.0020
TCA	83	0.2785	AAIG	1/8	0.3603	AAIC	181	0.36/9	CGCI	104	0.2055
ICG	13	0.0436	AGCA	61	0.1235	AGII	92	0.18/0	CGIC	139	0.2/4/
mh13KK-2	18		AGCG	66	0.1336	CATC	2	0.0041	CGTT	100	0.1976
CCCC	8	0.0161	AGIG	80	0.1619	САТТ	119	0.2419	TCCT	16	0.0316
CCCT	20	0.0403	GATG	1	0.0020	CGTT	1	0.0020	TGCT	67	0.1324
CTCC	47	0.0948	GGCA	2	0.0040	mh14KK-0	48		mh14KK-0	58	
CTCT	61	0.1230	GGCG	67	0.1356	AC	7	0.0152	AC	183	0.3574
CTTC	95	0.1915	GGTG	6	0.0121	AT	273	0.5935	AT	286	0.5586
CTTT	48	0.0968	mh13KK-2	26		GC	37	0.0804	CC	43	0.0840
TCCC	2	0.0040	CA	10	0.0207	GT	143	0.3109	mh15KK-0	57	
TCCT	4	0.0081	CG	138	0.2851	mh15KK-0	66		GC	230	0.4563
TTCC	18	0.0363	TA	336	0.6942	AG	202	0.4139	GT	88	0.1746
TTCT	73	0.1472	mh14KK-1	01		AT	62	0.1270	TC	176	0.3492
TTTC	22	0.0444	AT	71	0.1530	CG	115	0.2357	TT	10	0.0198
TTTT	98	0.1976	GC	13	0.0280	СТ	109	0.2234	mh16KK-2	55	
mh13KK-22	25		GT	380	0.8190	mh16KK-0	96		ACCG	38	0.0769
AAG	65	0.1280	mh15KK-0	95		CA	328	0.6457	АСТА	1	0.0020
Continue	ed	1	1		1	1	1	1	1	1	
	u										

Genot	Count	Fre									
ACG	200	0.3937	CA	260	0.5078	CG	179	0.3524	ACTG	155	0.3138
GAA	103	0.2028	ТА	221	0.4316	TG	1	0.0020	GACA	173	0.3502
GAG	133	0.2618	TG	31	0.0605	mh16KK-30	02		GATA	17	0.0344
GCG	7	0.0138	mh16KK-04	19		ACTT	62	0.1225	GCCA	4	0.0081
mh15KK-10)4		AAAAG	150	0.3036	GCTC	99	0.1957	GCCG	39	0.0789
CAG	8	0.0158	ACAAA	43	0.0870	GCTT	81	0.1601	GCTG	67	0.1356
TAA	8	0.0158	ACAAG	5	0.0101	GTAT	188	0.3715	mh17KK-05	54	
TAG	54	0.1067	ACAGA	12	0.0243	GTTT	76	0.1502	AA	183	0.4816
TCG	436	0.8617	ACGGA	211	0.4271	mh17KK-0	53		AG	84	0.2211
mh17KK-05	55		CCAAA	72	0.1457	CT	234	0.4699	GG	113	0.2974
AC	227	0.5881	CCGGA	1	0.0020	TC	205	0.4116	mh17KK-10)5	
AT	1	0.0026	mh17KK-05	52		TT	59	0.1185	ATA	12	0.0235
CC	47	0.1218	AA	101	0.2186	mh17KK-02	77		ATG	498	0.9765
CT	111	0.2876	AG	148	0.3203	GG	440	0.8594	mh18KK-29	93	
mh17KK-1	10		GA	202	0.4372	TG	72	0.1406	AGAA	121	0.2430
CA	7	0.0137	GG	11	0.0238	mh18KK-28	85		AGGA	1	0.0020
CG	432	0.8471	mh17KK-07	76		AGCG	45	0.0886	ATAA	8	0.0161
TG	71	0.1392	AG	512	1.0000	CACG	256	0.5039	ATGA	72	0.1446
mh19KK-05	56		mh17KK-22	72		CGCG	6	0.0118	GGAA	198	0.3976
CA	265	0.5430	CCCT	246	0.5125	CGCT	89	0.1752	GGAG	77	0.1546
CC	1	0.0020	TCAT	25	0.0521	CGTG	112	0.2205	GGGA	9	0.0181
TA	18	0.0369	TCCC	28	0.0583	mh19KK-29	99		GTAA	7	0.0141
TC	204	0.4180	TCCT	116	0.2417	ACGAA	1	0.0020	GTAG	2	0.0040
mh21KK-3	15		TTCC	65	0.1354	ATGAA	68	0.1382	GTGA	3	0.0060
ACC	28	0.0562	mh19KK-05	57		ATGAG	1	0.0020	mh19KK-30)1	
ACT	1	0.0020	CCG	331	0.6567	GCAAA	50	0.1016	AGGT	4	0.0078
ATC	106	0.2129	CTG	139	0.2758	GCAAG	219	0.4451	GAAC	416	0.8157
ATT	13	0.0261	CTT	34	0.0675	GCATG	100	0.2033	GGAC	2	0.0039
GCC	69	0.1386	mh20KK-05	59		GCGTA	43	0.0874	GGAT	88	0.1725
GCT	28	0.0562	AA	136	0.2698	GCGTG	10	0.0203	mh20KK-05	58	
GTC	84	0.1687	AG	50	0.0992	mh20KK-30	07		CAC	162	0.3240
GTT	169	0.3394	GG	318	0.6310	CTGA	142	0.2971	TAC	148	0.2960
mh21KK-3	16		mh21KK-32	20		TTAA	101	0.2113	TAT	136	0.2720
ACAC	198	0.3976	AACA	56	0.1181	TTGA	192	0.4017	TGC	54	0.1080
ACGC	3	0.0060	AACG	127	0.2679	TTGC	43	0.0900	mh22KK-06	50	
ACGT	132	0.2651	AATA	1	0.0021	mh21KK-32	24		CA	144	0.2903
ATGC	44	0.0884	AGCG	1	0.0021	CCAA	3	0.0062	CG	170	0.3427
GCGC	120	0.2410	GACA	141	0.2975	CCAG	14	0.0288	GG	182	0.3669
GTGC	1	0.0020	GACG	18	0.0380	CCTA	19	0.0391	mh22KK-30)3	
mh22KK-06	51		GATA	81	0.1709	CCTG	3	0.0062	CGGG	325	0.6423
AAA	84	0.1667	GGCA	22	0.0464	CTAA	140	0.2881	CTGG	36	0.0711
AAG	4	0.0079	GGCG	27	0.0570	CTTA	50	0.1029	TGGG	145	0.2866
GAA	256	0.5079	mh22KK-06	54		CTTG	1	0.0021	mh22KK-06	59	
GAG	31	0.0615	AAT	432	0.8438	TCAG	185	0.3807	AG	46	0.0898
GGG	129	0.2560	GAT	80	0.1563	TCTG	69	0.1420	GG	166	0.3242
						TTAA	2	0.0041	GT	300	0.5859

Table 3. Allele frequencies of 124 microhaplotypes in the Chinese Han population (N = 256). Genot: allele genotype; Count: allele count; Fre: allele frequency.

polymorphic haplotypes, each containing more than 10 SNPs¹⁰. However, fewer surveys have been conducted with highly multiplexed systems. In this study, we developed a single-tube 124-plex assay for forensic microhaplotypes for use with next-generation sequencing.

The sequencing data from the 124-plex panel showed good intralocus and interlocus balance (Figs. 2 and 3), with over 90% of the reads classified as effective (Fig. 1). Mixture deconvolution is one of the major forensic applications for which microhaplotypes are advantageous, and it is noteworthy that the excellent intralocus balance characteristic of this panel provides a reliable foundation for mixture analyses.

Microhaplotypes are expected to provide a better solution than STRs to forensic mixture analyses because they circumvent the inference by stutters^{3,18–20}. However, the extent to which microhaplotypes can improve mixture

mbnmbnconstant <th< th=""><th>Microhaplotype</th><th>МР</th><th>PD</th><th>PE</th><th>TPI</th><th>H_o</th><th>H_e</th><th>р</th><th>A_e</th></th<>	Microhaplotype	МР	PD	PE	TPI	H _o	H _e	р	A _e
mbnikkr:0700.5320.40770.05180.62890.40300.40300.40300.40300.40300.40300.40300.40300.40300.40300.40300.40300.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.40310.40300.4031	mh01KK-002	0.2706	0.7294	0.2261	1.0897	0.5412	0.5343	0.5217	2.1426
mb01KK-0720.42200.57740.13380.43800.42380.42380.43384.33344.3334mb01KK-1060.08840.91740.51840.71300.7100.83314.334mb01KK-1200.2560.7440.24811.1450.62810.73310.51214.5181mb01KK-1200.2560.74440.24811.1450.6280.37900.52810.48510.5181mb01KK-1200.46400.5750.87810.5790.37800.48500.5790.37810.48510.579mb02KK-0300.42800.5720.37800.47800.5720.37810.48740.5720.37810.5220.37810.5720.37810.5720.37810.5720.37810.5720.57310.5720.57310.5720.57310.5720.57310.5720.57310.5720.57310.5720.57310.5720.57310.5720.57310.5720.57310.5720.5730.5720.5730.5720.5730.5720.5730.5720.5730.5720.5730.5720.5730.5720.5730.5720.5730.5720.575 <td< td=""><td>mh01KK-070</td><td>0.5323</td><td>0.4677</td><td>0.0518</td><td>0.6845</td><td>0.2695</td><td>0.3077</td><td>0.0636</td><td>1.4433</td></td<>	mh01KK-070	0.5323	0.4677	0.0518	0.6845	0.2695	0.3077	0.0636	1.4433
mholiKk-1060.22930.77070.51940.51920.51210.90022.4384mholiKk-2010.03800.7140.54552.17860.77030.7410.53334.343mholiKk-2100.23500.7440.24811.2230.59130.74310.52410.53330.48502.5191mholiKk-2110.14700.85240.21311.2230.59130.87800.48502.9197mholiXk-0300.40400.5220.37200.48100.5020.22817.611mholiXk-0310.5220.53800.5330.45300.45300.22817.611mholiXk-0310.5220.53810.53310.45300.7120.6130.53810.7071.618mholiXk-1340.5200.54300.54100.5120.53810.53730.54212.512mholiXk-0400.5300.7120.5120.5210.5530.5330.5422.714mholiXk-0400.5300.71400.5120.5310.5360.7741.838mholiXk-0400.5430.5410.5140.5330.535 <td>mh01KK-072</td> <td>0.4226</td> <td>0.5774</td> <td>0.1338</td> <td>0.8785</td> <td>0.4308</td> <td>0.4258</td> <td>0.8834</td> <td>1.7391</td>	mh01KK-072	0.4226	0.5774	0.1338	0.8785	0.4308	0.4258	0.8834	1.7391
mholtK-1170.08880.91420.54502.12640.77300.71100.38334.362mholtK-2050.23640.45440.24840.74330.54810.59124.5984mholtK-2100.14700.55240.28131.5230.5910.68510.60813.1606mholtK-2010.44450.59550.08810.7260.7580.85810.62810.5751mho2KK-0300.3200.5300.3300.5380.4730.68510.47910.22811.1751mho2KK-1300.36200.51840.57010.61410.47910.57011.1618mho2KK-1300.3700.42840.15100.47500.5200.38882.0701mho2KK-2010.7470.2530.1510.47150.5200.3882.0781mho2KK-3020.38900.64040.16120.5150.47450.5200.3882.0781mho2KK-0100.27800.51700.24211.1250.5520.5620.4742.4741mho3KK-0070.3890.5100.5100.5160.5300.5620.5660.5760.5520.5620.5760.576mho3KK-0100.2780.8160.1990.5600.5760.5820.5760.5760.5760.576mho4KK-0100.7460.8380.1370.5720.5760.5760.5760.5760.5760.5760.5760.5760.5760.5760.5760.5760.576<	mh01KK-106	0.2293	0.7707	0.1954	1.0180	0.5089	0.5912	0.0002	2.4386
mholtK-205 0.0826 0.7744 0.5704 0.2504 0.7444 0.2485 1.4135 0.7631 0.7831 0.7845 0.7841 mboltK-211 0.1470 0.8524 0.2813 1.2233 0.5791 0.5830 0.4850 0.5791 0.3760 0.5780 0.3780 0.4580 0.4991 mboltXK-030 0.4040 0.525 0.0340 0.5320 0.6380 0.4030 0.5320 0.4781 0.0282 1.373 mboltXK-130 0.3700 0.4933 0.0166 0.5830 0.1330 0.1370 0.2881 2.0370 mboltXK-130 0.3700 0.4640 0.6610 0.510 0.139 0.3720 0.4221 1.237 0.526 0.474 2.237 mboltXK-010 0.3800 0.712 0.2421 1.1421 0.450 0.530 0.538 2.0870 mboltXK-010 0.189 0.170 0.2271 0.230 0.531 0.538 2.6361 mboltXK-010 0.3140 0.578 <t< td=""><td>mh01KK-117</td><td>0.0858</td><td>0.9142</td><td>0.5455</td><td>2.1786</td><td>0.7705</td><td>0.7710</td><td>0.3833</td><td>4.3362</td></t<>	mh01KK-117	0.0858	0.9142	0.5455	2.1786	0.7705	0.7710	0.3833	4.3362
mh01KK.210 0.238 0.764 0.248 1.1435 0.528 0.533 0.4856 2.4518 mb01KK.211 0.476 0.8524 0.2013 1.2233 0.5919 0.6821 0.6831 0.6831 0.6831 0.5919 0.6831 0.5919 0.6831 0.5919 0.6831 0.5919 0.6814 0.5919 0.5736 0.5784 1.699 mb02KK-034 0.3620 0.7320 0.7384 0.4928 0.1383 0.4930 0.662 0.7500 0.7385 0.2013 mb02KK-134 0.9357 0.6413 0.6493 0.6163 0.5130 0.1393 0.1395 0.5707 1.1618 mb02KK-2014 0.4370 0.2428 0.1231 0.6531 0.6491 0.5533 0.562 0.6474 2.478 mb03KK-006 0.2380 0.7170 0.2428 1.1295 0.553 0.6631 0.632 0.6321 0.6332 0.6414 2.478 mb03KK-006 0.3124 0.6321 0.3636 0.512 <t< td=""><td>mh01KK-205</td><td>0.0826</td><td>0.9174</td><td>0.5504</td><td>2.2054</td><td>0.7733</td><td>0.7841</td><td>0.5912</td><td>4.5984</td></t<>	mh01KK-205	0.0826	0.9174	0.5504	2.2054	0.7733	0.7841	0.5912	4.5984
mholxk.211 0.487 0.281 1.223 0.591 0.6851 0.6000 3.726 0.877 0.8481 1.6007 mb02KK.003 0.4045 0.5925 0.3729 1.4821 0.628 0.5786 0.3786 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4588 0.4581 0.4581 0.4581 0.4581 0.4581 0.4581 0.4581 0.4592 0.4641 0.5591 0.4542 0.4591 0.4592 0.4581 0.4797 0.4581 0.4797 0.4281 0.4781 0.4592 0.4581 2.4781 mb02KK-010 0.2878 0.712 0.2441 1.491 0.6654 0.6631 0.4782 2.4781 mb03KK-006 0.312 0.4781 0.4791 0.4591 0.4761 2.4373 mb03KK-010 0.312 0.481 0.481 0.481 0.481 0.481 2.4876 mb04KK-011	mh01KK-210	0.2356	0.7644	0.2485	1.1435	0.5628	0.5933	0.4856	2.4518
nh02KK-0030.4040.5950.07810.7900.37260.37260.57280.5722.9177mb02KK-0050.37280.32300.33380.53270.6130.66870.22811.8173mb02KK-1340.03700.52400.01300.53270.6130.66870.22811.753mb02KK-1340.05070.4430.01600.55000.14540.54770.00002.0337mb02KK-2100.53670.44900.01660.95150.47450.50200.35860.0771.1618mb02KK-2010.53760.12040.12211.12570.55730.55620.64742.2478mb03KK-0060.28300.71700.24281.13270.45580.0002.1632mb03KK-0070.18800.63000.37671.49410.64590.55860.0002.1632mb03KK-0070.36600.42120.32720.28251.28600.5970.46580.2022.741mb03KK-0100.7750.5210.5220.6380.0002.77411.584mb04KK-0170.4140.5600.3220.5840.5130.1732.741mb04KK-0170.4140.5600.3321.2660.3970.46450.46122.741mb04KK-0170.4140.5600.3340.5170.4530.46140.4730.4130.4722.741mb04KK-0170.4140.5600.3340.5120.5730.5620.573	mh01KK-211	0.1476	0.8524	0.2813	1.2253	0.5919	0.6851	0.0600	3.1606
mho2KK-0050.19280.80720.37291.48210.66270.56380.97921.9171mh02KK-0730.63200.63300.13380.87800.40300.40500.20811.0751mh02KK-1340.95700.73400.7500.73800.7500.7380.7501.161mh02KK-1340.35700.44300.16200.91510.14540.5770.16121.161mh02KK-2010.35900.74700.26300.15410.13930.13930.7071.161mh02KK-2010.28300.71700.24241.13270.55800.5730.94222.788mh03KK-0070.28300.71700.24281.29900.55330.5620.4742.878mh03KK-0070.36400.81000.37610.49910.45840.6002.878mh03KK-0170.7780.7220.30231.26800.69910.53810.0002.7740mh03KK-0170.7780.7220.30231.26810.5730.4012.7740mh04K-0170.7840.7220.3021.26810.5750.4012.7740mh04K-0170.31470.8250.1451.26810.5750.4012.7741mh04K-0170.3140.8250.1411.0500.5750.4010.5741.754mh04K-0170.3140.8260.1410.5760.5730.5720.5730.5721.754mh04K-0170.3140.5250.575 <td>mh02KK-003</td> <td>0.4045</td> <td>0.5955</td> <td>0.0981</td> <td>0.7969</td> <td>0.3726</td> <td>0.3796</td> <td>0.8549</td> <td>1.6099</td>	mh02KK-003	0.4045	0.5955	0.0981	0.7969	0.3726	0.3796	0.8549	1.6099
mhol2KK-0730.36200.63800.13380.87850.43080.40000.60890.20251.0738mhol2KK-1040.87950.90480.50880.50000.75000.73880.82783.7641mhol2KK-1340.54770.46430.01640.58500.14440.54700.13930.50711.1618mhol2KK-2020.35860.46440.16620.51510.47450.50730.52622.1545mhol2KK-3040.28300.71220.24411.13270.55730.55230.52620.57830.00242.1526mhol3KK-0060.28300.7120.24411.9290.57330.55230.56242.15850.17641.8381mhol3KK-0070.18360.81600.37671.49410.66540.63810.16141.8381mhol3KK-0080.31420.68700.18490.40910.45210.53860.00242.7681mhol4K-0100.27780.2220.5230.5380.00162.77411.8381mhol4K-0110.2080.7290.42510.5630.5070.41612.7641mhol4K-0130.31470.5260.0300.53810.61720.51610.51721.714mhol4K-0140.34400.55600.3390.5570.5530.5630.5170.5761.516mhol4K-0150.31470.56200.5270.5530.5630.5170.5160.5160.5160.5160.5160.516	mh02KK-005	0.1928	0.8072	0.3729	1.4821	0.6627	0.6588	0.9792	2.9197
mh02KK-102 0.8745 0.1255 0.0044 0.5327 0.0613 0.0689 0.2225 1.0738 mb02KK-134 0.0527 0.6493 0.0166 0.5800 0.1444 0.5477 0.0000 2.2033 mb02KK-201 0.3507 0.6493 0.0162 0.5810 0.4145 0.5029 0.3858 2.0078 mb02KK-213 0.2803 0.7170 0.2428 1.1327 0.5563 0.5633 0.7662 2.1564 mb03KK-007 0.1898 0.6710 0.2428 1.1257 0.5531 0.5632 0.6344 2.1633 mb03KK-007 0.3660 0.6404 0.1976 0.4914 0.4033 0.5021 0.5631 0.5021 0.5386 0.2042 2.1633 mb04KK-010 0.3760 0.6412 0.1741 1.3381 mb04KK-013 0.1785 0.2781 1.2046 0.5501 0.330 2.6454 0.6511 0.310 2.213 mb04KK-014 0.3162 0.561 0.531 0.561 0.571	mh02KK-073	0.3620	0.6380	0.1338	0.8785	0.4308	0.4507	0.0288	1.8175
mho2KK-1340.9920.90480.60982.00000.75000.73880.82783.7641mb02KK-2010.35070.64930.01660.58000.14540.54770.2033mh02KK-2010.35840.71200.24411.13270.57800.37330.94222.1564mh02KK-2020.38800.71700.24281.12950.55730.55620.64742.2478mh03KK-0060.23000.71700.24281.12950.55800.03040.12930.76822.9586mh03KK-0070.36800.63400.13940.64500.64500.64500.74641.8381mh03KK-0100.37600.72220.30211.20010.64900.61130.01782.756mh04KK-0100.27800.72241.20270.56260.64900.00162.7141mh04KK-0110.19898.1020.27481.20270.5620.64900.00122.0133mh04KK-0140.31470.65600.33300.6330.61130.01722.6143mh04KK-0140.31400.5660.3330.5170.53800.3341.6381mh04KK-0140.31400.5660.3330.5170.5670.49452.0153mh04KK-0140.31400.5660.3330.5310.5670.5980.5161.639mh04KK-0140.31400.5560.3331.3780.5310.5680.3311.638mh04K-0140.3120.666 <t< td=""><td>mh02KK-102</td><td>0.8745</td><td>0.1255</td><td>0.0034</td><td>0.5327</td><td>0.0613</td><td>0.0689</td><td>0.2225</td><td>1.0738</td></t<>	mh02KK-102	0.8745	0.1255	0.0034	0.5327	0.0613	0.0689	0.2225	1.0738
mh02KK-1360.35070.64930.01660.58000.14440.54770.00002.2033mb02KK-2010.74370.25630.01540.5100.47430.5200.35882.0078mb02KK-2130.23780.71200.24241.12270.55610.65620.67442.4781mb03KK-0060.28300.71700.24281.1290.55730.55620.67442.4781mb03KK-0070.18980.81020.37671.49410.66540.66330.78682.9586mb03KK-1080.31240.66760.18400.49900.45500.35860.00042.1623mb03KK-1010.17850.82150.31280.49910.45900.56210.30582.7761mb04KK-0110.20480.7520.28271.28660.5970.64090.01612.7741mb04KK-0150.31470.65630.1782.56410.50530.84722.1721mb04KK-0160.36160.69300.20151.02320.50530.84722.1721mb04KK-0170.41440.55660.3300.63310.21710.50520.00002.0133mb04KK-0160.31610.81640.33781.37180.63700.64922.9958mb04KK-0290.54500.54510.5750.5520.5030.84222.6014mb04KK-0160.31620.62610.32630.61710.50520.00012.333mb04K-0290.54500.566<	mh02KK-134	0.0952	0.9048	0.5098	2.0000	0.7500	0.7358	0.8278	3.7641
mh02KK-2010.74370.25630.01540.58100.13930.13950.57071.1618mb02KK-2020.33690.64040.16230.95150.47450.50290.38582.0078mh02KK-0040.23300.71200.24281.12970.55800.63310.74222.1564mh03KK-0070.18980.81020.37671.44410.66430.66330.76862.8765mh03KK-0080.31240.68760.18400.91910.49590.53860.02042.1631mh03KK-0090.36600.63400.19900.69100.55210.3082.780mh04K-0100.27780.72520.28771.28660.65110.0162.771mh04KK-0110.20480.7920.28751.2660.5510.3032.780mh04KK-0150.31470.68330.19451.10100.50790.49450.81051.9743mh04KK-0160.3010.68320.19170.5550.5841.0172.568mh04KK-0170.44340.5660.3300.64340.21700.5520.4022.9958mh04KK-0170.44340.5660.3300.64340.21700.5520.4022.9958mh04KK-0170.41420.58160.4140.66330.21110.5050.5441.201mh04KK-0170.41520.5610.4160.6220.7110.5050.5431.212mh04K-0170.41620.5410.530	mh02KK-136	0.3507	0.6493	0.0166	0.5850	0.1454	0.5477	0.0000	2.2033
mho2KK-202 0.3596 0.6404 0.1662 0.9515 0.4745 0.5029 0.3858 2.0781 mb03KK-006 0.2307 0.7120 0.2441 1.1327 0.5586 0.5373 0.9422 2.1564 mb03KK-006 0.1380 0.8102 0.3767 1.4941 0.6654 0.6633 0.7464 1.8381 mb03KK-007 0.3660 0.6340 0.1396 0.8191 0.4952 0.5386 0.0001 2.8785 mh03KK-100 0.1785 0.8215 0.1894 1.0043 0.5021 0.6138 0.1001 2.7781 mh04KK-011 0.2148 0.7222 0.2248 1.2020 0.6640 0.0112 2.7181 mh04KK-015 0.3147 0.6853 0.1241 1.0203 0.6133 0.6132 0.7741 1.8181 mh04KK-016 0.3016 0.6731 1.2780 0.6113 0.1783 2.6741 mh04KK-017 0.3147 0.556 0.338 1.2171 0.555 0.633 0.8161	mh02KK-201	0.7437	0.2563	0.0154	0.5810	0.1393	0.1395	0.5707	1.1618
mh02KK-213 0.2878 0.7122 0.2441 1.1327 0.5586 0.5373 0.9422 2.1564 mb03KK-006 0.2830 0.7170 0.2428 1.1295 0.5573 0.5562 0.6474 2.2478 mb03KK-007 0.1888 0.8120 0.3767 1.4941 0.6564 0.6530 0.7568 2.9586 mb03KK-007 0.1889 0.8121 0.1890 0.4919 0.4559 0.5464 1.8138 mb03KK-010 0.2778 0.7222 0.3023 1.2800 0.6094 0.5621 0.3058 2.2780 mb04KK-011 0.2048 0.7952 0.2857 1.2366 0.5957 0.6409 0.0016 2.7741 mb04KK-015 0.3147 0.6853 0.1945 0.5156 0.5033 0.8547 2.0127 mb04KK-016 0.061 6.999 0.215 1.023 0.5156 0.6330 0.8547 2.0127 mb04KK-016 0.061 6.999 0.212 1.0119 0.5025 0.3389	mh02KK-202	0.3596	0.6404	0.1662	0.9515	0.4745	0.5029	0.3858	2.0078
mh03KK-006 0.2830 0.7170 0.2428 1.1295 0.5573 0.5562 0.6474 2.2478 mb03KK-007 0.1898 0.8102 0.3767 1.4941 0.6654 0.6333 0.7868 2.9586 mb03KK-008 0.3124 0.6876 0.1894 0.0495 0.5386 0.0004 2.1623 mb03KK-100 0.3767 0.8215 0.1894 0.604 0.5521 0.5388 0.0001 2.8755 mb04KK-011 0.2048 0.7222 0.323 1.2806 0.5957 0.6409 0.0116 2.7741 mb04KK-016 0.3147 0.6533 0.1945 1.0282 0.5156 0.5033 0.844 2.0172 mb04KK-016 0.3016 0.6330 0.6434 0.2117 0.5052 0.0000 2.0133 mb04KK-017 0.4132 0.566 0.3370 0.534 0.534 2.0172 mb04KK-017 0.4354 0.4674 0.337 1.3778 0.6371 0.6676 0.0002 2.9958 </td <td>mh02KK-213</td> <td>0.2878</td> <td>0.7122</td> <td>0.2441</td> <td>1.1327</td> <td>0.5586</td> <td>0.5373</td> <td>0.9422</td> <td>2.1564</td>	mh02KK-213	0.2878	0.7122	0.2441	1.1327	0.5586	0.5373	0.9422	2.1564
mh03KK-007 0.1898 0.8102 0.3767 1.4941 0.6654 0.6330 0.7868 2.9586 mh03KK-008 0.3124 0.6876 0.1840 0.9919 0.4959 0.5386 0.0204 2.1623 mh03KK-009 0.3660 0.6340 0.1395 0.8215 0.8916 0.4392 0.4599 0.7746 1.8381 mh03KK-100 0.2178 0.7222 0.323 1.2800 0.6049 0.6014 2.7780 mh04KK-011 0.2048 0.7952 0.2356 1.2366 0.5957 0.4049 0.0161 2.7743 mh04KK-016 0.3014 0.6853 0.1945 1.0160 0.5079 0.4945 0.8615 1.9743 mh04KK-016 0.3014 0.566 0.330 0.6314 0.402 2.958 mh04KK-017 0.4344 0.556 0.337 1.3778 0.6371 0.6402 2.958 mh04KK-014 0.4162 0.588 0.1384 0.8210 0.2111 0.299 0.2031 <	mh03KK-006	0.2830	0.7170	0.2428	1.1295	0.5573	0.5562	0.6474	2.2478
mh03KK-008 0.3124 0.6876 0.1840 0.9919 0.4959 0.5366 0.2041 21623 mh03KK-009 0.3660 0.6340 0.1396 0.8916 0.4392 0.4569 0.7746 1.8381 mh03KK-150 0.1785 0.222 0.3023 1.2800 0.5621 0.3058 2.8765 mh04KK-010 0.2748 0.7222 0.3023 1.2800 0.5624 0.5131 0.1078 2.5644 mh04KK-011 0.2498 0.7952 0.2875 0.4945 0.8615 1.9743 mh04KK-012 0.3147 0.6550 0.313 0.5156 0.5033 0.8547 2.172 mh04KK-017 0.4444 0.5566 0.330 0.6134 0.5150 0.5389 0.4302 0.9958 mh04KK-014 0.5128 0.4000 2.9958 mh04KK-017 0.4142 0.5458 0.3147 0.526 0.5389 0.3231 0.5458 0.4314 0.526 0.2031 0.324 1.4019 mh04KK-029	mh03KK-007	0.1898	0.8102	0.3767	1.4941	0.6654	0.6633	0.7868	2.9586
mh03KK-009 0.3660 0.6340 0.1396 0.8916 0.4392 0.4569 0.7766 1.8381 mh03KK-150 0.1785 0.8215 0.1894 1.0043 0.5022 0.6538 0.0000 2.8765 mh04KK-011 0.2048 0.7222 0.3023 1.2306 0.5957 0.6403 0.0116 2.7741 mh04KK-011 0.1898 0.8102 0.2748 1.2087 0.5864 0.6113 0.0178 2.6454 mh04KK-016 0.3061 0.6999 0.2015 1.0323 0.5156 0.5053 0.8615 1.9743 mh04KK-017 0.4434 0.5666 0.0330 0.6343 0.2117 0.5052 0.8007 2.9958 mh04KK-019 0.3128 0.872 0.1927 1.0119 0.5059 0.5389 0.3401 1.4080 mh04KK-021 0.4162 0.8184 0.1328 0.6231 0.119 0.2004 0.3388 1.2820 mh04KK-021 0.5456 0.4162 0.5621 0.2016	mh03KK-008	0.3124	0.6876	0.1840	0.9919	0.4959	0.5386	0.0204	2.1623
mh03KK-150 0.1785 0.8215 0.1894 1.0043 0.5022 0.6538 0.0000 2.8751 mh04KK-010 0.2778 0.7222 0.3023 1.2800 0.6094 0.5621 0.3058 2.2780 mh04KK-011 0.2048 0.7952 0.2857 1.2366 0.5957 0.6409 0.0016 2.7741 mh04KK-013 0.1898 0.8102 0.2748 1.2087 0.5864 0.6113 0.0178 2.5644 mh04KK-016 0.3041 0.6530 0.5156 0.5538 0.8547 2.0172 mh04KK-017 0.4134 0.5566 0.3030 0.6331 0.5176 0.6000 2.9588 mh04KK-021 0.1854 0.8162 0.1119 0.5059 0.5389 0.1333 1.4080 mh04KK-021 0.1854 0.4162 0.5388 0.1383 1.3778 0.6371 0.4002 2.9958 mh04KK-022 0.5456 0.4544 0.623 0.7111 0.2903 0.5244 1.4080	mh03KK-009	0.3660	0.6340	0.1396	0.8916	0.4392	0.4569	0.7746	1.8381
mho4KK-010 0.2778 0.7222 0.3023 1.2800 0.6094 0.5621 0.3088 2.27801 mh04KK-011 0.2048 0.7952 0.2857 1.2366 0.5957 0.6409 0.0016 2.7741 mh04KK-013 0.1898 0.8102 0.2748 1.2087 0.5864 0.6113 0.0178 2.5644 mh04KK-015 0.3147 0.6833 0.1945 1.0160 0.5079 0.4945 0.8172 2.0172 mh04KK-016 0.3061 0.6939 0.2015 1.0323 0.5156 0.5033 0.8547 2.0172 mh04KK-017 0.4162 0.8783 0.3174 1.6383 1.3778 0.6371 0.4002 2.9583 mh04KK-021 0.4162 0.5388 0.1384 0.8889 0.4375 0.4300 1.7324 1.6300 mh04KK-021 0.5456 0.4544 0.6023 0.7111 0.299 0.8304 1.4080 mh04KK-021 0.5456 0.4524 0.6313 0.4162 1.6313	mh03KK-150	0.1785	0.8215	0.1894	1.0043	0.5022	0.6538	0.0000	2.8765
mh04KK-0110.20480.79520.28571.23660.59570.64090.00162.7741mh04KK-0130.18980.81020.27481.20870.58640.61130.01782.5644mh04KK-0150.31470.68530.19451.01600.50790.49450.86151.9743mh04KK-0160.30610.69390.20151.03230.51560.50330.85472.0172mh04KK-0170.44340.55660.03000.63430.21170.50520.00002.0133mh04KK-0210.41540.81620.19271.01190.50590.53890.13732.1638mh04KK-0290.45460.45840.03781.37780.63710.66760.94461.7516mh04KK-0290.45460.45440.06230.71110.29690.20030.83041.4080mh04KK-0290.54560.45440.06230.71110.26950.52330.75282.1018mh04KK-0290.54560.45440.06230.71110.26950.52330.75282.1018mh04KK-0210.5330.7970.28431.23300.59450.61680.84222.6014mh05KK-0230.20210.70790.18931.00420.50150.31720.40032.7058mh05KK-0260.69370.42950.5660.63950.28120.62640.60021.3432mh05KK-0260.69220.3760.62610.5150.49761.3432<	mh04KK-010	0.2778	0.7222	0.3023	1.2800	0.6094	0.5621	0.3058	2.2780
mh04KK-0130.18980.81020.27481.20870.58640.61130.01782.5644mh04KK-0150.31470.68530.19451.01600.50790.49450.86151.9733mh04KK-0160.30610.69390.20151.03230.51560.50330.85472.0172mh04KK-0170.44340.55660.03000.63430.21170.50520.00002.0133mh04KK-0190.31280.68720.19271.01190.50590.53890.13732.1638mh04KK-0210.18540.81460.33781.37780.63710.666760.04022.9958mh04KK-0220.54560.45440.06230.71110.20900.29330.83041.4880mh04KK-0240.63740.32620.3080.62810.20390.22040.33881.2820mh05KK-0250.20200.77980.32011.32810.62350.61680.84422.6014mh05KK-0260.20330.79670.28431.23300.59450.63170.40032.7058mh05KK-0780.57050.42950.5760.69950.28520.26690.34721.3630mh05KK-0790.39570.6440.00200.50800.17320.40031.3432mh05KK-0780.57050.42950.56050.61680.61740.40041.3432mh05KK-0790.39540.46640.0020.50800.17400.35171.3402mh05KK	mh04KK-011	0.2048	0.7952	0.2857	1.2366	0.5957	0.6409	0.0016	2.7741
mh04KK-015 0.3147 0.6853 0.1945 1.0160 0.5079 0.4945 0.8615 1.9733 mh04KK-016 0.3061 0.6939 0.2015 1.0323 0.5156 0.5053 0.8547 2.0172 mh04KK-017 0.4434 0.5566 0.030 0.6343 0.2117 0.5052 0.5389 0.1373 2.1638 mh04KK-021 0.1854 0.8146 0.3378 1.3778 0.6371 0.6676 0.4042 2.9958 mh04KK-021 0.1545 0.4544 0.623 0.7111 0.2909 0.2903 0.3308 1.4308 mh04KK-024 0.4374 0.3626 0.0308 0.6281 0.2309 0.2204 0.3388 1.2820 mh05KK-022 0.2020 0.7798 0.3201 1.3281 0.6253 0.6168 0.422 2.6014 mh05KK-025 0.5755 0.4295 0.6495 0.5455 0.6177 0.4032 2.018 mh05KK-078 0.5755 0.5765 0.6995 0.2852	mh04KK-013	0.1898	0.8102	0.2748	1.2087	0.5864	0.6113	0.0178	2.5644
mh04KK-016 0.3061 0.6939 0.2015 1.0323 0.5156 0.5053 0.8547 2.0172 mh04KK-017 0.4434 0.5566 0.0300 0.6343 0.2117 0.5052 0.0000 2.0133 mh04KK-019 0.3128 0.6872 0.1927 1.0119 0.5059 0.5389 0.1373 2.1638 mh04KK-021 0.1854 0.8146 0.3378 1.3778 0.6371 0.6676 0.4042 2.9958 mh04KK-028 0.4162 0.5838 0.1384 0.8889 0.4375 0.4300 0.9446 1.7516 mh04KK-029 0.5456 0.4544 0.0623 0.7111 0.2909 0.3388 1.2820 mh05KK-021 0.6374 0.3620 0.2011 1.3281 0.6235 0.6168 0.8422 2.6014 mh05KK-072 0.2020 0.7967 0.2381 1.2330 0.5951 0.4172 1.3630 mh05KK-078 0.3957 0.6043 0.2166 1.0672 0.5151 0.4497	mh04KK-015	0.3147	0.6853	0.1945	1.0160	0.5079	0.4945	0.8615	1.9743
mh04KK-0170.44340.55660.03300.63430.21170.50520.00002.0133mh04KK-0190.31280.68720.19271.01190.50590.53890.13732.1638mh04KK-0210.18540.81460.33781.37780.63710.66760.40422.9958mh04KK-0290.54560.45440.06230.71110.29690.29030.83041.4080mh04KK-0290.54560.45440.06230.71110.29690.22040.33881.2820mh04KK-0220.22020.77980.32011.32810.62350.61680.84222.6014mh05KK-0230.29210.70790.18931.00420.50210.52530.75282.1018mh05KK-0780.57050.42950.66950.28520.26690.34721.3630mh05KK-0790.39570.60430.21641.06720.53150.49760.31401.9864mh05KK-0260.73760.26240.00000.50350.00700.25640.00001.3432mh06KK-0250.73760.26240.00020.50800.17130.17100.35171.2102mh06KK-0260.95340.04660.00020.50800.17350.60631.3738mh06KK-0260.57140.46590.66760.21100.27260.35901.3738mh06KK-0260.5740.6177.0970.2550.56030.00002.6339mh06KK-0260.5	mh04KK-016	0.3061	0.6939	0.2015	1.0323	0.5156	0.5053	0.8547	2.0172
mh04KK-019 0.3128 0.6872 0.1927 1.0119 0.5059 0.5389 0.1373 2.1638 mh04KK-021 0.1854 0.8146 0.3378 1.3778 0.6371 0.6676 0.0402 2.9958 mh04KK-028 0.4162 0.5838 0.1384 0.8889 0.4375 0.4300 0.9446 1.7516 mh04KK-029 0.5456 0.4544 0.0623 0.7111 0.2909 0.2024 0.3388 1.2820 mh04KK-022 0.2202 0.7798 0.3201 1.3281 0.6235 0.6168 0.8422 2.6014 mh05KK-023 0.2921 0.7079 0.1893 1.0042 0.5021 0.5253 0.7528 2.1018 mh05KK-024 0.2033 0.7967 0.2843 1.2330 0.5945 0.4017 1.3630 mh05KK-078 0.5755 0.4295 0.6695 0.2852 0.2664 0.4003 1.3423 mh05KK-079 0.3927 0.6043 0.2164 0.0763 0.8375 0.4017	mh04KK-017	0.4434	0.5566	0.0330	0.6343	0.2117	0.5052	0.0000	2.0133
mh04KK-021 0.1854 0.8146 0.3378 1.3778 0.6371 0.6676 0.0402 2.9958 mh04KK-028 0.4162 0.5838 0.1384 0.8889 0.4375 0.4300 0.9446 1.7516 mh04KK-029 0.5456 0.4544 0.0623 0.7111 0.2969 0.2903 0.8304 1.4080 mh04KK-074 0.6374 0.3626 0.308 0.6281 0.2039 0.2204 0.3388 1.2820 mh05KK-022 0.2020 0.7798 0.3201 1.3281 0.6235 0.6168 0.8422 2.6014 mh05KK-023 0.2921 0.7079 0.1893 1.0042 0.5251 0.5753 0.7528 2.1018 mh05KK-078 0.5705 0.4295 0.0576 0.6995 0.2852 0.2664 0.4003 2.7058 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.515 0.410 1.342 mh06KK-026 0.9522 0.5030 0.0158 0.8101 0.3517	mh04KK-019	0.3128	0.6872	0.1927	1.0119	0.5059	0.5389	0.1373	2.1638
mh04KK-028 0.4162 0.5838 0.1384 0.8889 0.4375 0.4300 0.9446 1.7516 mh04KK-029 0.5456 0.4544 0.0623 0.7111 0.2969 0.2903 0.8304 1.4080 mh04KK-074 0.6374 0.3626 0.308 0.6281 0.2039 0.2204 0.3388 1.2820 mh05KK-022 0.2020 0.7798 0.3201 1.3281 0.6235 0.6168 0.8422 2.6014 mh05KK-023 0.2921 0.7079 0.1893 1.0042 0.5213 0.5253 0.7528 2.1018 mh05KK-026 0.2033 0.7967 0.2843 1.2330 0.5945 0.6171 0.4003 2.7058 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-025 0.7376 0.2624 0.0000 0.5035 0.0070 0.2564 0.0001 1.3432 mh06KK-026 0.6922 0.3078 0.6266 0.2126	mh04KK-021	0.1854	0.8146	0.3378	1.3778	0.6371	0.6676	0.0402	2.9958
mh04KK-0290.54560.45440.06230.71110.29690.29030.83041.4080mh04KK-0740.63740.36260.03080.62810.20390.22040.33881.2820mh05KK-0220.22020.77980.32011.32810.62350.61680.84222.6014mh05KK-0230.29210.70790.18931.00420.50210.52530.75282.1018mh05KK-0620.20330.79670.28431.23300.59450.63170.40032.7058mh05KK-0780.57050.42950.05760.69950.28520.26690.34721.3630mh05KK-0790.39570.60430.21661.06720.53150.49760.31401.9864mh05KK-0790.39570.60430.21641.06720.53150.49760.31401.9864mh05KK-0260.73760.26240.00000.50350.00700.25640.00001.3432mh06KK-0260.69220.37780.02290.60480.17320.17400.35171.2102mh06KK-0300.95340.04660.00020.50800.01580.03120.00081.0321mh07KK-0310.23420.76580.33161.36020.63240.60560.34962.5279mh07KK-0310.23420.76580.3161.36020.63240.60560.34962.5279mh07KK-0320.41550.58450.04780.66800.67670.0061 <t< td=""><td>mh04KK-028</td><td>0.4162</td><td>0.5838</td><td>0.1384</td><td>0.8889</td><td>0.4375</td><td>0.4300</td><td>0.9446</td><td>1.7516</td></t<>	mh04KK-028	0.4162	0.5838	0.1384	0.8889	0.4375	0.4300	0.9446	1.7516
mh04KK-074 0.6374 0.3626 0.0308 0.6281 0.2039 0.2204 0.3388 1.2820 mh05KK-022 0.2020 0.7798 0.3201 1.3281 0.6235 0.6168 0.8422 2.6014 mh05KK-023 0.2921 0.7079 0.1893 1.0042 0.5021 0.5253 0.7528 2.1018 mh05KK-062 0.2033 0.7967 0.2843 1.2330 0.5945 0.6317 0.4003 2.7058 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-079 0.3957 0.6043 0.2164 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-026 0.7376 0.2624 0.0000 0.5035 0.0070 0.2564 0.0001 1.3432 mh06KK-026 0.6922 0.3078 0.0229 0.6048 0.1732 0.1740 0.3517 1.2102 mh06KK-030 0.3246 0.6754 0.0617 0.7097	mh04KK-029	0.5456	0.4544	0.0623	0.7111	0.2969	0.2903	0.8304	1.4080
mh05KK-022 0.2202 0.7798 0.3201 1.3281 0.6235 0.6168 0.8422 2.6014 mh05KK-023 0.2921 0.7079 0.1893 1.0042 0.5021 0.5253 0.7528 2.1018 mh05KK-062 0.2033 0.7967 0.2843 1.2330 0.5945 0.6317 0.4003 2.7058 mh05KK-078 0.5705 0.4295 0.0576 0.6995 0.2852 0.2669 0.3472 1.3630 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-079 0.3957 0.6043 0.2164 1.06072 0.5315 0.4976 0.3140 1.9864 mh05KK-026 0.7376 0.2624 0.0000 0.5035 0.0070 0.2564 0.0001 1.3432 mh06KK-026 0.9524 0.4664 0.0022 0.5080 0.0178 0.312 0.0081 1.3421 mh06KK-030 0.3246 0.6754 0.617 0.7097	mh04KK-074	0.6374	0.3626	0.0308	0.6281	0.2039	0.2204	0.3388	1.2820
mh05KK-023 0.2921 0.7079 0.1893 1.0042 0.5021 0.5253 0.7528 2.1018 mh05KK-062 0.2033 0.7967 0.2843 1.2330 0.5945 0.6317 0.4003 2.7058 mh05KK-078 0.5705 0.4295 0.0576 0.6995 0.2852 0.2669 0.3472 1.3630 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-079 0.3957 0.6043 0.2166 0.6070 0.2564 0.0000 1.3432 mh06KK-026 0.5922 0.3078 0.0229 0.6048 0.1732 0.1740 0.3517 1.2102 mh06KK-080 0.9534 0.0466 0.0002 0.5080 0.0158 0.312 0.0008 1.3738 mh07KK-030 0.3246 0.6754 0.617 0.7097 0.2955	mh05KK-022	0.2202	0.7798	0.3201	1.3281	0.6235	0.6168	0.8422	2.6014
mh05KK-062 0.2033 0.7967 0.2843 1.2330 0.5945 0.6317 0.4003 2.7058 mh05KK-078 0.5705 0.4295 0.0576 0.6995 0.2852 0.2669 0.3472 1.3630 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-079 0.3957 0.6043 0.2164 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-026 0.7376 0.2624 0.0000 0.5035 0.0070 0.2564 0.0000 1.3432 mh06KK-026 0.6922 0.3078 0.0229 0.6048 0.1732 0.1740 0.3517 1.2102 mh06KK-030 0.9534 0.0466 0.0002 0.5080 0.0158 0.0312 0.0008 1.332 mh07KK-030 0.3246 0.6754 0.617 0.7077 0.2955 0.5603 0.0002 2.5279 mh07KK-031 0.2342 0.658 0.3140 1.548	mh05KK-023	0.2921	0.7079	0.1893	1.0042	0.5021	0.5253	0.7528	2.1018
mh05KK-078 0.5705 0.4295 0.0576 0.6995 0.2852 0.2669 0.3472 1.3630 mh05KK-079 0.3957 0.6043 0.2166 1.0672 0.5315 0.4976 0.3140 1.9864 mh05KK-079 0.3380 0.9620 0.7619 4.2931 0.8835 0.8610 0.4205 7.1065 mh06KK-025 0.7376 0.2624 0.0000 0.5035 0.0070 0.2564 0.0000 1.3432 mh06KK-026 0.6922 0.3078 0.0229 0.6048 0.1732 0.1740 0.3517 1.2102 mh06KK-080 0.9534 0.0466 0.002 0.5080 0.0158 0.312 0.0008 1.3432 mh06KK-030 0.5701 0.4299 0.0453 0.6676 0.2510 0.2726 0.3590 1.3738 mh07KK-030 0.3242 0.6754 0.6017 0.7077 0.2955 0.5603 0.0000 1.5183 mh07KK-031 0.2342 0.6524 0.1465 0.9071	mh05KK-062	0.2033	0.7967	0.2843	1.2330	0.5945	0.6317	0.4003	2.7058
mh05KK-0790.39570.60430.21661.06720.53150.49760.31401.9864mh05KK-1700.03800.96200.76194.29310.88350.86100.42057.1065mh06KK-0250.73760.26240.00000.50350.00700.25640.00001.3432mh06KK-0260.69220.30780.02290.60480.17320.17400.35171.2102mh06KK-0300.95340.04660.00020.50800.01580.03120.00081.0321mh06KK-1010.57010.42990.04530.66760.25100.27260.35901.3738mh07KK-0300.32460.67540.06170.70970.29550.56030.00002.2633mh07KK-0310.23420.76580.33161.36020.63240.60560.34962.5279mh07KK-0810.97680.02320.00010.50590.01170.01171.00001.0118mh07KK-0820.37760.62240.14650.90710.44880.47660.35541.9073mh08KK-0320.41550.54630.07880.75150.33470.37740.00031.6043mh09KK-0330.17890.82110.38051.50600.66800.67670.00613.0799mh09KK-0350.19280.80720.35721.43450.65150.65890.60512.9196mh09KK-1530.10310.89690.41741.62840.69320.6651<	mh05KK-078	0.5705	0.4295	0.0576	0.6995	0.2852	0.2669	0.3472	1.3630
mh05KK-170 0.0380 0.9620 0.7619 4.2931 0.8835 0.8610 0.4205 7.1065 mh06KK-025 0.7376 0.2624 0.0000 0.5035 0.0070 0.2564 0.0000 1.3432 mh06KK-026 0.6922 0.3078 0.0229 0.6048 0.1732 0.1740 0.3517 1.2102 mh06KK-080 0.9534 0.0466 0.0002 0.5080 0.0158 0.0312 0.0008 1.0321 mh06KK-101 0.5701 0.4299 0.0453 0.6676 0.2510 0.2726 0.3590 1.3738 mh07KK-030 0.3246 0.6754 0.0617 0.7097 0.2955 0.5603 0.0000 2.6333 mh07KK-031 0.2342 0.7658 0.3316 1.3602 0.6324 0.6056 0.3496 2.5279 mh07KK-081 0.9768 0.0232 0.0011 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-082 0.3776 0.6224 0.1465 0.9071	mh05KK-079	0.3957	0.6043	0.2166	1.0672	0.5315	0.4976	0.3140	1.9864
mh06KK-025 0.7376 0.2624 0.0000 0.5035 0.0070 0.2564 0.0000 1.3432 mh06KK-026 0.6922 0.3078 0.0229 0.6048 0.1732 0.1740 0.3517 1.2102 mh06KK-080 0.9534 0.0466 0.002 0.5080 0.0158 0.0312 0.0008 1.0321 mh06KK-101 0.5701 0.4299 0.0453 0.6676 0.2510 0.2726 0.3590 1.3738 mh07KK-030 0.3246 0.6754 0.0617 0.7097 0.2955 0.5603 0.0000 2.2633 mh07KK-031 0.2342 0.7658 0.3316 1.3602 0.6324 0.6056 0.3496 2.5279 mh07KK-031 0.9768 0.0232 0.0001 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-032 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh08KK-032 0.4155 0.5845 0.488 0.6759	mh05KK-170	0.0380	0.9620	0.7619	4.2931	0.8835	0.8610	0.4205	7.1065
mh06KK-026 0.6922 0.3078 0.0229 0.6048 0.1732 0.1740 0.3517 1.2102 mh06KK-080 0.9534 0.0466 0.0002 0.5080 0.0158 0.0312 0.0008 1.0321 mh06KK-101 0.5701 0.4299 0.0453 0.6676 0.2510 0.2726 0.3590 1.3738 mh07KK-030 0.3246 0.6754 0.0617 0.7097 0.2955 0.5603 0.0000 2.2633 mh07KK-031 0.2342 0.7658 0.3316 1.3602 0.6324 0.6056 0.3496 2.5279 mh07KK-081 0.9768 0.0232 0.0011 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-082 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh08KK-032 0.4155 0.5845 0.488 0.6769 0.2613 0.4249 0.0001 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5600	mh06KK-025	0.7376	0.2624	0.0000	0.5035	0.0070	0.2564	0.0000	1.3432
mh06KK-080 0.9534 0.0466 0.0002 0.5080 0.0158 0.0312 0.0008 1.0321 mh06KK-101 0.5701 0.4299 0.0453 0.6676 0.2510 0.2726 0.3590 1.3738 mh07KK-030 0.3246 0.6754 0.0617 0.7097 0.2955 0.5603 0.0000 2.2633 mh07KK-031 0.2342 0.7658 0.3316 1.3602 0.6324 0.6056 0.3496 2.5279 mh07KK-081 0.9768 0.0322 0.0011 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-082 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh08KK-032 0.4155 0.5845 0.0488 0.6769 0.2613 0.4249 0.0001 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0061 3.0799 mh09KK-035 0.1928 0.8072 0.3572 1.4345	mh06KK-026	0.6922	0.3078	0.0229	0.6048	0.1732	0.1740	0.3517	1.2102
mh06KK-101 0.5701 0.4299 0.0453 0.6676 0.2510 0.2726 0.3590 1.3738 mh07KK-030 0.3246 0.6754 0.0617 0.7097 0.2955 0.5603 0.0000 2.2633 mh07KK-031 0.2342 0.7658 0.3316 1.3602 0.6324 0.6056 0.3496 2.5279 mh07KK-081 0.9768 0.0232 0.0001 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-082 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh08KK-032 0.4155 0.5845 0.0488 0.6769 0.2613 0.4249 0.0000 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0011 3.0799 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0061 3.0799 mh09KK-035 0.1928 0.8072 0.3572 1.4345	mh06KK-080	0.9534	0.0466	0.0002	0.5080	0.0158	0.0312	0.0008	1.0321
mh07KK-030 0.3246 0.6754 0.0617 0.7097 0.2955 0.5603 0.0000 2.2633 mh07KK-031 0.2342 0.7658 0.3316 1.3602 0.6324 0.6056 0.3496 2.5279 mh07KK-081 0.9768 0.0232 0.0001 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-082 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh08KK-032 0.4155 0.5845 0.0488 0.6769 0.2613 0.4249 0.0000 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0013 1.6043 mh09KK-034 0.4537 0.5463 0.0788 0.7515 0.3347 0.3774 0.0003 1.6043 mh09KK-152 0.1894 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-153 0.1031 0.8969 0.4174 1.6284	mh06KK-101	0.5701	0.4299	0.0453	0.6676	0.2510	0.2726	0.3590	1.3738
mh07KK-031 0.2342 0.7658 0.3316 1.3602 0.6324 0.6056 0.3496 2.5279 mh07KK-081 0.9768 0.0232 0.0001 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-082 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh07KK-032 0.4155 0.5845 0.0488 0.6769 0.2613 0.4249 0.0000 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0001 3.0799 mh09KK-034 0.4537 0.5463 0.0788 0.7515 0.3347 0.3774 0.0003 1.6043 mh09KK-035 0.1928 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284	mh07KK-030	0.3246	0.6754	0.0617	0.7097	0.2955	0.5603	0.0000	2.2633
mh07KK-081 0.9768 0.0232 0.0001 0.5059 0.0117 0.0117 1.0000 1.0118 mh07KK-082 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh08KK-032 0.4155 0.5845 0.0488 0.6769 0.2613 0.4249 0.0000 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0001 3.0799 mh09KK-034 0.4537 0.5463 0.0788 0.7515 0.3347 0.3774 0.0003 1.6043 mh09KK-035 0.1928 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819	mh07KK-031	0.2342	0.7658	0.3316	1.3602	0.6324	0.6056	0.3496	2.5279
mh07KK-082 0.3776 0.6224 0.1465 0.9071 0.4488 0.4766 0.3554 1.9073 mh08KK-032 0.4155 0.5845 0.0488 0.6769 0.2613 0.4249 0.0000 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0061 3.0799 mh09KK-034 0.4537 0.5463 0.0788 0.7515 0.3347 0.3774 0.0003 1.6043 mh09KK-035 0.1928 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.3750 0.6250 0.1875 1.0000	mh07KK-081	0.9768	0.0232	0.0001	0.5059	0.0117	0.0117	1.0000	1.0118
mh08KK-032 0.4155 0.5845 0.0488 0.6769 0.2613 0.4249 0.0000 1.7355 mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0061 3.0799 mh09KK-034 0.4537 0.5463 0.0788 0.7515 0.3347 0.3774 0.0003 1.6043 mh09KK-035 0.1928 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-086 0.2699 0.7301 0.2204 1.0763	mh07KK-082	0.3776	0.6224	0.1465	0.9071	0.4488	0.4766	0.3554	1.9073
mh09KK-033 0.1789 0.8211 0.3805 1.5060 0.6680 0.6767 0.0061 3.0799 mh09KK-034 0.4537 0.5463 0.0788 0.7515 0.3347 0.3774 0.0003 1.6043 mh09KK-035 0.1928 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354	mh08KK-032	0.4155	0.5845	0.0488	0.6769	0.2613	0.4249	0.0000	1.7355
mh09KK-034 0.4537 0.5463 0.0788 0.7515 0.3347 0.3774 0.0003 1.6043 mh09KK-035 0.1928 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh09KK-033	0.1789	0.8211	0.3805	1.5060	0.6680	0.6767	0.0061	3.0799
mh09KK-035 0.1928 0.8072 0.3572 1.4345 0.6515 0.6589 0.6051 2.9196 mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh09KK-034	0.4537	0.5463	0.0788	0.7515	0.3347	0.3774	0.0003	1.6043
mh09KK-152 0.1894 0.8106 0.2948 1.2602 0.6032 0.6273 0.4162 2.6740 mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh09KK-035	0.1928	0.8072	0.3572	1.4345	0.6515	0.6589	0.6051	2.9196
mh09KK-153 0.1031 0.8969 0.4174 1.6284 0.6930 0.7439 0.1148 3.8810 mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh09KK-152	0.1894	0.8106	0.2948	1.2602	0.6032	0.6273	0.4162	2.6740
mh09KK-157 0.1652 0.8348 0.3728 1.4819 0.6626 0.6651 0.2222 2.9738 mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh09KK-153	0.1031	0.8969	0.4174	1.6284	0.6930	0.7439	0.1148	3.8810
mh10KK-083 0.7378 0.2622 0.0167 0.5853 0.1457 0.1487 0.6690 1.1742 mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh09KK-157	0.1652	0.8348	0.3728	1.4819	0.6626	0.6651	0.2222	2.9738
mh10KK-085 0.3750 0.6250 0.1875 1.0000 0.5000 0.5010 1.0000 1.9999 mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh10KK-083	0.7378	0.2622	0.0167	0.5853	0.1457	0.1487	0.6690	1.1742
mh10KK-086 0.2699 0.7301 0.2204 1.0763 0.5354 0.5491 0.3924 2.2122	mh10KK-085	0.3750	0.6250	0.1875	1.0000	0.5000	0.5010	1.0000	1.9999
Continued	mh10KK-086	0.2699	0.7301	0.2204	1.0763	0.5354	0.5491	0.3924	2.2122
Continued	Continued								

Microhaplotype	МР	PD	PE	TPI	H _o	H _e	р	A _e
mh10KK-087	0.4464	0.5536	0.1773	0.9767	0.4881	0.4237	0.0178	1.7326
mh10KK-088	0.8779	0.1221	0.0007	0.5137	0.0267	0.0967	0.0000	1.1067
mh10KK-101	0.2269	0.7731	0.3055	1.2887	0.6120	0.6161	0.9879	2.5965
mh11KK-036	0.1919	0.8081	0.3730	1.4826	0.6628	0.6609	0.7357	2.9373
mh11KK-037	0.2118	0.7882	0.3417	1.3889	0.6400	0.6326	0.0278	2.7124
mh11KK-038	0.3318	0.6682	0.2148	1.0631	0.5297	0.5327	0.0017	2.1345
mh11KK-039	0.3052	0.6948	0.2725	1.2028	0.5843	0.5623	0.1308	2.2787
mh11KK-040	0.6233	0.3767	0.0115	0.5675	0.1189	0.2797	0.0000	1.3869
mh11KK-041	0.2801	0.7199	0.1981	1.0244	0.5119	0.5567	0.0569	2.2504
mh11KK-089	0.2959	0.7041	0.2202	1.0756	0.5352	0.5490	0.8886	2.2122
mh11KK-090	0.4014	0.5986	0.1539	0.9239	0.4588	0.4565	1.0000	1.8368
mh11KK-091	0.5853	0.4147	0.0430	0.6615	0.2441	0.2605	0.3349	1.3512
mh11KK-180	0.1223	0.8777	0.3384	1.3795	0.6376	0.7104	0.0336	3.4343
mh11KK-187	0.1829	0.8171	0.3412	1.3876	0.6397	0.6574	0.2171	2.9071
mh11KK-191	0.1364	0.8636	0.3522	1.4198	0.6478	0.6998	0.5212	3.3140
mh12KK-043	0.2531	0.7469	0.2204	1.0763	0.5354	0.5792	0.4763	2.3699
mh12KK-045	0.4412	0.5588	0.0879	0.7730	0.3532	0.3626	0.8955	1.5672
mh12KK-046	0.1105	0.8895	0.4624	1 7958	0.7216	0.7480	0 5687	3 9449
mh12KK-092	0.3869	0.6131	0.1496	0.9142	0.4531	0.4689	0.6818	1 8796
mh12KK-093	0.5014	0.4986	0.0627	0.7123	0.2980	0.3345	0.0917	1.5011
mh12KK-202	0.1235	0.8765	0.5273	2.0847	0.7602	0.7338	0.5978	3.7356
mh13KK-047	0.2393	0.7607	0.1987	1.0256	0.5125	0.5685	0.0114	2.3113
mh13KK-213	0.1637	0.8363	0.2153	1.0643	0.5302	0.7550	0.0000	4.0395
mh13KK-217	0.0709	0.9291	0.4609	1.7899	0.7207	0.7910	0.0267	4.7474
mh13KK-218	0.0377	0.9623	0.7855	4.7692	0.8952	0.8656	0.2436	7.3473
mh13KK-223	0.0718	0.9282	0.5888	2.4327	0.7945	0.8019	0.6251	5.0081
mh13KK-225	0.1309	0.8691	0.4865	1.8955	0.7362	0.7202	0.4268	3.5560
mh13KK-226	0 3933	0.6067	0.1222	0.8521	0.4132	0.4373	0.5378	1 7741
mh14KK-048	0.2882	0.7118	0.1727	0.9664	0.4826	0.5456	0.0005	2.1951
mh14KK-068	0.2960	0 7040	0.2568	1 1636	0 5703	0 5543	0.3020	2 2380
mh14KK-101	0.5513	0.4487	0.0341	0.6374	0.2155	0.3058	0.0000	1 4390
mh15KK-066	0.1322	0.8678	0.3925	1 5443	0.6762	0.7086	0.1130	3 4 1 4 1
mh15KK-067	0.1322	0.0070	0.3455	1.3443	0.6702	0.6402	0.3893	2 7695
mh15KK-095	0.2895	0.7105	0.1980	1.1000	0.5117	0.5532	0.2057	2.2329
mh15KK-104	0.5957	0.4043	0.0407	0.6554	0.2372	0.2461	0.2539	1 3256
mh16KK-049	0.1511	0.1015	0.4043	1 5833	0.6842	0.6973	0.0084	3 2878
mh16KK 096	0.1911	0.6024	0.1553	0.9270	0.0042	0.4599	0.5357	1 8483
mh16KK 255	0.3970	0.8042	0.1333	1 0010	0.4000	0.4333	0.0642	3 05/3
mh16KK-302	0.1050	0.0942	0.5000	1.9766	0.7470	0.7400	0.1978	4 1750
mh17KK 052	0.1765	0.9035	0.2827	1.2287	0.7470	0.6593	0.1970	2 9227
mh17KK-052	0.1705	0.0255	0.2027	1.1422	0.553	0.5969	0.1071	2.7227
mh17KK-054	0.2348	0.7652	0.1921	1.1422	0.5025	0.6325	0.0000	2.4730
mh17KK-055	0.3193	0.6807	0.4116	1.6083	0.6891	0.5581	0.0001	2.7665
mh17KK-077	0.6063	0.3937	0.0398	0.6531	0.2344	0.2422	0.6031	1 3187
mh17KK-105	0.9103	0.0897	0.0020	0.5247	0.0471	0.0460	1 0000	1.0482
mh17KK-110	0.5721	0.4279	0.0453	0.6675	0.2510	0.2634	0.3798	1.3567
mh17KK-272	0.1697	0.8303	0.2859	1.2371	0.5958	0.6559	0.0194	2.8943
mh18KK-285	0 1 5 9 9	0.8401	0.3082	1 2959	0.6142	0.6601	0.3786	2,9305
mh18KK-293	0.1111	0.8889	0.4264	1.6600	0.6988	0.7387	0.0237	3.8057
mh19KK-056	0 3050	0.6950	0 1604	0.9385	0.4672	0.5301	0 1012	2 1231
mh19KK-057	0.3325	0.6675	0.1707	0.9618	0.4802	0.4890	0.7007	1.9534
mh19KK-299	0.1115	0.8885	0.3963	1.5570	0.6789	0.7245	0.0916	3.6110
mh19KK-301	0.5244	0.4756	0.0612	0.7083	0.2941	0.3054	0.4242	1.4384
mh20KK-058	0.1296	0.8704	0.4407	1.7123	0.7080	0.7232	0.8080	3.5940
mh20KK-059	0.2985	0.7015	0.2130	1.0588	0.5278	0.5203	0.9951	2.0801
mh20KK-307	0.1369	0.8631	0.2990	1.2713	0.6067	0.6991	0.0271	3.3076
mh21KK-315	0.0786	0.9214	0.5827	2.3942	0.7912	0.7865	0.6718	4.6484
Continued								
Sommulu								

Microhaplotype	MP	PD	PE	TPI	Ho	H _e	р	A _e
mh21KK-316	0.1373	0.8627	0.4202	1.6382	0.6948	0.7072	0.6424	3.3985
mh21KK-320	0.0751	0.9249	0.5559	2.2358	0.7764	0.7914	0.4894	4.7555
mh21KK-324	0.1082	0.8918	0.4668	1.8134	0.7243	0.7404	0.4008	3.8302
mh22KK-060	0.1765	0.8235	0.2870	1.2400	0.5968	0.6649	0.1050	2.9726
mh22KK-061	0.1891	0.8109	0.3455	1.4000	0.6429	0.6462	0.2469	2.8158
mh22KK-064	0.5750	0.4250	0.0532	0.6882	0.2734	0.2642	0.8121	1.3581
mh22KK-069	0.2939	0.7061	0.2525	1.1532	0.5664	0.5446	0.5257	2.1905
mh22KK-303	0.3182	0.6818	0.1927	1.0120	0.5059	0.5013	0.6662	2.0011

deconvolution has been unclear. Therefore, we undertook parallel mixture experiments and in-depth comparative analyses of CE-based STR and NGS-based microhaplotype genotyping. Our results show that only 38.10% and 4.76% of STR loci effectively analyzed 1:9 and 1:19 mixtures, respectively, whereas 99.19% and 91.94% of the microhaplotypes effectively analyzed the same mixtures, respectively (Table 2). The microhaplotypes were also superior to STRs in the analysis of forensic mixture because they avoided not only inference by stutters, but also the dropout of minor contributor alleles. It should be noted that these results were obtained by single experiments at each mixture ratio and needed further verification.

Probabilistic genotyping software, including LRmix²¹, STRmix²², and EuroForMix²³, have been developed. Using semicontinuous or fully continuous models, these programs provide optional solutions for mixed STR profile deconvolution. As noted by Bennett *et al.*²⁴, similar probabilistic calculations could also be helpful in mixed microhaplotype data analyses.

To evaluate their capacities to identify individuals and family/clan relationships in a Han Chinese population, we sequenced the DNA of 256 unrelated individuals. A statistical analysis showed that the majority of microhaplotypes sequenced were highly polymorphic and informative in the Gansu Han population. The CMPs for most commercial forensic STR kits range from 10^{-17} to 10^{-26} ²⁵⁻²⁷. In this study, the CMP for 106 microhaplotypes was 5.23×10^{-66} , which is tens of orders of magnitude lower than those of STR multiplex systems. These data demonstrate that microhaplotypes are powerful genetic markers for the precise identification of individuals.

Some less polymorphic microhaplotypes in the Han Chinese population were kept in the 124-plex panel, including 2 markers which showed no genetic diversity. The ancestry inference capacity of these microhaplotypes has been extensively discussed by Kidd *et al.*^{8,15,28,29}. Potential application of the 124-plex panel in ancestry inference awaits further studies.

Conclusions. We have developed an NGS-based 124-plex panel of microhaplotypes. Mixture experiments showed that the microhaplotypes are superior to STRs in forensic mixture analysis because they avoid not only interference by stutters, but also the dropout of minor contributor alleles. The DNA of 256 Chinese Han individuals was sequenced with the 124-plex panel. The estimated forensic parameters showed that the 20 microhaplotype loci with the highest A_e values in the 124-plex panel were as efficient as STRs in the identification of individuals, and that CMP for 106 microhaplotypes was 5.23×10^{-66} . These data demonstrate that the 124-plex microhaplotype type panel provides an additional tool for forensic applications.

Materials and Methods

DNA samples. Blood samples were collected from unrelated Han Chinese individuals. Written informed consent was given by the blood donors and this work was approved by the Ethical Review Board of the Institute of Forensic Science, Ministry of Public Security of China (Beijing, China). All methods were performed in accordance with the relevant guidelines and regulations. DNA was extracted with the MagAttract M48 DNA Manual Kit (Qiagen, Limburg, Germany), according to the manufacturer's guidelines. The extracted DNA samples were quantified with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) on a Qubit fluorometer (Thermo Fisher Scientific).

The female genomic DNA standard 9947 A (Promega, Madison, WI, USA) was used in the sensitivity assays. Massive parallel sequencing was performed on a dilution series of genomic samples (1.0, 0.5, 0.2, or 0.1 ng). For the mixture experiments, standard genomic DNAs 9947 A and 2800 M (Promega) were mixed in ratios of 1:1, 1:3, 1:6, 1:9 and 1:19, to a total amount of 1.0 ng.

Multiplex amplification. Primers were designed for the 130 microhaplotype loci reported by Kidd *et al.*⁸ with the Primer Premier 5.0 software³⁰. After repeated optimization of the primer sequences and the PCR conditions, 124 microhaplotypes were successfully multiplexed in a single reaction system (Table 1). The PCRs were performed in a total volume of 20 μ L containing 20 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.6 mM MgCl₂, 0.8 mg/ ml bovine serum albumin, 0.2% (v/v) Tween 20, 3.2% (v/v) glycerol, 0.02% (w/v) NaN₃, 200 mM each dNTP, 2 U of Taq DNA polymerase (Roche, Basel, Swiss), primer pairs (concentrations indicated in Table 1), and 1 ng of template DNA. The PCR conditions were 95 °C for 11 min, followed by 28 cycles of 30 s at 94 °C, 2 min at 60 °C, and 1 min at 72 °C, with a final elongation step at 60 °C for 60 min.

Library preparation and sequencing. The PCR products were purified with the QIAquick 96 PCR Purification Kit (Qiagen) and the TruSeq DNA PCR-Free HT Kit (Illumina, San Diego, CA, USA) and used for library preparation, according to the manufacturer's guidelines. The libraries were sequenced on a MiSeq FGx platform (Illumina) using the Miseq Reagent Kit v2 (Illumina), with a read length of 250 bases.

Data analysis. FASTQ data were generated with the Miseq FGx Control Software 1.0.15.0 (Illumina). The MHTyper software³¹ was employed for microhaplotype allele calling, with the sequencing depth threshold set at 30 reads. The Hg19 human genome was used as the reference sequence. The allele frequencies and forensic statistical parameters (match probability, MP; power of discrimination, PD; power of exclusion, PE; typical paternity index, TPI) were calculated with Modified-PowerStat spreadsheet 1.2^{32} . Arlequin 3.5^{33} was used to calculate the observed heterozygosity, expected heterozygosity, Hardy–Weinberg equilibrium, and linkage disequilibrium (LD). The effective number of alleles (A_r) was calculated with the formula described in a previous publication³.

CE-based STR genotyping. The GlobalFiler[®] Kit (Thermo Fisher Scientific) was used for CE-based STR genotyping, according to the manufacturer's recommendations. An aliquot of PCR product $(1 \, \mu L)$ was added to $10 \, \mu L$ of deionized formamide (Thermo Fisher Scientific) containing the internal size standards. All samples were

separated on a 3500XL Genetic Analyzer (Thermo Fisher Scientific) using POP[™]-4 Polymer (Thermo Fisher Scientific) and a 36 cm capillary array (Thermo Fisher Scientific). The GeneMapper[®] ID-X software v4.0 (Thermo Fisher Scientific) was used for fragment sizing and allele calling.

Received: 6 November 2019; Accepted: 23 January 2020; Published online: 06 February 2020

References

- Kidd, K. K. et al. Microhaplotype loci are a powerful new type of forensic marker. Forensic Sci. Int: Genet. Suppl. Ser. 4, e123–e124 (2013).
- Kidd, K. K. et al. Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci. Int. Genet. 12, 215–224 (2014).
- 3. Kidd, K. K. & Speed, W. C. Criteria for selecting microhaplotypes: mixture detection and deconvolution. Investig. Genet. 6, 1 (2015).
- 4. Hiroaki, N. *et al.* Approaches for identifying multiple-SNP haplotype blocks for use in human identification. *Leg. Med.* **17**, 415–420 (2015).
- Kidd, K. K. et al. Genetic markers for massively parallel sequencing in forensics. Forensic Sci. Int: Genet. Suppl. Ser. 5, e677–e679 (2015).
- 6. Pu, Y. *et al.* Microhaplotype: Ability of personal identification and being ancestry informative marker. *Forensic Sci. Int: Genet. Suppl. Ser.* **6**, e442–e444 (2017).
- 7. Zhu, J. *et al.* Genotyping polymorphic microhaplotype markers through the Illumina[®] MiSeq platform for forensics. *Forensic Sci. Int. Genet.* **39**, 1–7 (2019).
- 8. Kidd, K. K. et al. Evaluating 130 microhaplotypes across a global set of 83 populations. Forensic Sci. Int. Genet. 29, 29-37 (2017).
- 9. Chen, P. *et al.* Microhaplotype identified and performed in genetic investigation using PCR-SSCP. *Forensic Sci. Int. Genet.* **28**, e1–e7 (2017).
- Voskoboinik, L., Motro, U. & Darvasi, A. Facilitating complex DNA mixture interpretation by sequencing highly polymorphic haplotypes. *Forensic Sci. Int. Genet.* 35, 136–140 (2018).
- 11. Wang, H. et al. NGS technology makes microhaplotype a potential forensic marker. Forensic Sci. Int: Genet. Suppl. Ser. 5, e233–e234 (2015).
- 12. Turchi, C., Pesaresi, M. & Tagliabracci, A. A microhaplotypes panel for forensic genetics using massive parallel sequencing. *Forensic Sci. Int: Genet. Suppl. Ser.* 6, e117–e118 (2017).
- 13. Zhu, J. et al. FLfinder: A novel software for the microhaplotype marker. Forensic Sci. Int: Genet. Suppl. Ser. 5, e622–e624 (2015).
- 14. Qu, S. *et al.* Estimate the heterozygote balance of microhaplotype marker with massively parallel sequencing. *Forensic Sci. Int: Genet. Suppl. Ser.* **6**, e375–e376 (2017).
- 15. Oldoni, F. et al. Microhaplotypes for ancestry prediction. Forensic Sci. Int: Genet. Suppl. Ser. 6, e513–e515 (2017).
- Turchi, C., Melchionda, F., Pesaresi, M. & Tagliabracci, A. Evaluation of a microhaplotypes panel for forensic genetics using massive parallel sequencing technology. *Forensic Sci. Int. Genet.* 41, 120–127 (2019).
- 17. Chen, P. et al. Evaluation of the Microhaplotypes panel for DNA mixture analyses. Forensic Sci. Int. Genet. 35, 149-155 (2018).
- 18. Zhu, J. et al. Genotyping microhaplotype markers through massively parallel sequencing. Forensic Sci. Int: Genet. Suppl. Ser. 6, e314–e316 (2017).
- 19. Oldoni, F., Kidd, K. K. & Podini, D. Microhaplotypes in forensic genetics. *Forensic Sci. Int. Genet.* 38, 54–69 (2019).
- 20. Chen, P. et al. A microhaplotypes panel for massively parallel sequencing analysis of DNA mixtures. Forensic Sci. Int. Genet. 40, 140–149 (2019).
- 21. Prieto, L. et al. Euroforgen-NoE collaborative exercise on LRmix to demonstrate standardization of the interpretation of complex DNA profiles. Forensic Sci. Int. Genet. 9, 47–54 (2014).
- Bright, J. A. et al. Developmental validation of STRmix, expert software for the interpretation of forensic DNA profiles. Forensic Sci. Int. Genet. 23, 226–239 (2016).
- Bleka, O., Storvik, G. & Gill, P. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. *Forensic Sci. Int. Genet.* 21, 35–44 (2016).
- Bennett, L. *et al.* Mixture deconvolution by massively parallel sequencing of microhaplotypes. *Int. J. Leg. Med.* 133, 719–729 (2019).
 Adnan, A., Zhan, X., Kasim, K., Rakha, A. & Xin, X. Population data and phylogenetic structure of Han population from Jiangsu (2014).
- province of China on GlobalFiler STR loci. Int. J. Leg. Med. 132, 1301–1304 (2018).
 26. Besecker, J., Peri, G., Davis, M., Zubizarreta, J. & Hampikian, G. Allele frequencies of 15 STR loci (Identifiler[™] kit) in Basque-Americans. Leg. Med. 31, 17–19 (2018).
- Srivastava, A. *et al.* Genetic data for PowerPlex 21[™] autosomal and PowerPlex 23 Y-STR[™] loci from population of the state of Uttar Pradesh, India. *Int. J. Leg. Med.* 133, 1381–1383 (2019).
- 28. Bulbul, O. et al. Ancestry inference of 96 population samples using microhaplotypes. Int. J. Leg. Med. 132, 703-711 (2018).
- 29. Kidd, K. K. et al. Selecting microhaplotypes optimized for different purposes. Electrophoresis 39, 2815-2823 (2018).
- Qin, P., Niu, C., Ruan, M., Zeng, G. & Wang, X. A novel bifunctional europium complex as a potential fluorescent label for DNA detection. Analyst 135, 2144–2149 (2010).
- Zhang, C. et al. MHTyper: a microhaplotype allele-calling pipeline for use with next generation sequencing data. Aust J Forensic Sci, published online, https://doi.org/10.1080/00450618.2019.1699956 (2019).
- 32. Guo, J. et al. Genetic polymorphism of 21 non-CODIS STR loci for Han population in Hunan Province, China. Forensic Sci. Int. Genet. 17, 81–82 (2015).
- Excoffier, L. & Lischer, H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

Acknowledgements

The authors thank Mr. Yan-Dong Cao for technical assistance. This work was supported by grants from the National Natural Science Foundation of China (81971797), the National Key R&D Program of China (2017YFC0803503), the Ministry of Public Security of China (2017JSYJA05), and the Institute of Forensic Science, Ministry of Public Security of China (2018FGKFKT03).

Author contributions

L.W., S.J.N. and J.Y. conceived and designed the experiments. J.B.P., M.R., Q.F.C. and H.W. performed most of the experiments. A.Q.J., C.Z. and K.L.K. analyzed the data. L.W. wrote the manuscript. All authors reviewed the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-58980-x.

Correspondence and requests for materials should be addressed to J.Y., S.-J.N. or L.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020