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Transparent Cellulose Nanofibrils 
Composites with Two-layer 
Delignified Rotary-cutting Poplar 
Veneers (0°-layer and 90°-layer) for 
Light Acquisition of Solar Cell
Weihua Zou*, Zhangheng Wang, Delin Sun*, Xiaoqin Ji, Pingfang Zhang & Zhihong Zhu

Our transparent cellulose nanofibrils composites (TCNC) directly from rotary-cutting poplar veneer 
(RPV) whose lignin can be easily stripped by our treatment. This TCNC is prepared by stripping lignin of 
original RPV and infiltrating epoxy resin (ER) into delignified RPV. This TCNC with two-layer delignified 
RPVs whose grains perpendicular (0/90°) to each other, which were solidified on solar cell while 
infiltrating ER. This TCNC with high transmittance (~90%), high haze (~90%), and equal refractive index 
fluctuation. Comparing with epoxy resin (ER), this TCNC can enhance open circuit voltage (VOC) from 
1.16 to ~1.36 and short circuit density (JSC) from 30 to ~34 for the solar cell, and can enhance test fore 
from 0.155 kN to ~0.185 kN and displacement from 43.6 mm to ~52.5 mm.

Wood is a kind of abundant organic macromolecule resource on the earth. Wood has excellent material prop-
erties which including high strength, high toughness, high modulus, low density, low thermal conductivity, 
biodegradability, sustainability and so on1–3. The contents of wood mainly include cellulose and hemicellulose 
(≈70%), lignin (≈30%), and its cellulose and hemicellulose are colourless substance4,5. New wood functional-
ization approaches have made it possible to combine load-bearing and functional properties in biobased wood 
structures6–12. After stripping lignin or chromogenic groups, a kind of transparent wood composites (TWC) 
can be prepared by infiltrating the cavity of wood with a polymer3,4,13–16. The TWC with high transmittance and 
high haze for light acquisition of solar cell, which have a significant enhancement in solar energy conversion 
efficiency17–22. Some researchers have prepared TWC for light management in solar cells17,18, and they focused 
on TWC from radial-cutting veneer for two reasons. First, radial-cutting veneer is easier than rotary-cutting 
veneer in delignification. Second, radial-cutting veneer has equal refractive index fluctuation, but rotary-cutting 
veneer hasn’t. However, rotary-cutting veneer could obtain far larger breadth from wood trunk to compare with 
radial-cutting veneer.

Farmed poplar is a kind of widely distributed agro-forestry tree species in many nations due to its fast growth 
rate, short rotation period, multiple uses and high economical value23–27. Reasonable use of farmed poplar can 
meet the human demand for TWC, and can avoid the consumption of natural forest resources27. Poplar has the 
characteristics of ultra-short fibers, and its rotary-cutting poplar veneer (RPV) is better than radial-cutting poplar 
veneer (RPV) in mechanical properties28,29.

In our works, the kind of transparent cellulose nanofibrils composites (TCNC) directly from rotary-cutting 
poplar veneer (RPV) whose lignin can be easily stripped by our treatment. The RPV is from mature trunk of 
farmed poplar. This TCNC is prepared by stripping lignin of original RPV and infiltrating epoxy resin (ER) into 
delignified RPV. This TCNC with two-layer delignified RPVs whose grains perpendicular (0/90°) to each other, 
which were solidified on solar cell while infiltrating ER (Fig. 1). This TCNC is with high transmittance, high haze 
and equal refractive index fluctuation, which can enhance the light acquisition of solar cell.

In our previous work, the lignin of RPV was stripped by boiling in potassium hydroxide (KOH) solution 
(2.7 mol L−1 in deionized water) and immersing in sodium hypochlorite (NaClO) solution (0.81 mol L−1 in deion-
ized water), polyurethane (PU) and its hardener (polyisocyanate) were infiltrated into the delignificated RPV27. 
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In our this work (Table 1), the lignin of RPV was stripped by hydrothermal treatment in sodium hypochlorite 
(NaClO) solution, and impregnation treatment 1 in ammonium persulfate ((NH4)2S2O8) solution, and impreg-
nation treatment 2 in sodium hypochlorite (NaClO) solution. Epoxy resin (ER) and its hardener were infiltrated 
into the two-layer delignified RPVs in this work. To compare with our previous work, this TCNC with more high 
transmittance (~90%), high haze (~90%) and equal refractive index fluctuation.

Results and Discussion
Cell wall contents of RPV before and after delignification. Fourier transform infrared spectroscopy 
(FTIR) was used to investigate the changes of its cell wall contents from original RPV to delignified RPV by 
using FTIR-850 (Gangdong, Tianjin, China). In the FTIR spectrum, the band at 1505 cm−1 is aromatic com-
pounds (phenolic hydroxy groups) and is attributed to aromatic skeleton vibrations from lignin15,27,30. The bands 
at 1235 cm−1 and 1735 cm−1 are characteristic of hemicelluloses and C=O functional group respectively27,31–33. 
Comparing with original RPV and delignified RPV of previous work (ref. 27), the peaks at 1505 cm−1, 1235 cm−1 
and 1735 cm−1 have disappeared in delignified RPV of this work, proving that lignin, hemicellulose and C=O 
functional group have been stripped from original RPV in our this work (Fig. 2). As Table 2 shows, the abso-
lute-drying weight of original RPV (60 mm × 60 mm × 3 mm) is about 2.124~2.381 g, and the absolute-drying 
weight of delignified RPV (60 mm × 60 mm × 3 mm) is about 1.041~1.164 g. After delignification, the abso-
lute-drying weight of delignified RPV was about 50% of original RPV.

Microstructure of TCNC. ER is a kind of index-matching polymer for delignified wood, and transmit-
tance of delignified wood can be developed by infiltrating ER13. Before and after ER infiltration, delignified RPV 
and TCNC were cut from its radial direction and longitudinal direction, these sections were examined by using 
Quanta 450 scanning electron microscopy (FEI, US). Figure 3(a–d) are SEM images of radial direction and longi-
tudinal direction from delignified RPV and TCNC, respectively. In Fig. 3, graphical illustration and SEM images 
indicate that the microstructure of TCNC is well-infiltrated and well-preserved by ER.

Figure 1. Original RPV was stripped lignin by our hydrothermal treatment and impregnation treatment. 
TCNC with two-layer delignified RPVs that were solidified on solar cell while infiltrating ER.

Method Chemicals (g, ml) Temperature(°C) Time(h)

Hydrothermal treatment NaClO (30 g), deionized water (1000 ml) 130–160 3

Impregnation treatment 1 (NH4)2S2O8 (50 g), deionized water (200 ml) 15–25 72

Impregnation treatment 2 NaClO (30 g), deionized water (500 ml) 15–25 24

ER infiltration ER (45 ml), its hardener (15 ml) 25–30 24

Table 1. The chemical formula and method for preparation TCNC.
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Optical properties of TCNC for light acquisition of solar cell. In TCNC, its cellulose nanofibrils net-
work and its lumen are the main pathway of optical transmittance. Modification of the wood cell wall will help to 
tune the light scattering properties of its material, and introducing strong scattering, resulting in diffused lumi-
nescence from embedded quantum dots15,16,27. The optical haze of TCNC is due to its nature-structural anisotropy 
and its light scattering properties.

Transmittance and haze were obtained by using WGT-S transmittance and haze tester (SGIC, Shanghai, 
China). Figure 4(a,b) shows that our TCNC with high transmittance of ~90%, high haze of ~90%. When TCNC 
be in contact with the substrate whose colored shape can be clearly seen, and when it be took 5 mm above the 
substrate whose colored shape becomes very fuzzy.

S130C photodiode power sensor (Thorlabs, US) was used to record the scattered light intensity distribution 
in both the x and y directions on the surface of TCNC. Figure 4(c) indicates that this TCNC with almost equal 
refractive index fluctuation in the x and y direction. In our previous work, TWC with one-layer delignified RPV, 
that has anisotropic light diffraction and lower refractive index fluctuation in the direction of aligned cellulose 
fibers27. Our this TCNC with two-layer delignified RPVs whose grains perpendicular (0/90°) to each other, that 
making its refractive index fluctuation of the x direction close to the y direction.

According to its high transmittance, high haze and equal refractive index fluctuation, TCNC is superior trans-
parent layers for light acquisition of solar cell, which as Fig. 4(d) shows. The electrical properties of solar cell 
mainly includes open circuit voltage (VOC) and short circuit density (JSC)8, and the current density-voltage 
curves of solar cell with ER and with TCNC were obtained by using CS310H electrochemical workstation 
(CorrTest, Wuhan, China). Figure 4(d) and Table 3 indicate that TCNC improving the light acquisition of solar 
cell to compare with ER, and enhancing the solar cell’s VOC from 1.16 to ~1.36 and its JSC from 30 to ~34.

Mechanical characteristics of TCNC. ER that is a kind of current material for surface of solar cell at pres-
ent, but our TCNC has better tensile strength than ER. Figure 5(a) indicates that TCNC has almost equal tensile 
strength from longitudinal directions in 0°-layer and 90°-layer. Comparing with ER (60 mm × 60 mm × 3 mm), 
the test fore of TCNC (60 mm × 60 mm × 3 mm) can enhance from 0.155 kN to ~0.185 kN, and its displacement 
can enhance from 43.6 mm to ~52.5 mm, which as Fig. 5(b) and Table 4 show. The tensile strength was tested by 
using the tester of mechanical property SmartTest (Joyrun, China). TCNC can meet more flexible shape for solar 
cell to compare with ER.

Figure 2. Graphical illustration and FTIR spectra for original RPV and delignified RPV.

Sample 1 Sample 2 Sample 3

The absolute-drying weight of original RPV
(60 mm × 60 mm × 3 mm) 2.124 g 2.196 g 2.381 g

The absolute-drying weight of delignified RPV
(60 mm × 60 mm × 3 mm) 1.041 g 1.074 g 1.164 g

Table 2. The absolute-drying weight from original RPV to delignified RPV.
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Conclusions
For improving practicability of TWC in light acquisition of solar cell, we have basically mastered a kind of method 
of preparing TWC from original rotary-cutting poplar veneer. Our TCNC with high transmittance (~90%), high 
haze (~90%), and almost close refractive index fluctuation, which can enhance VOC from 1.16 to ~1.36 and JSC 
from 30 to ~34 for the solar cell to compare with ER. Although ER being a kind of current material for surface of 
solar cell at present, however, comparing with ER, our TCNC can enhance test fore from 0.155 kN to ~0.185 kN 

Figure 3. Graphical illustration and SEM images about TCNC. (a,b) are SEM images of radial direction 
and longitudinal direction from delignified RPV, respectively. (c,d) are SEM images of radial direction and 
longitudinal direction from TCNC, respectively.

Figure 4. (a,b) This kind of TCNC with high transmittance of ~90%, high haze of ~90%. (c) In refractive index 
fluctuation, x direction close y direction. (d) The current density-voltage curves of solar cell with ER and with 
TCNC.
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and displacement from 43.6 mm to ~52.5 mm, which can meet more flexible shape for solar cell. Furthermore, 
our future work will pay more attention to reduce the time cost and the resource consumption in preparation of 
TCNC, and to improve the quality of TCNC for the light acquisition of solar cell.

Materials and Methods
Materials and chemicals. Original RPV (60 mm × 60 mm × 3 mm) was purchased from Mudan Wood Co., 
Ltd. (Suqian, China). solar cell (Solar single cell of silicon, 54 mm × 54 mm) was purchased from Aike Electronic 
Technology Co., Ltd. (Ningbo, China). NaClO (>98%), (NH4)2S2O8 (>98%), deionized water, and ethyl alcohol 
absolute (C2H6O, >99.5%) were purchased from Aladdin Biochemical Technology (Shanghai, China). ER and its 
hardener were purchased from Wuhui Port Adhesive Co., Ltd. (Hangzhou, China).

This TCNC is prepared by stripping lignin of original RPV and infiltrating epoxy resin (ER) into deligni-
fied RPV, and the steps of delignification include hydrothermal treatment and impregnation treatment (1, 2), as 
Table 1 shows.

Stripping lignin of original RPV. The step 1 of delignification is hydrothermal treatment that boiling the 
sample of original RPV in the NaClO solution (0.405 mol L−1 in deionized water) for about 3 h at 130–160 °C. 
Then, the RPV sample was took out from the solution and its chemicals was removed by rinsing in hot distilled 
water. The step 2 of delignification is impregnation treatment 1 that immersing the RPV sample in the (NH4)2S2O8 
solution (1.1 mol L−1 in deionized water) for about 72 h at 15–25 °C. Then, the chemicals of sample was also 
removed by rinsing in hot distilled water. The step 3 of delignification is impregnation treatment 2 that immersing 
the RPV sample in the NaClO solution (0.81 mol L−1 in deionized water) for about 24 h at 15–25 °C until its color 
has disappeared. After stripping lignin, the delignified RPV was preserved in C2H6O.

Infiltrating ER into delignified RPV and solidifying it on solar cell. First, the delignified RPV was 
attached to the surface of the sample of solar cell by C2H6O. Second, a kind of liquid resin was prepared by mixing 
ER and its hardener at a ratio of 3 to 1 (ER 45 ml, its hardener 15 ml), and this liquid resin (60 ml) was covered 
on the delignified RPV. Then, this liquid resin was filled into the delignified RPV by vacuumizing in RV-620-2 
vacuum reactor (YBIF, Shanghai, China) at 25–30 °C. All the above processes should be completed within 30 min. 
After first layer of delignified RPV (0°-layer RPV) solidifying on solar cell for about 24 h at 25–30 °C, second layer 
of delignified RPV (90°-layer RPV) was solidified on 0°-layer RPV by repeating the above processes.

With ER
With 
TCNC 1

With 
TCNC 2

With 
TCNC 3

Open circuit voltage (VOC) 1.16 1.35 1.36 1.36

Short circuit density (JSC) 30 33.5 34 34.2

Table 3. Open circuit voltage (VOC) and short circuit density (JSC) from solar cells with ER or TCNC, 
respectively.

Figure 5. (a) Graphical illustration about 0°-layer close 90°-layer in tensile strength of longitudinal direction. 
(b) Test force-displacement curves of tensile strength about TCNC and ER.

ER TCNC 1 TCNC 2 TCNC 3

Test fore (kN) 0.155 kN 0.183 kN 0.185 kN 0.186 kN

Displacement (mm) 43.6 mm 52.2 mm 52.5 mm 52.9 mm

Table 4. Test fore and displacement from ER or TCNC, respectively.
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