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Comparative transcriptome profiling 
of selected osmotic regulatory 
proteins in the gill during seawater 
acclimation of chum salmon 
(Oncorhynchus keta) fry
Sang Yoon Lee  1, Hwa Jin Lee2 & Yi Kyung Kim1,2*

Salmonid fishes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand 
wide salinity changes from the early life stage. This study investigated gene expression patterns of cell 
membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity 
acclimation of the fish in changing environments ranging from freshwater (0 ppt) to brackish water 
(17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their 
functional groups such as ion transport, transmembrane transporter activity and metal ion binding 
were identified. The expression patterns of membrane protein genes, including pump-mediated protein 
(NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar 
to those of other salmonid fishes in the smolt or adult stages. Based on the protein-protein interaction 
analysis between transmembrane proteins and other related genes, we identified osmotic-related 
genes expressed with salinity changes and analyzed their expression patterns. The findings of this study 
may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding 
of the osmophysiology of the species.

Salinity is one of the critical factors limiting the distribution patterns of all aquatic organisms1–4. Salmonid fishes 
display diverse life-history traits; anadromous individuals that mature in the river from hatching through to 
juveniles acquire the capacity to tolerate salinity associated with parr–smolt transformation and undergo ocean 
migrations before returning to rivers for spawning, whereas landlocked types spend their entire life within fresh-
water5,6. Although migration between habitats is common among salmonid fishes, the seawater acclimation 
period varies even within anadromous species. Therefore, the timing of river to ocean migration varies from 
species to species5,7,8.

Chum salmon (Oncorhynchus keta) possess an excellent osmotic plasticity in coping with hyperosmotic 
or hypoosmotic environments9–11. During the late embryonic stage, chum salmon have already acquired the 
hypo-osmoregulatory mechanism by the mitochondria-rich cells (MRCs) in the yolk-sac membrane12. In addi-
tion, chum salmon fry whose habitat is freshwater begin to show remarkable seawater adaptability prior to seawa-
ter entry, which is not observed in the fry of other salmonids13. Chum salmon begin to activate MRCs in the gill at 
an earlier stage (alevin-fry) and show higher salinity resistance at the fry stage than at the late alevin stages11,14,15.

Most of the salmonid fishes currently in the market are dominated by cultured Atlantic salmon (Salmo salar), 
whereas the production of chum salmon mostly depends on fishing (FAO, 2019). It is also noteworthy that chum 
salmon have been studied less when compared to other salmonid fishes. However, chum salmon are a major 
species of salmonid fishes that return to Korea, and if the feed and the aquaculture system are improved with the 
help of research on seawater adaptability and growth, they can be developed as a promising aquaculture species 
in the future.
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The gill is a primary organ to detect changes in external osmotic pressure and promotes the compensatory 
active absorption or the excretion of monovalent ions (sodium, potassium, chloride) to maintain the osmolality 
of body fluids at levels equivalent to approximately one-third of the seawater osmolality16–18. In seawater, the fish 
must drink copious amount of seawater and absorb water in the intestines to compensate for the loss of water, 
while the excess ions are actively excreted from the gills and the kidney19. In contrast, freshwater teleost cope 
with the osmotic water load and the ion loss and therefore excrete a large amount of water by producing diluted 
urine by the kidney and uptake ions through the gills19. In addition, the gill tissues play crucial roles in physical 
processes such as gas exchange, nitrogenous waste excretion, and acid-base balance20.

To accomplish these functions implicated in the maintenance of domestic homeostasis, various mem-
brane proteins of ionocytes regulate intracellular ionic concentrations21. Ionocytes also regulate acid (H+) 
or base (HCO3

−) release to maintain pH homeostasis in the blood21,22. In the euryhaline species, the plasma 
osmolality was reduced when the seawater adapted fishes (Acanthopagrus schlegeli and Paralichthys orbignyan) 
were transferred to freshwater23,24. In contrast, it has been reported that the plasma osmolality increased when 
freshwater-adapted fishes (Takifugu obscurus, Synechogobius ommaturus (R.), and Chanos chanos) were moved 
to brackish-water or seawater25–27. In the diadromous species (Monopterus albus, S. salar), the plasma osmolal-
ity increased when freshwater-adapted individuals were transported to seawater and the plasma osmolality was 
gradually decreased during long-term exposure and then was maintained at a certain level28,29. Osmotic control 
of gill ionocytes is known to involve various membrane proteins such as sodium-potassium ATPase (NKA), 
sodium-potassium-chloride cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator 
(CFTR) and aquaporin (AQP)30–32. In addition, for research on osmoregulation capabilities of euryhaline fish, 
it is important to investigate not only the gene expression patterns of transmembrane proteins but also those of 
interrelated proteins under the influence of salinity stress.

Studies on various aspects of seawater adaptation and osmotic control capacity of salmonid fishes have long been 
reported. However, a molecular genetic approach to addressing osmotic-related genes involved the osmoregulation and 
the maintenance of the body homeostasis under salinity changes has rarely been implemented. In addition, studies of 
the transcriptome level of osmolality-regulating proteins have been rarely reported. Therefore, a deeper understanding 
of the mechanism underlying the adaptation to salinity stress of the chum salmon may contribute to developing strat-
egies for efficient farming practices for this candidate species. In that regard, this study tried to analyze gene expression 
patterns of membrane proteins present in ionocytes and a gill tissue with whole transcriptome NGS and qRT-PCR. In 
addition to that, the gene expression of related proteins was studied as well.

Results
Genome mapping and de-novo assembly of unmapped reads. The reads obtained from sequenc-
ing of each group were trimmed and deposited at Genbank under the Sequence Read Archive (SRA) accessions 
SRX3932910-SRX3932912. Since chinook salmon are taxonomically close to chum salmon, each group showed 
a high read-mapping rate of 82 to 83% in Table S16,33. An additional de-novo assembly was conducted on the 
unmapped reads from the chinook salmon genome assembly, thereby constructing 119,439 counts of N50, 403 bp. 
Subsequently, a new reference of 197,684 counts (N50 length: 3154 bp, Avr length: 1,428 bp, GC contents: 48%) 
were constructed by pooling the reads from both the chinook salmon genome assembly and the reads from the 
de-novo assembly. Finally, the reads of each group were mapped to the newly constructed reference (Table 1). The 
mapping rate of the new reference was 94–95% and the average length was 1428.82 bp.

Functional annotation of reconstructed reference reads. Annotation was conducted on the reads 
mapped to the newly constructed reference based on a variety of databases. The BLAST annotation based on 
the NR database identified that a total of 93,542 counts (47.31%) were matched with certain genes. Most of the 
matched genes originated from chinook salmon (O. tshawytscha), which were used as a reference, and the rest 
of the annotated genes were mostly related to the salmon origin group: rainbow trout (O. mykiss, 14.9%), coho 
salmon (O. kisutch, 8.3%), Atlantic salmon (S. salar, 6.1%) and Arctic char (Salvelinus alpinus, 3.2%) (Fig. S1). GO 
annotation was carried out on three categories (biological process; BP, molecular function; MF, cellular com-
ponent; CC) under the condition of level 7, and the results were merged with those of the annotation analy-
ses of Interpro, GO-Slim and EggNog. In the category of BP, the most frequently annotated GO classes were 
nucleic acid-templated transcription (GO: 0097659) and regulation of nucleic acid-templated transcription (GO: 
1903506). Among those, 6,806 reads and 6,469 reads were mapped, respectively (Fig. S2). In the case of the MF cat-
egory, the genes related to nucleoside-triphosphatase activity (GO: 0017111) and zinc ion binding (GO: 0008270)  
were annotated frequently, more than any other gene with 2,928 reads and 2,613 reads mapped. As for the CC category, 
the genes responsible for clathrin-coated vesicle (GO: 0030136) were annotated the most with 342 reads mapped.

Freshwater (0%) Brackish water (50%) Seawater (100%)

No. reads Rate (%) No. reads Rate (%) No. reads Rate (%)

Mapped reads 91,480,087 94.14 92,338,752 94.45 105,031,902 94.37

Not mapped reads 5,697,147 5.86 5,424,666 5.55 6,268,988 5.63

Reads in pairs 73,700,972 75.84 74,482,876 76.19 84,457,112 75.88

Broken paired reads 17,779,115 18.30 17,855,876 18.26 20,574,790 18.49

Total reads 97,177,234 100.00 97,763,418 100.00 111,300,890 100.00

Table 1. Mapping statistics of transcriptome reads to the reconstructed transcriptome assembly.
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Clustering analysis of differential gene expression pattern. DEGs were investigated using tran-
scriptome profiles of gills of chum salmon fry in different salinity environments. Among the pump-mediated 
transmembrane proteins which are directly involved in osmoregulation, NKA (ATP1a, ATP1b) is known to be 
associated with metal ion transport (GO: 0030001) and inorganic ion transmembrane transport (GO: 0098660) 
in BP term, and potassium ion transmembrane transporter activity (GO: 0071805) in MF term (Figs. 1 and 2). 
Along with ATP1a and ATP1b, the genes involved in metal ion transport, inorganic ion transmembrane transport 
and potassium ion transmembrane transporter activity showed the pattern of gene expression with chum salmon 
fry during the environmental alteration: when the chum salmon were transferred from freshwater to brackish 
water, 1.14 times more genes were expressed than when the fish were transferred from brackish water to seawater. 
Conversely, when the fish were transferred from brackish water to seawater, there was a 1.16-fold increase in the 
number of the genes that decreased their expression compared to when the fish were transferred from fresh-
water to brackish water. NKCC (SLC12a, SLC9a), the carrier-mediated transmembrane protein, is associated 
with cation transmembrane transport (GO: 0098655), metal ion transport (GO: 0030001), metal ion transport 
(GO: 0030001), monovalent inorganic cation (GO: 0015672) and inorganic ion transmembrane transport (GO: 
0098660) in BP term, and in MF term it is involved in sodium ion transmembrane transporter activity (GO: 
0015081) and proton transmembrane transporter (GO: 0015078). The genes involved in cation transmembrane 
transport, monovalent inorganic cation and proton transmembrane transporter also showed the gene expression 
pattern: when transferred from freshwater to brackish water, chum salmon fry tended to express more genes than 
when transferred from brackish water to seawater. The genes were expressed less when the fish were transferred 
from brackish water to seawater than when transferred from freshwater to brackish water. In addition, there 
was a tendency of the expression of the genes involved in iron ion binding (GO: 0005506), potassium channel 
activity (GO: 0008282), and potassium channel complex (GO: 0034705) to increase more remarkably when the 
chum salmon fry were transferred from freshwater to brackish water than when transferred from brackish water 
to seawater. In particular, 1.56 times more genes were expressed which were involved in iron ion binding (GO: 
0005506) when the salinity was increased from freshwater to brackish water than from brackish water to seawater. 
The number of genes involved in the potassium channel activity (GO: 0008282), and potassium channel complex 
(GO: 0034705) was about 1.12 times and 1.15 times, respectively.

The genes showing an increase of expression in both groups, from freshwater to brackish water group and 
from brackish water to seawater group, were listed in order of fold change. As a result, the types of genes differed 
between the two groups but showed similar trends in function (Fig. 3). In the salinity change from freshwater to 
brackish water, an increase in the expression of genes involved in innate immune response and blood coagulation 
was noticeable. Changes in salinity from brackish water to seawater increased the expression of genes involved in 
adaptive immunity. In terms of cellular components, the genes involved in binding to the integral component of 
membrane or cell surface and metal ion binding were expressed in both groups.

The enumeration of the genes in fold change order which were highly subject to salinity changes indicated that 
the types of genes were different between the freshwater to brackish water transfer group and the brackish water 
to seawater transfer group. However, the functions and the locations of the genes of the two groups showed many 
similarities (Fig. 3). The following proteins located either in the integral component of the membrane or in the cell 
surface showed high differential gene expression: single Ig IL-1-related receptor-like isoform X1, 3-oxo-5-beta-steroid 
4-dehydrogenase, MHC class I heavy chain, macrophage mannose receptor 1-like and phosphatidylcholine: ceramide 
cholinephosphotransferase 1-like, serine/threonine-protein phosphatase 6 regulatory subunit 2-like, transmembrane 
and immunoglobulin domain-containing protein 1-like. Also, the genes involved in metal ion binding, including 
4-hydroxyphenylpyruvate dioxygenase-like, activity-dependent neuroprotector homeobox protein-like isoform X1 
and histone-lysine N-methyltransferase 2C-like isoform X5 showed high differential gene expression as the salinity 
increased. However, plasma protease C1 inhibitor-like, fibrinogen beta chain-like isoform X1 and fibrinogen alpha 
chain-like which were associated with blood coagulation showed unusually high differential gene expression when the 
fish were transferred from freshwater to brackish water.

PPI networks of osmoregulation related genes. The interaction network of osmoregulatory proteins 
provides important information about homeostasis responses of fish to salinity changes. PPI network analyses 
on a total of 59 nodes showed that the genes tended to be grouped according to the functions of the membrane 
protein genes and each protein was interrelated with each other (Fig. 4). The PPI map consisted of a total of 138 
edges and the average local clustering coefficient was 0.638. The average node degree was 4.68 and the PPI enrich-
ment p-value was below 1.0e-16. The functional enrichment analyses of PPI networks indicated that Reactome 
Pathways was involved in the pathways of transport of small molecules (DRE-382551), ion homeostasis (DRE-
5578775), ion transport by P-type ATPases (DRE-936837), aquaporin-mediated transport (DRE-445717) and 
passive transport by aquaporins (DRE-432047).

The domain and keyword analyses using Uniprot, PFAM, INTERPRO and SMART confirmed the afore-
mentioned finding. As the salinity increased, the membrane protein genes and the interaction proteins of chum 
salmon fry were variously expressed (Table 2). However, in the gill of chum salmon fry, the genes interacting with 
membrane proteins were commonly present in the pattern of alternating increases and decreases in expression, 
rather than a continuous increase or decrease in expression with increasing salinity.

qRT-PCR validation of transmembrane protein genes related to osmoregulation. To con-
firm the expression patterns of DEGs, representative transmembrane protein genes were selected for qRT-PCR 
analysis. As shown in Fig. 5, most of the qRT-PCR results of the genes analyzed kept consistent with the 
high-throughput sequencing data, which confirmed the accuracy and reliability of the sequencing data. Based on 
qRT-PCR, mRNA expression levels of ATP1a1b, ATP1a1c, ATP1a3, ATP1b1 and CFTR related to pump medi-
ated ion transport in the brackish water vs. freshwater group were almost 1.61-, 1.07-, 1.27-, 1.42 and 2.68 -fold 
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of the control respectively, and those in the seawater vs brackish water group were almost 1.63-, 1.31-, 1.70-, 
1.01 and 1.17-fold of the control respectively, the expression tended to increase with increasing salinity. On the 
other hand, in the case of ATP1a1a, as the salinity increased, gene expression tended to decrease by 1.04- and 
1.16-fold. As for SLC12a2a and SLC12a2b, a carrier-mediated symporter, gene expression slightly increased in 
both the brackish water vs. freshwater and the seawater vs. brackish water group. However, SLC12a1 had the fold 
change value four to five times higher than that of SLC12a2a and SLC12a2b in the two comparative groups. The 
SLC9a3, a carrier-mediated antiporter, showed a similar pattern to ATP1a1a in which gene expression decreased 
with the increasing salinity. In the case of AQP, a channel-mediated protein, the fold change value as well as the 
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Figure 1. Gene ontology annotation (by level 7) for functional analysis of differentially expressed genes of O. 
keta fry after transfer from freshwater to brackish water.
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expression patterns of the two groups differ from each other according to the isoform type. Based on the mRNA 
expression level results of qRT-PCR, the following was found: AQP4 showed decreased gene expression in the 
brackish water vs 0% group by 3.63-fold and increased gene expression in the seawater vs. brackish water group 
by 3.08-fold. AQP8 and AQP9 showed increased expression in the brackish water vs. freshwater group by 692.98- 
and 181.44-fold, respectively, and decreased expression in the seawater vs brackish water group by 32.75- and 
13.42-fold, respectively.
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Figure 2. Gene ontology annotation (by level 7) for functional analysis of differentially expressed genes of O. 
keta fry after transfer from brackish water to seawater.
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Discussion
Chum salmon, the excellent osmoregulator, migrate downstream to the sea in their early life stage, acquiring 
hypo-osmoregulatory capability during the alevin stages. To further examine the potential mechanisms and 
identify osmotic-regulated genes, we compared the transcriptome of chum salmon gill tissues of two groups: 
those transferred from freshwater to brackish water and from brackish water to sea water. Among the membrane 
proteins associated with osmoregulation, NKA subunit isoforms and NHE3 which are pump-mediated proteins, 
NKCC subunit isoforms which is a carrier-mediated protein and AQP isoforms which is a channel-mediated 
protein were selected to be investigated in terms of gene expression. Also, gene expression of other proteins was 
explored which are in the interaction network to which the aforementioned proteins belong.

As the salinity increased, the expression of NKA alpha and beta subunit isoforms slightly increased in the 
chum salmon fry gill. However, that of ATP1a1a decreased among the subunit isoforms. As mentioned above, the 
current study observed differences of the gene expression pattern within NKA subunit isoforms with increasing 

Group Accession # Gene description Log2 fold 
change

Fold 
change

FDR 
p-value Bonferroni

Brackish
water
(50%)

vs

Freshwater
(0%)

XP_024294241 Complement c1q-like protein 2 10.50 1443.55 4.27E-12 3.64E-09

XP_020330357 Alpha-2-HS-glycoprotein-like 10.29 1248.65 1.29E-11 1.18E-08

XP_024263045 4-hydroxyphenylpyruvate dioxygenase-like 9.49 719.48 7.51E-10 8.58E-07

XP_024235073 Tyrosine aminotransferase-like 9.29 624.38 2.01E-09 2.45E-06

XP_024298393 Alpha-2-macroglobulin-like 8.94 492.54 0 0

XP_024274065 Ubiquitin carboxyl-terminal hydrolase 24 isoform X4 8.88 470.90 1.35E-08 1.85E-05

XP_024258329 Plasma protease C1 inhibitor-like 8.60 386.97 0 0

XP_024265252 Complement C3-like 8.54 371.09 6.23E-08 9.56E-05

XP_014071165 Fibrinogen beta chain-like isoform X1 8.44 347.16 0 0

XP_024278122 Complement factor H-like 8.29 312.72 1.79E-07 3.00E-04

XP_021477882 Fibrinogen alpha chain-like, partial 8.25 304.69 3.18E-14 2.19E-11

XP_024272679 Single Ig IL-1-related receptor-like isoform X1 8.21 295.77 2.52E-07 4.32E-04

XP_020347874 Activity-dependent neuroprotector homeobox protein-like isoform X1 8.19 292.94 2.67E-07 4.59E-04

XP_020312381 3-oxo-5-beta-steroid 4-dehydrogenase 8.15 283.53 3.26E-07 5.68E-04

XP_024265107 Serum albumin 2-like 8.10 274.31 0 0

XP_024241984 AT-rich interactive domain-containing protein 1A-like isoform X4 8.09 272.23 4.16E-07 7.39E-04

XP_024301333 Nuclear mitotic apparatus protein 1 isoform X1 8.08 271.29 4.26E-07 7.55E-04

XP_024270126 Complement C3-like 8.01 258.27 0 0

XP_020324407 Complement c1q-like protein 4 7.94 244.73 0 0

XP_024298410 0040.51257.71X mrofosi ekil-nilubolgorcam-2-ahplA

Seawater
(100%)

vs

Brackish
water
(50%)

AAB62232 MHC class I heavy chain, partial 14.43 22132.76 1.61.E-02 1.00.E+00

XP_024286595 Macrophage mannose receptor 1-like 10.51 1455.23 3.65.E-12 3.23.E-09

XP_024280657 Phosphatidylcholine:ceramide cholinephosphotransferase 1-like 8.00 256.76 5.52.E-07 1.03.E-03

XP_024268871 Serine/threonine-protein phosphatase 6 regulatory subunit 2-like 7.61 194.89 2.67.E-06 5.74.E-03

XP_024252207 Meiosis regulator and mrna stability factor 1-like isoform X1 7.59 192.59 2.85.E-06 6.17.E-03

XP_020364812 Avidin-like 7.51 182.83 0 0

XP_024271028 Testis-expressed sequence 15 protein isoform X6 7.48 178.85 4.31.E-06 9.64.E-03

XP_024273970 Volume-regulated anion channel subunit LRRC8A 7.37 165.10 6.68.E-06 1.55.E-02

XP_024258557 Gtpase IMAP family member 7-like isoform X1 7.26 153.64 9.85.E-06 2.37.E-02

XP_024269293 Ras and EF-hand domain-containing protein-like 7.26 153.64 9.85.E-06 2.37.E-02

XP_020331541 Transmembrane and immunoglobulin domain-containing protein 1-like 7.26 152.97 7.62.E-11 7.92.E-08

XP_024242164 BRD4-interacting chromatin-remodeling complex-associated protein-like isoform X1 7.01 129.20 2.43.E-05 6.40.E-02

XP_021420997 Ras-related protein Rab-5C 6.93 122.32 3.55.E-05 9.79.E-02

XP_024279243 UPF0183 protein c16orf70 homolog isoform X1 6.93 122.31 7.22.E-10 8.44.E-07

XP_024247258 Histone-lysine N-methyltransferase 2C-like isoform X5 6.83 113.92 5.04.E-05 1.45.E-01

XP_023999576 Acidic leucine-rich nuclear phosphoprotein 32 family member B-like 6.65 100.17 8.55.E-05 2.61.E-01

XP_024237673 Protein phosphatase 1 regulatory subunit 26-like isoform X2 6.59 96.35 1.03.E-04 3.21.E-01

XP_024276407 Transcription initiation factor IIA subunit 1-like isoform X4 6.56 94.06 1.16.E-04 3.65.E-01

XP_024239944 Tyrosine-protein phosphatase non-receptor type 12-like isoform X2 6.43 86.42 1.73.E-04 5.70.E-01

XP_024249300 SH3 and PX domain-containing protein 2B-like isoform X1 6.43 86.24 0 0

Figure 3. List of the first 20 genes showing the highest differential expression in salinity changes for the gill of 
O. keta fry.
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salinity. The same tendency was reported in previous studies of such euryhaline fishes as Dicentrarchus labrax, 
O. mykiss, Oreochromis mossambicus, Salvelinus alpinus and S. salar34–37. This indicates the possibility that either 
the ion transport activity or the absorption and secretion of ions varies within NKA subunit isoforms36. In this 
regard, two hypotheses have been reported: one, in the course of sodium and potassium transport, kinetics could 
vary due to the affinity difference between NKA subunit isoforms and ions, and the other that the concentration 
of lipid rafts rich in cholesterol and sphingolipids could affect the NKA subunit isoforms activity38,39. Specifically, 
in the case of the chum salmon fry gill, ATP1a1a was a predominant form in freshwater like other Salmonidae. 
As the salinity increased, however, ATP1a1b became a predominant form. The other NKA subunits (ATP1a, 
ATP1b isoforms) were found to have a somewhat lower effect on salinity change than ATP1a1a and ATP1a1b. 
Like ATP1a1a, gene expression of NHE3, an ion antiport protein, decreased with the increasing salinity. In 
other words, the sodium ion uptake activity was higher in freshwater than in seawater. This agrees with the 
research findings of studies of salinity and NHE3 expression in D. labrax, O. mossambicus and Gasterosteus acu-
leatus40–43. Another assumption is related to the sodium ion uptake and secretion. NHE3 and NKA present in gill 

Figure 4. PPI network map of osmoregulation-related proteins using STRING. The red-colored figure 
(light to dark) represents the up-regulated protein and the green-colored figure (light to dark) represents the 
down-regulated protein. The saturation is displayed differently according to fold change (FC). The diamond 
shape is the main transmembrane protein in this study and the circle shape is a protein interacting with a 
transmembrane protein. (A) illustrates the difference in expression between the brackish water vs freshwater 
group, and (B) illustrates the difference in expression between the seawater vs brackish water group.
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Gene (Danio rerio) Symbol Accession # (O. tshawytscha)
Fold change
50% vs 0% 100% vs 50%

Acid phosphatase 2, lysosomal ACP2 XM_024439857.1 −4.64 5.84
Adrenoceptor beta 2, surface a ADRB2a XM_024393505.1 −1.50 1.21
Aquaporin 4 AQP4 XM_024375186.1 −1.63 1.73
Aquaporin 7 AQP7 XM_024401632.1 1.85 −1.67
Aquaporin 8a.1 AQP8a.1 XM_024433576.1 743.33 −13.62
Aquaporin 9b AQP9b XM_024440258.1 100.44 −21.22
Aquaporin 11 AQP11 XM_024445684.1 −8.88 −1.01
Aquaporin 12 AQP12 XM_024421535.1 −1.17 −1.01
Arginine vasopressin AVP XM_024397535.1 27.90 −26.48
Arginine/serine-rich coiled-coil 1 RSRC1 XR_002955720.1 1.14 −1.23
Arsenite methyltransferase AS3MT XM_024403019.1 3.13 −3.85
ATPase Na+/K+ transporting subunit alpha 1a ATP1a1a XM_024412034.1 −2.47 −2.69
ATPase Na+/K+ transporting subunit alpha 1b ATP1a1b XM_024443742.1 1.08 1.34
ATPase Na+/K+ transporting subunit alpha 1c ATP1a1c XM_024443741.1 −1.00 1.11
ATPase Na+/K+ transporting subunit alpha 3 ATP1a3 XM_024441658.1 1.13 1.07
ATPase Na+/K+ transporting subunit beta 1 ATP1b1 XM_024408556.1 1.14 1.18
ATPase Na+/K+ transporting subunit beta 2a ATP1b2a XM_024394116.1 1.61 −1.04
ATPase Na+/K+ transporting subunit beta 2b ATP1b2b XM_024394118.1 −1.24 −1.27
ATPase Na+/K+ transporting subunit beta 3b ATP1b3b XM_024376682.1 1.11 −1.28
Camp-dependent protein kinase catalytic subunit alpha PRKACAa XM_024390584.1 −1.63 1.21
Casein kinase 1, epsilon CSNK1e XM_024379721.1 −2.00 1.83
Collectin sub-family member 12 COLEC12 XM_024393027.1 358.79 −1.56
Cortexin 3 CTXN3 XM_024381564.1 −3.49 1.63
Cystic fibrosis transmembrane conductance regulator CFTR XM_024424084.1 1.16 1.29
Derlin 1 DERL1 XM_024405756.1 1.04 −1.10
Derlin 2 DERL2 XM_024393885.1 1.11 −1.05
Dishevelled segment polarity protein 2 DVL2 XM_024376794.1 1.29 −1.90
Epidermal growth factor EGF XM_024390462.1 2.55 −1.70
Ets variant 5b ETV5b XM_024389695.1 −1.34 −1.26
FXYD domain containing ion transport regulator 6 FXYD6 XM_024442135.1 −1.30 −1.35
Glial fibrillary acidic protein GFAP XM_024385320.1 18.95 −17.99
Golgi-associated PDZ and coiled-coil motif containing GOPC XM_024378000.1 1.52 −1.63
Growth hormone releasing hormone receptor, like GHRHRl XM_024422521.1 −2.19 −1.39
Heart and neural crest derivatives expressed 2 HAND2 XM_024436576.1 1.37 −1.36
Leucine carboxyl methyltransferase 1 LCMT1 XM_024387973.1 −1.23 1.31
Mahogunin, ring finger 1a MGRN1a XM_024433250.1 −1.04 1.44
NIPA like domain containing 2 NIPAL2 XR_002952192.1 −1.02 −1.02
N-methylpurine DNA glycosylase MPG XM_024433243.1 1.15 −1.47
PDZ domain containing 1 PDZK1 XM_024409391.1 3.73 5.43
Piwi-like RNA-mediated gene silencing 2 PIWIL2 XM_024417801.1 −1.26 2.46
Potassium inwardly-rectifying channel, subfamily J, member 1b KCNJ1b XM_024445818.1 −1.42 1.30
Retinoschisin 1a RS1a XM_024422637.1 −4.34 4.69
Rh associated glycoprotein RHAG XM_024377707.1 1.23 −1.15
Rh family, B glycoprotein (gene/pseudogene) RHBG XM_024437515.1 −1.22 1.35
Rhomboid 5 homolog 1a RHBDF1 XM_024387965.1 −1.09 1.01
Ring finger protein 5 RNF5 XM_024396104.1 1.15 −1.06
Scavenger receptor class F, member 1 SCARF1 XM_024445009.1 −1.15 −1.14
Serine threonine kinase 39 STK39 XM_024388934.1 1.52 1.52
Solute carrier family 1 member 2b SLC1a2b XM_024413392.1 −2.06 2.03
Solute carrier family 6 member 14 SLC6a14 XM_024427745.1 2.53 −2.25
Solute carrier family 9 member 3 SLC9a3 XM_024396240.1 −2.00 −2.22
Solute carrier family 12 member 1 SLC12a1 XM_024440802.1 7.02 4.87
Solute carrier family 12 member 2a SLC12a2a XM_024381566.1 1.48 1.26
Solute carrier family 12 member 2b SLC12a2b XM_024418405.1 1.28 1.56
Solute carrier family 14 member 2 SLC14a2 XM_024417716.1 1.27 −1.34
Transient receptor potential cation channel, subfamily V, member 4 TRPV4 XM_024417109.1 −1.09 1.07
Ubiquitin specific peptidase 10 USP10 XM_024440227.1 −1.56 1.82
Valosin containing protein VCP XM_024381824.1 1.08 −1.25

Continued
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mitochondria-rich cells (MRC) either uptake or secrete sodium ions. Hence, if the amount of sodium ion uptake 
decreases as the result of salinity increase, the amount of secretion will decrease as well. As a result, it is assumed 
that gene expression of ATP1a1a, a predominant form in freshwater fish, decreased with salinity increase.

In addition, it has been reported that rather than proton-pumping ATPase, a pump-mediated protein, NHE3 
was activated in a yolk-sac membrane to balance hydrogen in the freshwater environment42. When they were 
transferred from freshwater to brackish water, the gill of chum salmon fry expressed more CFTR than when 
transferred from brackish water to seawater. That is, CFTR was greatly expressed when chum salmon fry were first 
exposed to salt stress. A similar pattern was observed in the gill of F. heteroclitus. It is known that Cl-secretion of 
CFTR in epithelial cells is controlled by adjusting the number of CFTR channels. This is known to be the result of 
the activation of the protein kinase A (PKA) caused by cAMP. Aquaporin, a channel-mediated protein, which is 
characterized by passive diffusion, was involved in the central nervous system (CNS) in cases of AQP4, AQP8 and 
AQP9 used in this study44. On the basis of functional features, AQP4 and AQP8 are classified as water-permeable 
aquaporin and AQP9 as aquaglyceroporin or permeable to water, glycerol and urea and AQP8 as permeable to 
water and urea45. Additionally, AQP8 and AQP9 are known to have ammonia transport capabilities46.

In this study, in the gill of chum salmon fry, AQP8 and AQP9 were expressed to a great extent when the 
fish were transferred from freshwater to brackish water. According to the findings of the studies of AQPs in F. 
heteroclitus, Lateolabrax maculatus, O. nerka and S. salar, AQP8 and AQP9 are rarely expressed in gills under 
the normal condition. The performance of qRT-PCR confirmed that the same was true for chum salmon fry in 
which AQP8 and AQP9 were hardly expressed in the gill of chum salmon fry in freshwater47–50. However, gene 
expression of AQP8 and AQP9 in the gill of chum salmon fry sharply increased with salinity increase. Likewise, 
gene expression of the AQP8 and AQP9 increased in the intestine of A. japonica and O. nerka in seawater in pre-
vious studies47,51. However, what underlies the expression pattern has not been clearly found so far. There are two 
possibilities: one that AQP8 and AQP9 would be expressed to secret ammonium and the other that the sudden 
movement of water molecules would cause the expression increase for the ion balance in and out of the body. As 
the salinity increases, the concentration of ammonium increases simultaneously, causing the secretion of ammo-
nium in the body of the fish. In the process, the gill is reported to be involved in the secretion52,53.

Gene expression of AQP4 decreased with salinity increase and then increased again to control the cell-volume. 
This was observed in the case of transient receptor potential cation channel subfamily V member (TRPV4) which 
was present in the same interaction network as AQP4. However, the fold change value of TRPV4 was much lower 
than that of AQP454. In previous research, AQP4 was expressed the most in the gill tissue of Eptatretus burgeri in 
the process of seawater adaptation, confirming the understanding that water transport is facilitated by an osmotic 
gradient in the gill55. That was in line with the findings of the current study. Referring to the PPI network analysis, 
transmembrane proteins were divided into five groups: NKA subunit isoforms group, AQP group, NKCC, CFTR 
and NHE3 group. The interaction between the groups can be seen on the map. NKCC1 and NKCC2 expressed 
in the gill of chum salmon fry were in the interaction network in which lysine deficient protein kinase (WNK), a 
chloride ion protein, was present. Also, both WNK3 which was ‘with no lysine’ family of serine-threonine protein 
kinase and NKCC1 which was in the same interaction network as STK39 (=SPAK) had the same expression pat-
tern in chum salmon fry in the case of salinity increase. This was a similar tendency as seen in the WNK signaling 
pathway. Among NKA subunit isoforms, ATP1a1a had a similar expression pattern with FXYD6 which was a 
small membrane protein affecting gene expression of NKA alpha and beta complex. This agrees with the findings 
of a study on rats that discovered that FXYD6 was co-localized with NKA and FXYD6 bordered epithelial cells56. 
In addition to this, further research on the interaction network of various membrane proteins and analyses of 
gene expression patterns are expected to provide valuable information to research on functions of osmoregulatory 
proteins of fish.

Of special note is that while most of the fishes studied in other relevant research were in the smolt or the adult 
stage, the chum salmon used in this study were in the fry stage. Interestingly, the chum salmon fry showed a sim-
ilar expression tendency to other fishes in the smolt or the adult stage although the expression of some essential 
membrane protein genes NKA, NKCC, NHE3, CFTR, and AQP which are involved in osmotic pressure control 
showed different patterns. The findings of this study confirm that chum salmon have excellent seawater adapt-
ability early on, even in their fry stage. In addition, the comparative analysis of the gene expression patterns of 
the freshwater to brackish water group and the brackish water to seawater group indicates that 66% of the genes 
analyzed showed different expression patterns in both groups. In this respect, the types and the expression trends 
of various genes involved in balancing the body with a rapid increase in various ions were revealed.

This study was conducted on chum salmon, the species with the best osmotic control among salmonid fishes. 
It is expected that investigating the membrane proteins expressed in the gill of O. keta, which has a seawater 

Gene (Danio rerio) Symbol Accession # (O. tshawytscha)
Fold change
50% vs 0% 100% vs 50%

WNK lysine deficient protein kinase 1b WNK1b XM_024425441.1 −1.09 1.10
WNK lysine deficient protein kinase 3 WNK3 XM_024384949.1 1.02 1.25
WNK lysine deficient protein kinase 4 WNK4 XM_024388112.1 −1.28 1.55
linked Kx blood group (mcleod syndrome) XK XM_024409767.1 −1.84 1.79

Table 2. List of proteins interacting with transmembrane proteins present in the STRING database and 
differences in expression between each group.
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acclimation ability even in the fry stage and studying the interaction network of membrane proteins and other 
various genes will contribute to future research on the osmoregulation pathway.

Materials and Methods
Ethics statement. All the experimental procedures with all the fish were performed and approved according 
to the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Gangneung-Wonju National 
University (GWNU-2019-21). Furthermore, all the authors of this study have completed Animal Welfare & Ethics 
Course certification under the CITI program, research ethics and compliance training program.
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Figure 5. Validation of the RNA-seq data by qRT-PCR. Target genes were normalized to the reference gene, 
elongation factor 1 alpha. FW, freshwater; BW, brackish water; SW, seawater.
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Salinity challenge and sample collection. The chum salmon at the alevin stage, one month after hatch-
ing, were transferred from the Korea Fisheries Resources Agency (FIRA) to the laboratory and reared in tanks 
with re -circulating freshwater for two months. Water temperature was maintained at 12 ± 1 °C. Aeration was 
provided continuously to maintain dissolved oxygen levels at 9.0 ± 0.5 mg/L. Fish were fed daily with commercial 
pellets and blood worms and fasted for 24 hours prior to the experiment.

In order to establish a stable seawater acclimation method, preliminary experiments were conducted by var-
ying the salt concentration and the acclimation period. When the chum salmon fry were transferred from fresh-
water to seawater, most of the fry died within 20 days after the transfer. However, most of the chum salmon fry 
adapting to brackish water prior to moving to seawater survived approximately 20 days after the transfer. Based 
on these experiments, a methodology was established in which the individuals showed high survival rates within 
a short seawater acclimation period. No mortality was observed in the experimental group during salinity expo-
sure. For the hyperosmotic challenge, fish (fry, average body weight and length = 0.6 ± 0.12 g and 4.87 ± 0.23 cm) 
were directly transferred to brackish water (50% seawater;17.5 ppt) for one day and acclimated in 100% seawater 
(35 ppt) for one day. Sampling (N = 5 in each group) was conducted at the same time points for the challenge. The 
300 ppm of 2-phenoxyethanol (Sigma Aldrich Co, St. Louis, USA) was used as an anesthetic for sampling and gill 
tissues were extracted and stored at −80 °C.

Library construction and illumina sequencing. Total RNA was extracted from the gill using RNAiso 
Reagent (Takara Bio, Shiga, Japan) according to the manufacturer’s instructions. Further purification was 
preceded by RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) and RNase-free DNase set (Qiagen). The RNA-seq 
libraries were constructed using the Truseq stranded mRNA prep kit (Illumina, San Diego, Calif., USA). They 
were sequenced with a 2 × 101 bp (paired-end) read module using the Illumina Hiseq. 2500 platform. The raw 
sequencing files were generated using the Illumina base-calling software (CASAVA v1.8.2 with ASCII Q-score off-
set 33). Read-through adapter sequences, low-quality sequences (limit = 0.05), ambiguous nucleotides (maximal 
2 nucleotides) were removed using CLC Genomics Workbench 11.0 (CLC Bio, QIAGEN) (Table S2).

Genome mapping and de-novo assembly of unmapped reads. A schematic representation of the 
RNA-seq reference reconstitution and analysis pipeline is shown in Fig. 6. The chum salmon used in this study 
had no genome assembly information available as a reference. However, there was genome assembly information 
for chinook salmon (O. tshawytscha, GenBank assembly accession: GCF_002872995.1), which is taxonomically 
close to chum salmon among Oncorhynchus spp57. Trimmed sequences of each group were mapped to the chi-
nook salmon reference. In addition, unmapped reads in the genome sequence of chinook salmon were de-novo 
assembled using CLC Genomics Workbench 11.0 under conditions of Kmer size 45, bubble size 50 and minimum 
contig length of 150 bp. Therefore, a new reference was constructed by combining both de-novo assembly data 
and the reads mapped to the reference genome. Finally, the annotation process was performed by mapping the 
trimmed readings to the newly constructed reference. The mapping was set under the following conditions: mis-
match cost = 2, insertion cost = 3, deletion cost = 3, length fraction = 0.5, similarity fraction = 0.8, Auto-detect 
paired distances.

Annotation of reconstructed reference sequences and differential expressed genes analy-
sis. The mapping of the reads was performed with BLASTx-based annotation using BLAST2GO PRO v 
5.2.5. BLASTx homology searches were carried after dynamic translation against NCBI non-redundant protein 
sequences (NR) database using the default cut-off parameters of E-value, 1.0e-3 and the word size of BLAST 
parameters of 3. In addition to the functional annotation, InterProScan v 5.34–73.058, Gene ontology (GO; http://
geneontology.org), GO-Slim, EggNOG v 4.5.159 were used and the results were merged with the BLASTx annota-
tion. The read counts that were mapped to the reconstructed reference were normalized to reads per kilobase of 
transcript per million mapped reads (RPKM) as the expression values. The false discovery rate (FDR) p-value less 
than 0.05 was used as a statistical value for differential expressed genes (DEG) screening and classified it into four 
groups of up-regulation (FC ≥ 1.5), moderately up-regulation (1 < FC < 1.5), down-regulation (FC ≤ −1.5) and 
moderately down-regulation (−1.5 < FC < −1) based on fold change (FC), respectively.

Investigation and analysis of protein-protein interaction (PPI) networks. To investigate the 
expression of the membrane protein genes, the types of the proteins related to the network of the interaction 
among the membrane protein genes, analyses were conducted based on zebra fish (Danio rerio) database in 
STRING v11.0 (https://string-db.org/) on the condition of minimum required interaction score >0.5 and active 
interaction sources were as follows: Textmining, Experiments, Databases, Co-expression, Neighborhood, Gene 
Fusion, and Co-occurrence. Of the representative osmoregulatory membrane proteins, ATPase transporters 
(ATP1a1a, ATP1a1b, ATP1a3, ATP1b1, CFTR), symporters (SLC12a1, SLC12a2), antiporter (SLC9a3) and pas-
sive transporters (AQP4, AQP8, AQP9) were selected to be analyzed, and the expression of the various protein 
genes known to be related to the interaction network was investigated. Finally, an interaction networks map was 
completed on the multiple proteins used in the analyses and visualized with Cytoscape v3.7.1 software60.

RNA-seq data validation by quantitative real-time RT-PCR (qRT-PCR). The qRT-PCR was per-
formed to verify expression patterns of differential expression genes in representative membrane protein genes 
of ionocytes as a result of RNA-Seq data. For qRT-PCR validation, normalization of the total RNA concentration 
between groups was performed, and cDNA was synthesized using PrimeScript RT reagent kit (Takara) with 
random primer and oligo-dTs. Primer design for qRT-PCR validation was based on the trimmed reads of chum 
salmon transcriptome sequencing. Specific primer pairs for membrane protein genes, including elongation fac-
tor 1 alpha as a qRT-PCR reference gene61 were constructed based on RNA-seq results (Table S3). qRT-PCR 
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was conducted using a Thermal Cycler Dice ™ real-time PCR system (Takara) and SYBR premix Ex TaqII Kit 
(Takara). The qRT-PCR was carried out in triplicate on each sample. The thermal cycling was performed as fol-
lows: denaturation at 95 °C for 30 s, followed by 45 cycles of 95 °C for 5 s, and annealing at 60 °C for 30 s. qRT-PCR 
results were expressed as mean ± standard error (SEM) and performed with one-way ANOVA with significant 
level p < 0.05 using SPSS 25.0 software.
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