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improvement in predicting drug 
sensitivity changes associated 
with protein mutations using 
a molecular dynamics based 
alchemical mutation method
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While molecular-targeted drugs have demonstrated strong therapeutic efficacy against diverse 
diseases such as cancer and infection, the appearance of drug resistance associated with genetic 
variations in individual patients or pathogens has severely limited their clinical efficacy. Therefore, 
precision medicine approaches based on the personal genomic background provide promising 
strategies to enhance the effectiveness of molecular-targeted therapies. However, identifying drug 
resistance mutations in individuals by combining DnA sequencing and in vitro analyses is generally 
time consuming and costly. In contrast, in silico computation of protein-drug binding free energies 
allows for the rapid prediction of drug sensitivity changes associated with specific genetic mutations. 
Although conventional alchemical free energy computation methods have been used to quantify 
mutation-induced drug sensitivity changes in some protein targets, these methods are often adversely 
affected by free energy convergence. In this paper, we demonstrate significant improvements in 
prediction performance and free energy convergence by employing an alchemical mutation protocol, 
MutationFEP, which directly estimates binding free energy differences associated with protein 
mutations in three types of a protein and drug system. The superior performance of MutationFEP 
appears to be attributable to its more-moderate perturbation scheme. Therefore, this study provides a 
deeper level of insight into computer-assisted precision medicine.

Over the past three decades, molecular-targeted drugs have been developed for treating numerous diseases. 
However, the clinical efficacy of these drugs has been severely limited by mutations that impart drug resistance 
in target proteins. Mutation patterns can differ among individual patients with diseases such as cancer1,2, sug-
gesting that precision medicine based on an individual’s genomic background offers a more-appropriate ther-
apeutic strategy3. Analyses of personal genomes via DNA sequencing of tissue samples often reveal variants of 
unknown significance4 and multiple mutations5. Previously, the genotypes associated with drug responsiveness 
were identified from among mixtures of mutations through in vitro or in vivo functional studies, which are both 
time consuming and costly. Thus, an alternative method that enables rapid, precise, and accurate identification of 
drug-resistance mutations is required to facilitate the development of precision medicine therapies.

Recently, a database that comprises more than 1000 drug-resistance mutations has been developed6, and 
mutation-induced changes in drug affinity have been predicted by machine learning methods utilizing these big 
data7,8. Physicochemically, mutation-induced impairment of drug sensitivity can be defined as a difference in the 
protein-drug binding free energy (ΔΔG) between ΔGbind
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mutant. Molecular dynamics (MD)-based free energy computation methods such as free energy perturbation 
(FEP)9–11, have been employed in genomic medicine studies12–17. One alchemical FEP method in particular, 
MP-CAFEE (massively parallel computation of absolute binding free energy with well-equilibrated states)18, was 
used to predict decreases in drug sensitivity resulting from mutations in anaplastic lymphoma receptor tyrosine 
kinase (ALK)13,14, RET proto-oncogene products (RET)15, and the epidermal growth factor receptor (EGFR)16. 
However, ΔG values computed using MP-CAFEE often exhibit larger calculation errors resulting from the meth-
od’s FEP scheme, a double-annihilation method19. In this scheme, intermolecular interactions between a drug 
and its surrounding molecules are gradually annihilated, such that in the final stages of annihilation (when the 
coupling parameter, λ, is ~1), the drug leaves the protein pocket and freely moves within the simulation box, 
leading to difficulty in determining free energy convergence during short MD simulations (i.e., the end-point 
problem)20,21. Although several studies have implemented improvements in convergence by introducing artificial 
restraints that confine the drug within the binding pocket19,22, use of these methods may require additional effort 
in order to determine the proper restraint parameters.

The present study compared MP-CAFEE and an alternative FEP protocol based on an alchemical mutation 
algorithm23, MutationFEP, in terms of performance in predicting mutation-induced changes in drug sensitivity 
using three protein systems: ALK with ALK tyrosine kinase inhibitor (alectinib), a viral protein, H1N1–2009 
neuraminidase (NA) with neuraminidase inhibitor (oseltamivir), and aldose reductase (ALR2) with five drugs. 
Because the latter protocol only perturbs intermolecular interactions involving the mutated residue(s), most 
protein-drug interactions are maintained during FEP simulations, thus potentially avoiding the end-point prob-
lem. The use of MutationFEP significantly improved the free energy convergence with better prediction perfor-
mance, demonstrating that MutationFEP is not subject to the intrinsic drawbacks associated with conventional 
FEP methods. MutationFEP is thus expected to become an invaluable computational tool that could accelerate 
the development of new precision medicine therapies.

Materials and Methods
Preparation of initial structures. We calculated binding free energy differences between the wild-type 
and mutant forms of three proteins, ALK (mutations: I1171T, I1171N, F1174I, F1174V, V1180L, V1185L, 
L1196M, L1196Q, and G1269A), NA (mutations: I223V, S247N, H275Y, I223V/H275Y, and S247N/H275Y) 
and ALR2 (mutations: V47I, T113Y, L300A, L301M, and S302R/C303D). The ALK-alectinib cocrystal structure 
was obtained from the Protein Data Bank (PDB)24 (code 3AOX25). The NA-oseltamivir cocrystal structure was 
obtained from the PDB (code 3TI626), and chain A of the tetramer in the deposited structure was used in the sub-
sequent structure preparation. Crystal structures of ALR2 in complex with zopolrestat, fidarestat, IDD388, 47D, 
and IDD393 were obtained from the PDB (codes 2HVO27, 1PWM28, 2IKI29, 2PDG30, and 2PZN (Ruiz, F. et al.  
to be published), respectively).

After small-molecule compounds other than drug molecules or a cofactor (NADP+) were removed from the 
PDB structures, the disordered loops and flexible side chains in the proteins were modeled using the Structure 
Preparation Module of Molecular Operating Environment (MOE, Chemical Computing Group, Montreal, 
Canada), version 2013.08. The N- and C-termini of the protein model were capped with acetyl and N-methyl 
groups, respectively. For MP-CAFEE, each mutation was introduced into the structure of wild-type NA, ALK, 
and ALR2 using the Structure Preparation Module in MOE. Hydrogen atoms of a protein were added using 

Figure 1. Difference in free energy calculated using MP-CAFEE or MutationFEP. In MP-CAFEE 
ΔΔ = Δ − Δ−( G G G )MP CAFEE bind

2
bind
1 , ΔΔG is computed as the difference between ΔGbind

1  for the wild-type 
state and ΔGbind

2  for the mutant, where Coulomb and van der Waals (vdW) interactions between a drug and 
other molecules are gradually annihilated. In MutationFEP ΔΔ = Δ − Δ( G G G )MutationFEP mutation

2
mutation
1 , 

ΔΔG is computed as the difference between two different mutation-induced free energy changes: ΔGmutation
1  for 

the drug-free state, and ΔGmutation
2  for the drug-bound state.
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pdb2gmx, a module of the GROMACS program, v. 5.1.431. The AMBER ff99SB-ILDN32 force field was used for 
protein and ion molecules. Hydrogen atoms of drugs were added as described in Supplementary Fig. S1. General 
Amber force field (GAFF)33 was used for drug molecules. The restrained electrostatic potential (RESP) approach34 
was applied to determine partial atomic charges of a drug using the resp module of AMBERTools 13 after its 
structure was optimized in vacuo and the electrostatic potential was calculated at the HF/6–31G(d) level using 
the General Atomic and Molecular Electronic Structure System (GAMESS version 14 Feb 2018 [R1])35. Topology 
and coordinate files for the drug were generated by using tleap module of AMBERTools 13 and converted to 
GROMACS-compatible files with acpype36.

The protein-drug complex was placed 0.8 nm from the end of the periodic octahedron box filled with water 
molecules, for which TIP3P37 was used. Several water molecules were replaced by sodium and chloride ions to 
neutralize the system using the genion module of GROMACS. The simulation systems constructed according to 
these procedures contained approximately 32,700, 41,700, and 30,000 atoms for NA, ALK, and ALR2, respec-
tively, and were used as the initial structures in subsequent MD simulations. The determined parameters and 
input coordinates are available as Supplemental Data.

MD simulation. First, in order to eliminate steric clashes, energy minimizations using the steepest descent 
algorithm were performed. Each of the systems was then equilibrated at five different initial velocities in accord-
ance with algorithms and settings described below unless otherwise noted. The detailed procedure was as follows: 

Figure 2. Performance of MutationFEP. (A) Calculated mutation-induced free energy changes 
ΔΔ = Δ − Δ( G G G )MutationFEP mutation

2
mutation
1  versus experimentally determined drug sensitivity changes. The 

coefficient of determination, R2, was calculated by linear regression (gray lines). Open symbols indicate double 
point mutations. These calculated and experimental values are summarized in Supplementary Tables S2A-B. (B) 
The dependence of R2 (blue lines) and the minimum energy overlap (red bars) on the number of λ. Five-
nanosecond trajectories were used for calculation of these values. Experimental values were retrieved from Ki 
values of oseltamivir for NA in the enzymatic assays53 and IC50 values of alectinib for ALK mutations in the cell 
viability assays14. Those for ALK wild-type, G1269A, and F1174I mutations were determined by the identical 
procedure in this study. (C) The performance for the aldose reductase (ALR2) systems. Open symbols indicate 
double point mutations. Experimental values of five drugs (IDD388, 47D, IDD393, zopolrestat, fidarestat) were 
retrieved from ΔG values30. These calculated and experimental values are summarized in Supplementary 
Table S2C. Error bars represent the standard deviation across three independent FEP simulations.
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(1) a 100-ps constant volume (NVT) ensemble simulation with the restraints; (2) a 100-ps constant pressure 
(NPT) ensemble simulation with the restraints; and (3) a 50-ns NPT ensemble simulation without the restraints 
were sequentially performed.

The initial structure for following free energy calculations was selected from among snapshots obtained from 
the 50-ns × 5 simulations, according to the procedure employed in a previous study38.

All minimization and MD simulations were performed using GROMACS 5.1.4. Coulomb interactions were 
calculated according to the particle mesh Ewald39 method; the real-space cut-off value was set to 1.0 nm, with 
72, 72, and 72, and 64, 64, and 64 wave vectors included for the x, y, and z directions for the reciprocal space 
calculations for the ALK and ALR2 systems, and NA system, respectively. The β–spline interpolation order was 
set at 4. The cut-off value of vdW interactions was set to 1.0 nm. The vdW and Coulomb interaction energies 
were shifted to 0 at the cut-off radius. SETTLE40 was used for the rigid water model. P-LINCS41 was applied to 
constrain all bond lengths at an expansion order of 6 for production runs and 8 for other runs. The V-rescale42 
and Parrinello-Rahman algorithms43 were used to control the temperature at 300 K and pressure at 1.01325 bar, 
respectively. Position restraints were controlled by the harmonic potential at a force constant of 1000 kJ/(mol 
nm2).

Calculation of protein-drug binding free energies. Binding free energy differences between wild-type 
and mutant proteins were calculated using two alchemical FEP methods, as shown in Fig. 1 (i.e., MutationFEP 
and MP-CAFEE).

MutationFEP. MutationFEP calculations were performed according to the dual-topology method44, in which 
systems were altered using a coupling parameter, λ, ranging from λ = 0 (corresponding to a wild-type protein) to 
λ = 1 (corresponding to a mutant protein). Protein dual topologies were prepared using pmx (1.1.0dev)23,45, a 
structure and topology generator for FEP. For topologies of NA, the atomic weight of dummy atoms was set to 1 

Figure 3. Performance of MP-CAFEE. Calculated mutation-induced free energy changes 
ΔΔ = Δ − Δ−( G G G )MP CAFEE bind

2
bind
1  are plotted against experimentally determined drug sensitivity 

changes. The coefficient of determination, R2, was calculated by linear regression (gray lines). Open symbols 
indicate double point mutations. Experimental values were retrieved as described in Fig. 2. Error bars represent 
the standard deviation across six independent FEP simulations. For the ALK L1196M mutant, since the MBAR 
algorithm (an alchemical analysis calculation module) did not converge, only five of the six simulations were 
used for ΔG calculation. These calculated and experimental values are summarized in Supplementary 
Tables S2A–C.
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to prevent topological instability in the FEP simulations. The equilibrated systems prepared in the previous sec-
tion were used for simulations of the drug-bound state. Simulations of the drug-free state were performed using 
a protein structure generated by removing the drug from the drug-bound state (Fig. 1). In our protocol, 8, 14, and 
27 λ points were used, as shown in Supplementary Table S1. After each λ system was energy minimized using the 
steepest-descent and l-BFGS algorithms, it was equilibrated by performing (1) a 10-ps NVT simulation, (2) a 
10-ps NPT simulation (using the Berendsen barostat), and (3) a 30-ps NPT simulation, with positional restraints 
of protein heavy atoms, except for mutated residues. The V-rescale42 and Parrinello-Rahman algorithms43 were 
used to control the temperature at 300 K and pressure at 1.01325 bar, respectively, for all systems, except for the 
first 30-ps NPT ensemble simulation of MutationFEP, which was controlled using the Berendsen barostat46. Three 
independent production runs were conducted at different initial velocities under the NPT condition without the 
positional restraints. After the first 2 ns in each trajectory were discarded, the binding free energies were calcu-
lated by the multistate Bennett acceptance ratio (MBAR) method47, using the alchemical-analysis.py module 
(1.0.2.dev0)48. Calculation errors in GMutationFEPΔΔ  were estimated according to the following equation:

( ) ( ) ,mutation
2 1

mutation
2 2

mutation
1 2σ σ σ= +−

where andmutation
1

mutation
2σ σ represent the standard deviation of ΔGmutation

1  and ΔGmutation
2  respectively, across 

three independent simulations.

MP-CAFEE. MP-CAFEE was performed with the previously determined simulation parameters38, in which 
11 and 21 λ points were used to decouple Coulomb and van der Waals interactions between drug and other mol-
ecules, respectively. For each λ, six independent 2-ns simulations were performed at different initial velocities. 

Figure 4. Free energy convergences in MutationFEP for the (A) ALK-alectinib and (B) NA-oseltamivir 
systems. Free energy values were computed using (27 λ × 3 ns) trajectories. Error bars indicate the standard 
deviation across three independent simulations. The proportion of trajectories that maintained the drug-bound 
state, Pbound (%), was calculated as follows. The average distance between the centers of mass of the protein and 
drug (COM distance) was measured for each λ trajectory, and when the COM distance was less than a given 
threshold, the trajectory was regarded as maintaining the bound state. Pbound was calculated by dividing the 
number of λ trajectories that maintained the bound state by that of all λ trajectories. The threshold for each 
protein, T, was determined according to the equation T = ave. + 6 × s.t.d, where ave. and s.t.d. are the average 
and standard deviation of the COM distances across the three independent unperturbed (λ = 0) simulations.
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After the first 1 ns in each trajectory was discarded, the binding free energies were calculated by the MBAR 
method. Calculation errors in ΔΔGMP-CAFEE were estimated as the standard deviation of Gbind

2Δ  across the six 
independent simulations (Fig. 1).

Results
Parameter optimization in MutationFEP. We examined the effect of MD simulation time (t ns) and 
number of λ (n λ) on prediction performance and calculation errors. The coefficients of determination (R2) for 
the ALK-alectinib and NA-oseltamivir systems were 0.22 and 0.90, respectively, for (27 λ × 3 ns) and 0.44 and 
0.88, respectively, for (27 λ × 5 ns) (Fig. 2A). In the ALK-alectinib system, longer simulation time resulted in 
increased R2 values with lower calculation errors, similar to several proteins assessed in previous studies49. On 
the other hand, there was no significant difference for the NA-oseltamivir system. These results suggest that the 
appropriate length for the simulation time differs depending on protein species. Furthermore, when the simu-
lation length was fixed at 5 ns, the prediction performance improved as the number of λ increased (Fig. 2B). A 
previous study suggested that an energy overlap between neighboring λ-states of more than 0.03 is preferable to 

Figure 5. Free energy convergences in MP-CAFEE for the (A) ALK-alectinib and (B) NA-oseltamivir systems. 
Free energy values were computed using trajectories of the Coulomb and vdW annihilation phases. Error 
bars indicate the standard deviation across six independent simulations. The proportion of trajectories that 
maintained the drug-bound state, Pbound (%), was calculated as described in Fig. 4. A COM distance threshold 
was determined using the same equation in Fig. 4, where ave. and s.t.d. are set to the average and standard 
deviation of the COM distances across the six independent unperturbed (λ = 0) simulations.
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avoid increasing the calculation error48. Our simulations at 14 λ and 27 λ maintained an energy overlap of more 
than 0.03, but the overlap in simulations at 8 λ decreased below 0.03 and resulted in a marked increase in the 
calculation error (Fig. 2A). A typical example of energy overlap is shown in Fig. S2.

Performance of MutationFEP. A protocol with the best performance (27 × 5 ns) was applied to the aldose 
reductase-drug system consisting of 2–5 mutants and 5 drugs, showing a coefficient of determination of 0.72 
(Fig. 2C). It took 48 hours to obtain 19 ΔΔG values when using 128 nodes, each of which is equipped with 2 
CPUs (Xeon Gold 6148 CPU, 20 cores). Parallel computing enabled simultaneous prediction of ΔΔG for multiple 
mutants.

Comparison of the performance of MP-CAFEE and MutationFEP. When we performed MP-CAFEE 
to calculate ΔΔG for the same protein-drug systems, the R2 values for the ALK-alectinib, NA-oseltamivir, 
and ALR2–5 drug systems were 0.034, 0.17, and 0.11, respectively (Fig. 3). These R2 values were significantly 
smaller than those of MutationFEP (27 λ × 3 ns) (Fig. 2A,C). The computational cost was almost equivalent to 
that of MP-CAFEE, thus demonstrating the higher prediction performance of MutationFEP (Supplementary 
Tables S2C). Moreover, MP-CAFEE exhibited larger calculation errors compared to MutationFEP (Figs. 2A,C, 
and 3).

Discussion
In this study, we employed an alchemical mutation FEP protocol, MutationFEP, to predict mutation-induced 
changes in drug sensitivity for three different proteins, NA, ALK, and ALR2. We found that MutationFEP provides 
better prediction performance in terms of ΔΔG (Figs. 2 and 3) than a conventional FEP method, MP-CAFEE. 
We next examined factors that cause the performance difference between the two methods, using the simulation 
data of the NA and ALK systems. MutationFEP showed lower calculation errors (Figs. 2 and 3) and better ΔG 
convergences (Figs. 4 and 5) than MP-CAFEE. In the MP-CAFEE scheme, the bound drug tends not to stay in the 
binding pocket at the end point of the perturbation (λ ~ 1), leading to not only enhanced motional freedom of the 
drug, but also conformational changes in the protein upon drug dissociation19,21. This situation may lead to sam-
pling insufficiency in short MD simulations. Indeed, drug dissociation in the vdW annihilation phase was clearly 
observed for both proteins (Fig. 5). Unexpectedly, in the NA-oseltamivir system, drug dissociation was observed 
even in the Coulomb annihilation phase, corresponding to the early stage of the perturbation (Fig. 5B), presum-
ably because bound oseltamivir is heavily stabilized by electrostatic interactions (i.e., hydrogen bonds and salt 
bridges) (Fig. 6). In contrast, MutationFEP indicated stable maintenance of the drug-bound state for both pro-
teins (Fig. 4), as its FEP scheme perturbs only the mutated amino acid(s), thus avoiding the end-point problem.

Although alchemical mutation methods have been used in several case studies addressing drug resistance49–51, 
their prediction performance has not been compared to that of other FEP methods. In this study, we demon-
strated that MutationFEP overcomes the intrinsic drawbacks of MP-CAFEE, a double-annihilation method. 
Therefore, choosing the proper FEP method based on the mutation type appears to be essential for rapid and 

Figure 6. Interactions between drug and protein residues in the binding pocket. The cocrystal structures of (A) 
ALK-alectinib (PDB ID: 3AOX)25 and (B) NA-oseltamivir (PDB ID: 3TI6)26 were analyzed using LigPlot + 54. 
The red half circles denote the residues that formed hydrophobic interactions, and the green dotted lines 
represent the hydrogen bonds.
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accurate prediction of mutation-induced changes in drug sensitivity. For example, MutationFEP successfully 
reproduced the experimental ΔΔG values resulting from several double point mutations in NA (i.e., H275Y/
S247N and H275Y/I223V), for which ΔΔG predictions appear to be challenging due to higher degrees of pertur-
bation compared to single point mutations. Therefore, MutationFEP is suitable for examining the effects of both 
single and multiple mutations leading to drug resistance5,52. However, because MutationFEP cannot accommo-
date deletion/insertion mutations and replacement of proline or cysteine involved in a disulfide bond23, conven-
tional FEP methods such as MP-CAFEE are more suitable for predictions of ΔΔG associated with these types 
of mutations16. It is expected that these FEP methods will be further improved in the near future to actualize 
computer-assisted precision medicine.

conclusion
In this study, an MD-based alchemical mutation method, MutationFEP, and a traditional alchemical free energy 
computation method, MP-CAFEE, were compared in terms of performance at predicting mutation-induced 
changes in drug sensitivity. In three protein target systems, MutationFEP showed better prediction performance. 
Even though two of the systems included double point mutants, MutationFEP successfully reproduced experi-
mental drug-sensitivity changes, suggesting that this protocol may be useful for assessment of the effects of mul-
tiple mutations, which are often found in drug-resistant cancer cells5,52. Also, its moderate perturbation scheme 
appears to be applicable to protein targets for which drug tends to leave the pocket during conventional FEP 
simulations. However, MutationFEP cannot currently handle mutation types other than amino acid replacements 
(i.e., deletions/insertions). Therefore, for realization of computer-assisted precision medicine, combined use of 
MutationFEP and traditional FEP methods is expected to cover a broader range of protein targets and mutation 
types. Further studies are needed to improve the computational methods to accurately predict mutation-induced 
drug sensitivity changes. Sample scripts, input coordinates, and parameters of MutationFEP are available as 
Supplemental File.
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