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High-density neutrophils in 
MGUS and multiple myeloma 
are dysfunctional and immune-
suppressive due to increased STAT3 
downstream signaling
A. Romano1,2, N. L. Parrinello2,3,8, V. Simeon4,5,8, F. Puglisi2, P. La Cava2, C. Bellofiore1,2, 
C. Giallongo2, G. Camiolo2, F. D’Auria4, V. Grieco4, F. Larocca4, A. Barbato2, D. Cambria2,  
E. La Spina6, D. Tibullo6, G. A. Palumbo2,3, C. Conticello2, P. Musto4,7 & F. Di Raimondo1,2*

To understand neutrophil impairment in the progression from MGUS through active MM, we 
investigated the function of mature, high-density neutrophils (HDNs), isolated from peripheral 
blood. In 7 MM, 3 MGUS and 3 healthy subjects by gene expression profile, we identified a total of 551 
upregulated and 343 downregulated genes in MM-HDN, involved in chemokine signaling pathway and 
FC-gamma receptor mediated phagocytosis conveying in the activation of STAT proteins. In a series 
of 60 newly diagnosed MM and 30 MGUS patients, by flow-cytometry we found that HDN from MM, 
and to a lesser extend MGUS, had an up-regulation of the inducible FcγRI (also known as CD64) and a 
down-regulation of the constitutive FcγRIIIa (also known as CD16) together with a reduced phagocytic 
activity and oxidative burst, associated to increased immune-suppression that could be reverted by 
arginase inhibitors in co-culture with lymphocytes. In 43 consecutive newly-diagnosed MM patients, 
who received first-line treatment based on bortezomib, thalidomide and dexamethasone, high CD64 
could identify at diagnosis patients with inferior median overall survival (39.5 versus 86.7 months, 
p = 0.04). Thus, HDNs are significantly different among healthy, MGUS and MM subjects. In both MGUS 
and MM neutrophils may play a role in supporting both the increased susceptibility to infection and the 
immunological dysfunction that leads to tumor progression.

In multiple myeloma (MM), the second most frequent hematological neoplasia, the presence of malignant plasma 
cells within the bone marrow (BM) is associated to CRAB symptoms including hypercalcemia, renal impairment, 
anemia and osteolytic bone lesions1. Virtually, all MM cases are preceded by an asymptomatic phase defined as 
monoclonal gammopathy of unknown significance (MGUS) or smoldering myeloma (SMM), characterized by 
progressive accumulation of plasma cells, from less to more than 10% in the BM2,3.

Despite a normal absolute count of neutrophils, recurrent bacterial infections due to both gram positive (e.g. S. 
aureus, S. pneumoniae) and gram negative bacteria (e.g H.Influenzae, E. coli) are common in MM patients, with the 
highest risk of blood stream bacterial infections in patients with aggressive clinical presentation4,5 within six months 
from diagnosis5. This can be due to the concomitant reduction of the uninvolved immunoglobulins (immunopare-
sis), since both MGUS6,7 and MM patients8 have low levels of antibodies against S. aureus, S. pneumoniae6,9,10, but 
other host factors associated to the biological features of the underlying disease have been proposed11,12.
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Figure 1.  Functional enrichment analysis of high-density neutrophils isolated from multiple myeloma and 
MGUS patients differ from the control cells at gene level. (A) The Metascape suite of tools (http://metscape.
org) was used to analyze gene targets differentially expressed in MGUS, MM and healthy HDNs. The color of 
heatmap depicts statistical enriched terms across input lists of genes significantly enriched (±1.5 fold, p < 0.05) 
in the comparison of MGUS or MM versus healthy HDNs, white cells: lack of enrichment. (B) Circos plot to 
decipher the overlap between gene lists: where purple curves link identical genes, while blue curves link genes 
that belong to the same enriched ontology term. In the inner circle each arc represents a gene list, where each 
gene has a spot on the arc. On the outside, each arc represents the identity of each gene list (MGUS = Red, 
MM = Blue). (C) Gene set enrichment analysis (GSEA) of MM- versus healthy HDNs. Normalized enrichments 
score (NES) and false discovery rate (FDR) are shown per each gene set analyzed. The green curves show the 
enrichment score and reflects the degree to which each gene (black vertical lines) is represented at the bottom 
of the ranked gene list. The heat map indicates the relative abundance (red to blue) of the genes specifically 
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Neutrophils are terminally differentiated cells which provide to eliminate microbial organisms by phagocyto-
sis, release of cytotoxic granules or extracellular traps13, but can work as weak antigen-presenting cells regulating 
antigen-specific T-cell responses, as recently described14,15. Revealing the complex immunological dysregulation 
in MM, the neutrophil-to-lymphocyte ratio at diagnosis or after 100 days from autologous stem cell transplan-
tation can predict outcome in MM patients, even if the novel agents era16–22 In cancer, neutrophils can integrate 
the environmental signals towards an adaptive response to the tumor-associated sterile inflammation, gener-
ally associated to a pro-tumoral phenotype13,23–26. Defects in neutrophil maturation, including reduced lysozyme 
activity27 and increased expression of arginase28,29, have been described in MM as consequence of the infiltration 
of the bone marrow by neoplastic cells27, but little is known about the contribution of human HDNs in progres-
sion from MGUS to MM.

In humans, there are two different functional states of neutrophils, originating from the same cell type30,31, not 
distinguishable by immune phenotype but for their different physical properties. By layering peripheral whole 
blood over a density gradient medium, high-density neutrophils (HDNs) sediment to the bottom in healthy 
subjects, while low-density neutrophils, (LDNs) co-purify with mononuclear cells to the top of the gradient 
in cancer patients32. It is well-accepted that LDNs include granulocytic-like myeloid-derived suppressor cells 
(G-MDSC)23,32,33, with unique immune-suppressive properties34. Both LDNs and HDNs promote tumor growth 
and chemo-refractoriness, contributing to the MM pathogenesis in mice33,35,36. In humans, LDNs, firstly reported 
in chronic inflammatory disease, induce in cancer T-cell anergy via secretion of aminoacid degrading enzymes 
arginase and tryptophan37,38.

Taking advantage of an unbiased approach based on gene expression profile, we explored the transcriptome 
of MGUS and MM-HDNs, showing that myeloid dysfunction occurs early in MGUS, and it is largely associ-
ated to increased intracellular signaling triggered by extracellular cytokines, chemokines, bacterial peptides and 
lipopolysaccharide.

Results
In comparison with healthy donors, MGUS- and MM-HDNs have unique gene expression profile.  
To study overall differences and similarities between healthy, MGUS- and MM- HDNs, we performed gene 
expression profile using Illumina HumanHT-12 v4 bead arrays. We found that gene expression profiles of MM- 
MGUS- and healthy HDNs clustered separately (Supplementary Fig. 1). The direct pair-wise comparison between 
MGUS- and healthy- HDNs identified a total of 749 genes, 491 upregulated and 258 downregulated. The direct 
pair-wise comparison of MM- and healthy- HDNs identified total of 894 differentially expressed genes: 551 
upregulated and 343 downregulated, with a false discovery rate <0.05, (Supplementary Table 1). The direct pair-
wise comparison between MGUS- and MM- HDNs identified a total of 3182 differentially expressed genes: 1491 
upregulated (with 133 genes at least 3-fold upregulated) and 1691 downregulated (with 430 genes at least 3-fold 
downregulated).

Only 42/551 genes upregulated in MM-HDNs were also up-regulated in MGUS- HDNs, with 5 genes 
(CSK, GSA, MEGF, PGM1 and PROK2) significantly associated to progression from MGUS through MM 
(Supplementary Table 2). Similarly, only 43/343 genes downregulated in MM-HDNs were also down-regulated 
in MGUS-HDNs, with only 3 genes (FRG1, JOSD1 and one still to be identified) significantly associated to pro-
gression from MGUS through MM (Supplementary Table 2).

In the attempt to classify the changes in gene ontology, which could suggest characteristic features of HDNs in 
the progression from MGUS through MM, we identified statistically significant changes in the hallmark gene sets 
by bioinformatic analysis using Metascape tools (ANOVA p < 0.05; fold difference ±1.5, Fig. 1A). The circos plot 
depicted in Fig. 1B shows that the total number of genes whose expression was altered in the MGUS set (red) was 
very distinct from MM setting (blue) when compared to normal.

Using Gene Set Enrichment Analysis (GSEA), we categorized and grouped large gene sets based on a known 
functional association, derived from the KEGG and HALLMARK pathway databases, generated from publicly 
available resources (https://www.genome.jp/kegg/pathway.html). This analysis revealed that, compared to both 
healthy donors (Fig. 2C,D) and MGUS (Fig. 2E,F), MM-HDNs had genes dysregulated in FC-γ-R mediated 
phagocytosis, endocytosis, leukocyte trans-endothelial migration, chemokine signaling Toll-like receptor path-
ways and inositol-phosphate metabolism (Table 1).

Among the list of genes that were clustered in pathway and process enrichment analysis we evaluated the 
protein-protein interaction (PPI) enrichment. The Metascape tool predicts PPI network by comparing it with pro-
tein interaction databases (BioGrid, InWeb_IM, and OmniPath)39. The molecular complex detection (MCODE) 

enriched in MM-HDNs as compared with the control cells. (D) The top ten gene sets enriched in MM-HDNs 
cells as compared with the control cells are shown (FDR < 5%). (E) GSEA of MM- versus MGUS HDNs with 
NES and FDR are shown per each gene set analyzed. (F) The top ten gene sets enriched in MM-HDNs cells 
as compared with the MGUS-HDNs are shown (FDR < 5%). (G) For the list of genes differentially expressed 
in MGUS and healthy HDNs, protein-protein interaction enrichment analysis has been carried out with the 
following databases: BioGrid8, InWeb_IM9, OmniPath and the protein-protein interaction (PPI) network, 
containing the subset of proteins that form physical interactions with at least one other member in the list, was 
analyzed. To assign meanings to the network component, GO enrichment analysis was applied to each MCODE 
component, separated out and aligned radially around the full interactome, identified by a unique color. (H) 
For the list of genes differentially expressed in MM and healthy HDNs, PPI network is shown. Each MCODE 
component in the merged network was assigned a unique color and has been separated out and aligned radially 
around the full interactome.
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Figure 2.  MM-high density neutrophils are chronically activated due to increased STAT signaling. (A) 
Bar charts of genes enriched (FDR < 0.001) in MM-(red) and MGUS-(blue) HDNs, distinguished on their 
intracellular function, showing the increased signaling via IFN-γ, TNF-α, IL-10-, IL17 and Toll-like receptors. 
(B) To validate the findings of GEP analysis, we tested in an independent set the median of fluorescence 
intensity (MFI) of STAT3pS727, STAT5a and STAT6pY641 by flow cytometry. For more robust statistical 
evaluation, MFI values were converted to a resolution metric, such as the RD defined as (Mediantreatment − 
Mediancontrol)/(rSDtreatment + rSDcontrol) to further perform ANOVA with post-hoc analysis to compare results of 
different experiments and runs. Stars denote p-value (***p < 0.001).
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method was applied to identify closely related protein from PPI network, confirming that in MGUS there was 
a transcriptional response to stress converging on the TNF-alpha/NfKB signaling (Fig. 1G), while in MM the 
activation signaling involving GPCR-ligand binding cluster converged in changes in the translational activities 
(Fig. 1H).

In MM-HDNs the signaling through IFNγ- and Toll-like receptors is increased to convey chronic 
inflammatory response via STAT proteins activation.  Compared to MGUS, high-expression genes in 
MM-HDNs were enriched for inflammatory responses to interferon gamma (IFN-γ), lipopolysaccharide (LPS), 
tumor-necrosis factor alpha (TNFα), interleukins IL-10, IL-17 and IL-6, associated to increased expression of 
the cognate type II cytokine receptors IFNGR1/2 and IL10RB, TNFα receptors type 1 and 2, the innate immune 
receptor TLR2 and IL17RA/IL17RD (Fig. 2A), conveying to upregulation of the expression of genes coding for 
the signal transducer and activator of transcription (STAT) protein family STAT-1, STAT-3, STAT-5 and STAT-
640–42 (Supplementary Table 3). Other transcription factors upregulated in MM-HDNs included CEBPβ/CEBPδ 
and NFKBI, associated to increased expression of their cognate target genes IL-8, FAS, HHEX, TAP1 and TAP2 
and reduced expression of ETS1, CCR7 and CCL5, known to be associated to the defective antigen-presentation 
in cancer43.

Activity of the STAT proteins was validated by flow cytometry. In freshly collected sorted primary samples 
from MM, MGUS and healthy subjects, we found that phosphorylation, at the steady state, of STAT3pS727, 
STAT6pY641 and the amount of STAT5a were progressively increased from healthy through MGUS – and MM 
HDNs (ANOVA test respectively, p = 0.002, p = 0.0012 and p = 0.00, Fig. 2B).

Phagocytosis and oxidative burst are impaired MM- and MGUS- HDNs, despite they are primed 
by gram-negative bacteria and soluble factors acting upstream of STAT3.  Since the GEP find-
ings suggested that FcγRI-phagocytosis was impaired in MM-HDNs (Fig. 3A), we looked at the expression of 
Fc-gamma receptors: the inducible FcγRI, also known as CD64, and the constitutive FcγRIIIa, also known as 
CD16, both regulated by the amount of extracellular IL10 and IFN-γ40,41.

In an independent series, including 5 healthy, 15 MGUS and 15 MM subjects, we found that the amount 
of CD64 was higher in MM than in MGUS- (17.5 ± 1.6 versus 11.4 ± 0.4, p = 0.001) or healthy HDNs (MFI, 
17.5 ± 1.6 versus 9.4 ± 0.7 a.u., p = 0.004, ANOVA test, Fig. 3C). Conversely, CD16 was lower in both MM- and 
MGUS-than in healthy HDNs (respectively MFI, 945 ± 38 versus 1323 ± 82 a.u., p < 0.0001, Fig. 3D), without any 
significant difference of CD16 expression between MGUS and MM-HDNs.

Exposure to sera obtained from peripheral blood of healthy (N = 3) or MM (N = 5) subjects reduced CD16 
expression on surface of healthy HDNs (p = 0.003, ANOVA test), without affecting CD64, suggesting that 
MM-related soluble factors involved in the regulation of CD64 and CD16 expression are different (Supplementary 
Fig. 2A,B).

To assess the relationship between MM expansion and FcγRs modulation on HDNs, we assessed 
by flow-cytometry the CD64 and CD16 surface expression in healthy HDNs exposed for 24 hours to 
MM-conditioned media (obtained from two MM cell lines, U266 and OPM2) or IL-6, one of the most rele-
vant cytokine in MM44. We found that MM conditioned medium, but not of IL-6, could increase CD64 amount 
by 24 hours (Fig. 3E), associated to increased amount of p-STAT3 (Fig. 3F), as expected41, but not of STAT5a 
(Fig. 3G). Furthermore, the pan-JAK2 inhibitor ruxolitinib, chosen to hamper the signaling downstream cytokine 
type II receptors IFNGR1/2, did not affect CD64 neither p-STAT3 or STAT5a expression (data not shown). 
Similarly, only the exposure to conditioned media and not IL6 could reduce CD16 expression on surface of nor-
mal HDNs (Fig. 3H).

Thus, we looked at soluble factors not related to plasma cells growth that could trigger STATs activation 
without affecting JAK1/2 downstream signaling. Since the cross-talk between FcγRI and bacterial component 
recognizing Toll-like receptors (TLRs) in human myeloid cells are critically involved in counteracting bacterial 
infections45, we triggered TLR2 exposing both healthy and MM-HDNs to LPS to appreciate the CD64 and CD16 
at different time-points (Supplementary Fig. 2).

We found that in a time-course up to 24-hours, LPS treatment doubled CD64 and halved CD16 amount, in 
both healthy and MM-HDNs, within the first 6 hours (Supplementary Fig. 2C,D), in line to previously reported 

MM HDN SIZE ES NES
NOM 
p-val

FDR 
q-val

FWER 
p-val

RANK AT 
MAX LEADING EDGE

HALLMARK_INTERFERON_ALPHA_RESPONSE 96 −0.75 −2.20 0.00 <0.0001 <0.0001 3954 tags = 63%, list = 12%, signal = 71%

HALLMARK_INTERFERON_GAMMA_RESPONSE 199 −0.63 −2.01 0.00 <0.0001 <0.0001 3954 tags = 51%, list = 12%, signal = 58%

HALLMARK_IL6_JAK_STAT3_SIGNALING 87 −0.67 −1.95 0.00 <0.0001 <0.0001 4482 tags = 46%, list = 13%, signal = 53%

HALLMARK_INFLAMMATORY_RESPONSE 199 −0.56 −1.80 0.00 <0.0001 <0.0001 4860 tags = 37%, list = 14%, signal = 43%

HALLMARK_PI3K_AKT_MTOR_SIGNALING 104 −0.58 −1.74 0.00 <0.0001 <0.0001 3946 tags = 34%, list = 12%, signal = 38%

HALLMARK_PROTEIN_SECRETION 96 −0.56 −1.66 0.00 <0.0001 0.01 3723 tags = 42%, list = 11%, signal = 47%

HALLMARK_APICAL_JUNCTION 199 −0.51 −1.63 0.00 <0.0001 0.02 4298 tags = 26%, list = 13%, signal = 29%

HALLMARK_MITOTIC_SPINDLE 197 −0.51 −1.62 0.00 <0.0001 0.02 4356 tags = 31%, list = 13%, signal = 35%

HALLMARK_KRAS_SIGNALING_UP 200 −0.50 −1.61 0.00 0.01 0.04 3185 tags = 22%, list = 9%, signal = 24%

Table 1.  Enriched genesets in MM HDNs using GSEA analysis. Abbreviations: FWER, family-wise error rate; 
NOM, nominal. The top enriched genesets as ranked by NES are shown for Hallmark genesets.
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Figure 3.  Neutrophil function in MM and MGUS high-density neutrophils is impaired as consequence of 
a MM-related soluble factors. (A) Gene set enrichment analysis of MM versus healthy HDNs identified an 
impairment in the FC-γ-receptor I (CD64) mediated phagocytosis. The green curves show the enrichment 
score and reflects the degree to which each gene (black vertical lines) is represented at the bottom of the ranked 
gene list. The heat map indicates the relative abundance (red to blue) of the genes specifically enriched in 
MM-HDNs as compared with the control cells. To validate the GEP findings, in an independent set of HDNs 
at steady state, as obtained from peripheral blood of MM, MGUS and healthy subjects, median intensity of 
fluorescence (MFI) of FC-γ-receptors CD64 (B-C) and CD16 (D) was detected by flow cytometry. (E-H) After 
exposure of healthy HDNs to MM conditioned media obtained from two human myeloma cell lines U266 and 
OPM2 or 500 ng/mL IL6 for 24 hours, CD64, p-STAT3, STAT5a and CD16 were measured by flow cytometry. 
(I-N) In the same experiments, the response to LPS was also evaluated. For more robust statistical evaluation, 
MFI values were converted to a resolution metric, such as the RD defined as (Mediantreatment − Mediancontrol)/
(rSDtreatment + rSDcontrol) to further perform t-test to compare results of different experiments and runs. 
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response to LPS via p-STAT3 in macrophages46. Indeed, at 24 hours, LPS increased about 20% the amount of 
baseline p-STAT3 (p = 0.007), without affecting STAT5a (Fig. 3I–N).

Based on these findings, we hypothesized that neutrophils in MM and MGUS are chronically activated as 
primed45 by gram-negative bacteria. Thus, we quantitative determined in vitro the percentage of neutrophils 
which had ingested E.coli bacteria opsonized with IgG and complement of pooled sera in controlled conditions. 
Surprisingly, we found that the percentage of phagocytic activity was lower in MM- and MGUS- than healthy 
HDNs (respectively, 30.9 ± 4.9% versus 74.4 ± 1.8 versus 73.6 ± 3.2%, ANOVA p = 0.001, Fig. 3O). In the same 
experiments, oxidative burst was lower in MM and MGUS- than healthy HDNs (respectively, 71.2 ± 2.3% versus 
85.4 ± 1.7 versus 89.6 ± 1.2%, ANOVA p = 0.001, Fig. 3P).

Arg-1, target of STAT-3, STAT-5 and STAT-6, is increased in both MGUS and MM-HDNs.  We 
found ARG1 gene upregulation among the up-regulated genes in MM-HDNs compared to healthy HDNs. 
Since our previous work showed that ARG1, a transcriptional target of STAT-347,48, STAT-549 and STAT-650,51, is 
increased in granulocytic-like myeloid derived suppressor cells in MM28,38,52, associated to inferior outcome after 
bortezomib treatment28, we explored its expression in both MGUS- and MM-HDNs.

The expression of ARG1 was positively associated to the increased amount of STAT-1 (r-square 0.61, 
p = 0.002, Fig. 4A) and STAT-3 (r-square 0.36, p = 0.03, Fig. 4B) transcripts, suggesting that it could be regulated 
downstream to the triggering of type II cytokine receptors. In an independent cohort of 5 healthy, 15 MGUS and 
15 newly-diagnosed MM patients, ARG1 was progressively increased at both mRNA (ANOVA test, p = 0.004, 
Fig. 4C) and protein level, as detected by flow cytometry (Fig. 4D,E) and immunofluorescence (Fig. 4F–H).

Treatment for 24 hours with myeloma conditioned media obtained from OPM2 but not U266 HMCLs 
induced ARG1 in healthy HDNs (Fig. 4I), while nor IL6 neither LPS did not induce any change in the amount 
of intracellular ARG1. However, the combined exposure to LPS and IL6 was effective to overexpress ARG, as 
detected by flow cytometry (Fig. 4I).

Arg-1 confers both MGUS and MM-HDNs immunesuppressive properties.  HDNs isolated from 
MGUS or MM patients were cultured with T-lymphocytes obtained from healthy volunteers (Fig. 5A). After 
72 h from mitogen stimulation (PHA), we observed that MM-HDN reduced T-cell activation at both tested 1:2 
and 1:8 ratios (Fig. 5A, Supplementary Fig. 3) and proliferation at both tested 1:2 (data not shown) and 1:8 ratios 
(14.3 ± 0.6%, p < 0.0001, Fig. 5B). In presence of MGUS-HDNs, the reduction of T-cell activation was similar 
at 1:2 and 1:8 ratio, while defective T-cell proliferation was evident only at the 1:8 ratio (25.4 ± 4.3%, p = 0.002).

In both MGUS and MM-HDNs, the immune suppressive activity was reverted by treatment with two 
ARG-1 inhibitors, nor-NOHA or CB-1158. The revert of immune-suppression was more efficient with 
CB-1158 than nor-NOHA for the concomitant overexpression of MOSC1, a component of an N-hydroxylated 
prodrug-converting complex, able to reduce Nω-hydroxy-L-arginine (NOHA) into L-arginine, providing a col-
lateral escape from ARG-1 inhibition (Supplementary Fig. 4).

FcγRI-CD64 in MM-HDNs is associated to clinical response to bortezomib and thalido-
mide.  Since surface expression of FcγRs has been successfully tested as biomarker of proven bacterial infec-
tion, with clinical implications, we explored the role of CD64 and CD16 expression on HDN in the MM outcome. 
Between January 2012 and April 2013, 43 consecutive newly diagnosed MM patients (Supplementary Table 4), 
candidates to autologous stem cell transplantation, received first-line treatment based on bortezomib, thalido-
mide and dexamethasone (VTD). We correlated CD64 and CD16 expression on HDN at diagnosis and response 
after first four induction cycles: 31 patients achieved at least a partial response (6 complete remission, CR; 17 
very good partial response, VGPR and 8 partial remission, PR, according to IMWG 2011 response criteria53, 
while 12 failed to obtain any response (6 stable disease, SD and 6 progressive disease, PD). Patients who obtained 
at least a partial response had lower CD64 MFI (13.1 ± 0.9 versus 25.5 ± 4.2, p = 0.0001) and higher CD16 MFI 
(980.6 ± 50.1 versus 739.5 ± 74.1, p = 0.01, Fig. 6A,B). Using as threshold the mean value plus 2 standard devia-
tions in healthy subjects, we found that high CD64 could identify at diagnosis patients with inferior median over-
all survival (39.5 versus 86.7 months, p = 0.04, Fig. 6C), while CD16 could not (Fig. 6D). In univariate analysis 
high CD64 MFI, high LDH, low hemoglobin levels and stage 3 ISS at baseline were associated to lower 5-years 
overall survival (Table 2).

Discussion
In this work, we investigated immune-phenotype and function of mature, high-density neutrophils circulating in 
peripheral blood of MM and MGUS patients, aiming that HDNs could have a role in the complex pathogenesis of 
myeloma development and mirror the interplay between the tumor growth in the bone marrow and the myeloid 
development. To exclude the contamination with eosinophils or monocytes, we worked with highly-purified 
freshly-isolated HDNs38,54.

The transcriptional program of both MGUS- and MM-HDNs suggests that, in comparison with HDN 
from normal subjects, they are chronically activated, up-regulate CD64 and downregulate CD16, have a 

Stars denote p-value (***p < 0.0001) using t-test. After exposure to E-coli bacteria opsonized with IgG and 
complement of pooled sera, percentage of phagocytic activity (D) and oxidative burst (E) were detected by flow 
cytometry in controlled conditions in healthy (grey bars), MGUS (blue bars) and MM (red bars) HDNs. Stars 
denote p-value (*p < 0.005, **p < 0.001, ***p < 0.0001) using t-test for direct-pairwise comparison or ANOVA 
among three groups.
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Figure 4.  Arginase-1, target of activated STAT3, is increased in MM and MGUS high-density neutrophils. The 
association between the quantity of ARG1 transcript in MM and MGUS high-density neutrophils with STAT1 
(A) and STAT3 (B) transcripts is shown. Dot-lines represent interval of confidence. (C) Arginase expression 
in healthy, MGUS and MM high-density neutrophils, as detected by qRT-PCR is shown; the differences were 
evaluated according to ANOVA test. In an independent set of HDNs at steady state, as obtained from peripheral 
blood of MM, MGUS and healthy subjects, median intensity of fluorescence (MFI) of ARG1 was detected by 
flow cytometry(D-E). (F-H) ARG1 immunofluorescence staining in HDN isolated by immune-magnetic-
based positive selection after density gradient sedimentation from healthy, MGUS and MM subjects. ARG-1 
localized in cytosol, in grains larger in MM-HDN than in controls. (I) After exposure of healthy HDNs to 
MM conditioned media obtained from two human myeloma cell lines U266 and OPM2 or 20 ng/mL IL6 or 
100 ng/mL LPS for 24 hours, ARG1 was measured by flow cytometry. For more robust statistical evaluation, 
MFI values were converted to a resolution metric, such as the RD defined as (Mediantreatment-Mediancontrol)/
(rSDtreatment + rSDcontrol) to further perform t-test to compare results of different experiments and runs. Stars 
denote p-value (***p < 0.0001) using t-test.
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defective phagocytic activity and they are immune suppressive due to ARG1 over-expression. The role of the 
immune-suppressive myeloid compartment in favoring progression of disease in MM has been demonstrated 
both in experimental35,36,55,56 and clinical models57–61, however this is the first study reporting changes in human 
HDNs during an hematological malignancy, developed in the bone marrow, where the tumor cells share the 
same site with myeloid progenitors. Our findings clearly indicate that the combination of phenotypic changes 
(increased CD64 and Arg-1) and function (reduced phagocytosis and increased immune-suppression) occurring 
in MM-HDN overlap with those described for G-MDSC in MM, in line with recent reports in the field62, while 
HDN in healthy subjects do not have immunosuppressive features. Key MDSC genes and canonical signaling 
pathways are activated along tumor progression, as recently demonstrated in murine cancer models, where a 
consensus set of 817 genes, involved in myeloid cell recruitment and angiogenesis, was identified63.

Despite the transcriptome of MGUS and MM HDNs is very different, with less than 10% of overlapping 
alterations compared to healthy subjects, in both we found a gene-signature converging on STATs activation, 
as consequence of an early or chronic response to soluble factors. In the attempt to recapitulate in vitro changes 
seen in vivo, we found that soluble factors not related to MM expansion, like LPS, part of gram-negative bacterial 
membranes, could affect HDN immune phenotype.

Some reports suggest that circulating (complete or incomplete) IgG proteins could trigger neutrophil acti-
vation64 but in our series neutrophilic dysfunction was not associated to any specific isotype (data not shown).

In human and mouse models, MM-derived exosomes can hamper myeloid maturation, conferring immature 
myeloid cells potent immune suppressive activity, through activation of STAT3, leading to increased immunosup-
pression which favors MM progression65,66. Our previous work showed that immune-modulatory factors released 
by MM-mesenchymal stem cells are able to induce G-MDSC in vitro from healthy peripheral blood mononu-
clear cells, supporting an evolving concept regarding the contribution of MM microenvironment to tumor 

Figure 5.  Arginase-1 confers both MGUS and MM high-density neutrophils immune suppressive properties. 
CD3 + T-cells obtained from healthy donors were activated using PHA and co-cultured with purified 
HDN freshly isolated from MGUS/MM patients or healthy donors, matched for sex and age, at increasing 
concentration (L:N ratio 1:2, 1:8). After 24 hours T-cells were examined for the early activation marker CD69. 
Bars represent the mean fluorescence intensity ± standard deviation of eight independent experiments, based 
on cells obtained from three different healthy donors, 6 MGUS and 6 MM/HDN (A). In an independent series 
of experiments, T-cells were labelled with CFSE and activated with PHA. After 3 hours, MGUS-HDN were 
added at the ratio L:HDNmgus 1:4; alternatively, MM-HDN were added at the ratio L:HDNmm 2:1 and cultured 
for 72 hours to measure proliferation. In the last 24 hours Arg-1 inhibitors nor-NOHA or CB1158 were added. 
Histograms show the percentage of proliferation of CFSE-labelled T-cells in presence of HDN and Arg-1 
inhibitors (B). Stars denote p-value (***p < 0.001, **p < 0.05) using ANOVA test with post-hoc analysis. 
Abbreviations: L: lymphocyte, HDN: high-density neutrophils, PHA: phytohemagglutinin.
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development and progression through immune-editing52,67. While in solid tumors HDN could reflect the com-
position of immune infiltrate in tumor microenvironment without exerting immune-suppressive activity, HDN 
in MGUS and MM patients are immune-suppressive and share immune-suppressive features with G-MDSC, 
associated to increased CD64 and Arg-1, reduced phagocytosis and CD1625,34,60. In MM-murine model HDN and 
G-MDSC exert the same chemo-protective role without sharing the immune-suppressive property35, but novel 
insights in the field suggest that the cancer-related myelopoiesis could be different in mouse and human setting. 
Moreover, we found that in MGUS- and MM-HDNs the enzyme MOSC1 was higher than controls, contributing 
stem and thus might represent another physiological regulatory detox mechanism of neutrophils in response to 
inflamed environment68. The overexpression of MOSC1 could explain the differences in the recovery from argin-
ase inhibition that we have reported in the co-cultures of HDNs in presence of T-cells and arginase inhibitors 
nor-NOHA and CB1158.

Figure 6.  Intensity of CD64 on high-density neutrophils can predict overall survival in multiple myeloma 
patients. In circulating neutrophils, identified as CD45+CD11b+CD15+CD14− cells, obtained from peripheral 
blood of healthy, MGUS and MM patients we measured the mean of fluorescence intensity of surface expression 
of CD64 (A) and CD16 (B). Stars denote p-value (***p < 0.001, *p < 0.05) using t-test. Based on the reduction 
of monoclonal component in serum/urine patients and consequently response after 4 cycles of induction 
treatment, patients were distinguished in two groups: those who obtained at least a partial response (equivalent 
to reduction of at least 50% of monoclonal component from baseline) or not (identified as stable or progressive 
disease). Overall survival was defined as time from the date of initial diagnosis to the date of death for any 
reason or last follow-up in two groups of patients distinguished based on CD64 (C) or CD16 (D) MFI, using as 
threshold the mean value plus 2 standard deviation found in healthy subjects.
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The regulation of CD64 expression in phagocytes is under control of IFN-γ that can induce the increased phos-
phorylation of STAT3 to bind the GRR motif in the gene promotor (Fig. 7)40,41. Despite in monocytes the CD64 over-
expression is driven by both IL10 and IFN-γ and we have found the overexpression of ILR10B and its downstream 
effectors, we have not tested IL10 in vitro to recapitulate the MM-HDN phenotype since it is known that normal 
neutrophils do not upregulate CD64 via IL10, but only via IFN-γ13,40,41,69–71. There is an emerging interest in identi-
fying the molecular machinery involved in the IFN response in the MM microenvironment, since several cellular 
types show an IFNAR1 related signature in response to type 1 interferon secretion by myeloma cells72, while type 3 
interferon is reduced73 due to anergic NK and T-cells61 also in the asymptomatic MGUS phase74. Further effort in 
our lab is currently focused to identify the source of extracellular IFN-γ in the paracrine loop sustaining MM expan-
sion, and we have evidence of out-of-lineage, low-rate synthesis of IFN-γ in MM-HDNs38.

We found that both MGUS and MM-HDNs have a reduced phagocytic activity, that could determine an 
increased susceptibility to infection in both settings6,8,11 as well as an ineffective anti-tumor response75,76. 
The defective phagocytosis could limit antigen presentation by professional APC77 or play a role in the 
neutrophil-mediated antigen presentation to CD4+T-cells, contributing to immune suppression. It has been 
reported that bacterial infections contribute to MM progression from an asymptomatic phase, and that TLR2 
polymorphisms are associated to increased susceptibility to certain bacterial infections (S. Aureus, S. pneumoniae, 
L. monocytogenes, M. tubercolosis)78. For example, in the chronic tuberculosis infection79, neutrophils upregulate 
TLR2 and CD64, but have reduced phagocytosis. We hypothesize that in response to signaling triggered by solu-
ble factors, such as IL8 and IL17, which are increased in MM microenvironment, the HDN function can change. 
The reduced phagocytosis in MM neutrophils has been described also in patients with low tumor burden, at 20 
days after autologous stem cell transplantation, suggesting that factors not produced by MM cells can be implied 
in the neutrophil impairment80.

Despite we found an increase of several components of the IL17 signaling (IL17RA, TRAF6, TYK2) and its 
downstream effectors CEBPD and CEBPB in both MM and MGUS HDNs, we did not test in vitro the effect of 
IL17 on neutrophils function, because of lack of ILR17C, required for the full receptor assembly to work prop-
erly81,82. We also found that IL17RD is higher in MM- than MGUS-HDNs, but its ligand is still unknown82; it is 
questionable if it could be involved in the STAT3 activation exerted by soluble mediators released by the MM- 
conditioned media. On the other hand, the paracrine effects of IL17 can be due to the gram-negative microbiome 
composition, able to affect the evolution from MGUS to MM, as recently shown in Vk*MYC mice83. In the future, 
it will be worth to investigate the genetic and environmental predisposition to bacterial infections to personalize 
the immune therapy in MM.

Our results were not conclusive to determine if CD64 and CD16 could reflect or not the contribution of intrinsic 
and extrinsic signals related to neoplastic plasma cells expansion, even if several groups suggested a strong connec-
tion between innate and adaptive immune responses via TLRs signaling. Indeed, the main targets of LPS (used in 
our experiments in vitro) are TLR2 and TLR4, upregulated in both neoplastic plasma cells84 and MM microenviron-
ment supportive cells85, and we found an increased expression of TLR2 and its downstream gene targets, like IL8.

Our work suggests a contribution of HDNs to hamper the T-cell function in MM via ARG-159,86–88, that could 
be a novel target to improve adoptive T-cell therapy, especially in early phase of disease onset. There is an emerg-
ing interest in addressing biomarkers of immune function, since patients with normal immunological function, 
like recovery of γδ T cells that respond to infections and tumor antigens as components of innate and adaptive 
immunity59,86,87, have better outcome89.

n

Univariate analysis Multivariate analysis

OS @ 36 months p-value HR (95% CI) p-value

Gender male 30 63.3
0.12

female 13 43.3

ISS I-II 24 75.0
0.01 1.5 (0.5–4.3) 0.40

III 19 31.6

FISH risk standard 38 60.0
0.74

high 5 52.2

Hb < 10 g/dL no 11 81.8
0.05

yes 32 46.2

LDH > 2 UPN no 28 89.7
0.0004 1.7 (0.7–3.9) 0.21

yes 15 39.5

Histotype IgG 36 75.0
0.82

IgA 4 52.5

ClCr <30 ml/min 8 53.9
0.78

>30 ml/min 35 62.5

CD64 MFI on CD15 + cells normal 28 71.1
0.004 2.3 (0.9–5.8) 0.07

high 15 26.7

CD16 MFI on CD15 + cells normal 24 66.7
0.46

low 17 41.2

Table 2.  Univariate and multivariate analysis of OS in 43 patients treated up-front with VTD.

https://doi.org/10.1038/s41598-020-58859-x


1 2Scientific Reports |         (2020) 10:1983  | https://doi.org/10.1038/s41598-020-58859-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Therefore, MM-HDN fully mirror myeloid-driven immunosuppressive function and can be adopted in the 
future in reproducible assays to globally estimate the role of the host aberrant myelopoiesis in promoting progres-
sion of MM and to evaluate immune recovery in patients after treatment.

In this perspective, quantification of CD64 on HDNs could be helpful. In sepsis, the quantitative expression 
of CD64 in neutrophils could discriminate between sepsis and non-septic systemic inflammatory response syn-
drome, with translational relevance90–92. Based on several studies in the field, the amount of CD64 expression 
during the first 24 hours of suspected clinical infection can allow clinicians to discontinue unnecessary antimicro-
bial treatments with no need to wait for confirmation by microbiological testing90–92. We disclosed that patients 
carrying high CD64 on neutrophils have inferior outcome and recovering their immune function could be a 
novel therapy goal64. There is an emerging interest in addressing biomarkers of immune function, since patients 
with normal immunological function, like recovery of γδ T cells that respond to infections and tumor antigens as 
components of innate and adaptive immunity59,86,87, have better outcome89.

Taken together, our findings confirm the impairment of the immune function since the early asymptomatic 
phase of MGUS, as previously showed in murine models and human disease for other cell types35. HDNs act 
as hub of cancer-related and bacteria-related crosstalk, due to upregulation of several receptors that fine tune 
external dampening signals conveying to chronic STATs activation. These alterations could have a role in progres-
sion of disease and in early events occurring in the microenvironment dysregulation, since MGUS-HDN show 
a phenotype and functional pattern of partial dysfunction and limited immunosuppressive activity. In clinical 
progression through MM, neutrophils may play a role in supporting both the increased susceptibility to infec-
tions and the immunological suppression that leads to tumor progression. The association between defects of the 
innate immunity and increased cancer susceptibility is emerging. For examples, single nucleotide polymorphisms 

Figure 7.  Pathways transcriptionally dysregulated in MGUS- and MM- HDNs. Our work showed that MM-
HDNs had increased expression of IL10RB, IFNGR1/2, TNFR1/2, TLR2, IL17RA/D. While IFN-gamma can 
activate IFNGR1/2 and IL10 can bind IL10RB in response to unresolved chronic inflammation, to activate 
STAT1 and STAT3 and promote their nuclear translocation, LPS triggers TLR2, through an adaptor complex 
which recruits TRAF6 to activate the TAK1 kinase complex can then activate the IKK complex leading to 
NFkB activation. The increased expression of TNFR1/B and component of their adaptor complex ½ can 
recruit several transcription factors to amplify the cascade and warrant a robust response. The genes target 
CD64 and ARG1 are under the transcriptional control of STAT1 and STAT3, as previously reported for other 
professional phagocytes. The lack of IL17RC excludes that the IL17R complex could be active, but the ligand of 
the overexpressed IL17RD is still unknown.
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of TLR2 and increased expression of CD64 are more frequent in Afro-American descents and are associated to 
increased risk of prostate cancer93,94. Further studies will be needed to address if infection susceptibility can affect 
the trajectory of myeloma progression from MGUS.

Methods
Patients and controls.  Between January 2013 and December 2014, 60 newly diagnosed multiple myeloma 
(MM) and 30 monoclonal gammopathy of uncertain significance (MGUS) patients have been included in this 
study (Supplementary Table 1). Patients were free from immune-mediated diseases and acute or chronic viral 
infections to avoid any interference on immune-regulatory mechanisms. All MM patients had measurable dis-
ease. All MGUS patients had a stable chronic disease with at least 2 years of follow up. Thirty healthy subjects 
(age > 45 years) were recruited in the study as controls.

None of the recruited patients was receiving medical treatments that could have an impact on their immune 
condition. All subjects involved in the study provided their written informed consent according to the Declaration 
of Helsinki, as approved by the Ethical Local Committee Board (Comitato Etico Catania 1, #19351, 04.12.2009, 
https://www.policlinicovittorioemanuele.it/comitato-etico-catania-1).

Isolation of Neutrophils and Lymphocytes.  Whole blood (40 ml) was collected from healthy volun-
teers, MGUS and MM patients in vacutainer tubes containing the anticoagulant, potassium EDTA and diluted 
1:1 with dextran 3% for two hours to obtain plasma enriched of white cells. Peripheral blood mononuclear 
cells (PBMC) were then isolated by the standard method of density gradient centrifugation using Ficoll-Paque 
(Pharmacia LKB Biotechnology). The resulting interphase layer from the gradient was diluted and washed twice 
with Dulbecco’s phosphate buffered saline (PBS, Celbio) to obtain PBMC from the top and neutrophils from the 
bottom. T-lymphocytes were isolated using T-cells enrichment columns (R&D Systems). Purity of T-lymphocytes 
(>95%) was assessed using flow cytometry.

To isolate neutrophils, the pellet obtained after centrifugation of PB on Ficoll, containing erythrocytes and 
high-density neutrophils (HDN), was subjected to hypotonic lysis (155 mM NH4 Cl, 10 mM KHCO3, 0.1 mM 
EDTA, pH 7.4) for 15 minutes on ice. After washing, cells were further immune-magnetically sorted using the 
EasySep human neutrophil Isolation kit (StemCell Technology, cat #17957)54. HDN purity, maturity and viability 
were checked by morphology, as previously described38 and flow cytometry as CD45+CD11b+CD15+CD14-cells 
(Supplementary Fig. 5). HDNs with purity and viability of more than 95% were used for further assays, as previ-
ously described38.

Gene expression profile of HDNs.  RNA concentration was determined with a Nanodrop (Nano-Drop, 
Wilmington, Delaware, USA) spectrophotometer and its quality was assessed with an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Milano, Italy).

For each sample, 300 ng of total RNA was reverse transcribed and used for synthesis of cDNA and biotiny-
lated cRNA according to the Illumina TotalPrep RNA amplification kit protocol (Ambion, Austin, TX; category 
number IL1791). Hybridization of 750 ng of cRNA on Illumina HumanHT12 v4.0 Expression BeadChip array 
(Illumina Inc., San Diego, CA, USA), staining and scanning were performed according to the standard protocol 
supplied by Illumina. The analysis was performed in duplicate for each sample. BeadChip was dried and scanned 
with an Illumina HiScanSQ system (Illumina Inc.).

For data analysis, we used two approaches. First, the intensity files were loaded into the Illumina Genome 
Studio software for quality control and gene expression analysis. Quantile normalization algorithm was applied 
on the data set to correct systematic errors, values below a detection score of 0.05 were filtered out and missing 
values were imputed. Differently expressed genes (DEGs) were selected with differential score (DiffScore) cutoff 
set at ± 13 (p > 0.05). The DEGs list (composed by 894 genes, 551 up- and 343 down-regulated) was used to eval-
uate the gene ontology performing an enrichment analysis with DAVID Bioinformatics (http://david.abcc.ncifcrf.
gov/home.jsp95)- in terms of Biological Processes, Cellular Component and Molecular Function. The degree of 
enrichment was statistically evaluated to determine whether an observed level of annotation for a group of genes 
was significant. The statistical significance of the gene ontology was computed using a modified Fisher Exact test 
(EASE score), the resulting P-values were corrected using the Benjamini and Yekutieli FDR methods. Enrichment 
analysis was calculated to rank overall importance of annotation term groups. It is the geometric mean of all the 
enrichment P-values (EASE scores) of each annotation term in the group.

Second, Gene Set Enrichment Analysis (GSEA) was performed using the publicly available desktop appli-
cation from the Broad Institute (http://www.broad.mit.edu/gsea/software/software_index.html). The gene sets 
database used was that of functional sets, s2.symbols.gmt. P values were calculated by permuting the genes 1,000 
times. The classic enrichment statistic was selected, as described above.

To understand either common or unique pathways and protein networks we performed a final analysis with 
the recently developed Metascape suite39. Data are available at http://www.ebi.ac.uk/arrayexpress/help/FAQ.htm-
l#cite, ArrayExpress accession E-MTAB-6105.

Expression of immunosuppression-related genes.  Total RNA was extracted from neutrophils 
using Trizol reagent and quantified using UV spectrophotometer. For real-time PCR analysis of mRNA 
expression, 1.0 μg of total RNA (in 20 μl reaction volume) was reverse transcribed using reverse transcriptase 
(Roche Diagnostic Corp., Indianapolis, IN, USA) and oligo-dT primers in a standard reaction. The resultant 
cDNA was then used as the template for PCR amplification. The quantitative real-time polymerase chain reac-
tion was performed by use of a LightCycler (Roche), with primers designed specifically for the transcripts of 
ARG1 (Fw: ACAGTTTGGCAATTGGAAGCA Rv: CACCCAGATGACTCCAAGATCAG), MOSC1 (Fw: 
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GCTTCCTGAAGTCACAGCCCTA Rv: CAAGAATGGGCTGGTGTCTGAG), STAT3 (Fw: GAGAAGGACATC 
AGCGGTAAG Rv: AGTGGA GACACCAGGATATTG), STAT1 (Fw: GGCAAAGAGTGATCAGAAACAA 
Rv:GTTCAGTGACATTCAGCAACTC) according to the gene manufacturer’s recommended protocol (Applied 
Biosystem). Each reaction was run in triplicate. Samples were quantified accordingly (LightCycler analysis 
software, version 3.5) using the housekeeping gene GAPDH (Fw: TCCTGTTCGACAGTCAGCCGCA, Rv: 
GCGCCCAATACGACCAAATCCGT) as standard.

Immunephenotype of HDNs.  One hundred thousand HDNs were separated using a combination of phys-
ical and immune-magnetically based methods as described above were stained with the following antibodies 
from Beckman Coulter: CD15-FITC (clone 80H5), CD11b-PE (clone bear-1), CD14-PC7 (clone RMO52) and 
CD45-ECD (clone J33).

In selected experiments HDNs were identified by forward and 90° light scatter parameters, CD11b and 
CD15 expression and stained with the following antibodies from Beckman Coulter: CD11b PC5 (clone bear1), 
CD15-FITC (clone80H5), CD64 ECD (clone 22); CD16 ECD (clone - 3G8); Biolegend: Arg-1-PE (clone, 
14D2C43); and Mylteni: STAT3pS727 PE(clone REA324), STAT5a-PE (clone REA549), STAT6-pY641- FITC 
(clone REA 413), and respective isotypic controls.

Samples were then washed in PBS and mean fluorescence intensity (MFI) corrected for values of nonspecific 
binding was acquired by a Navios flow-cytometer.

Quantification of phagocytosis and oxidative burst.  Phagocytic and oxidative burst activities were 
detected from heparin blood using the Phagotest kit (Opregen Pharma, Heidelberg, Germany) and Phagoburst 
kit (Glycotope Biotechnology GmbH, Heidelberg, Germany), following manufacturer’s instructions. Cells were 
gated through the scatter parameters (forward, FCS versus side scatter, SSC) and their green fluorescence histo-
gram was analyzed by a Navios flow cytometer. The results were expressed as percentage of fluorescent cells in 
the population studied and calculated by subtracting the percentage of the negative control sample (<1%) from 
the positive sample.

Evaluation in vitro of changed in surface markers of healthy HDNs after treatment with 
MM-related soluble factors.  For sera collection obtained from MM (N = 8) and MGUS (N = 6) subjects, 
blood was centrifuged by 2 hours at 1600 × g for 10 minutes at room temperature and surnatant saved at –80 °C 
for maximum 2 months. OPM2 and U266 human myeloma cell lines (HMCLs) were kindly provided by prof. 
Tassone (Magna Grecia, University of Catanzaro), previously validated using sequencing and phenotypic charac-
terization96, were plated 72 hours prior to collection of conditioned media, which was then filtered using a 0.2μm 
syringe filter, diluted to the appropriate concentration with complete RPMI.

HDNs, isolated from 8 healthy donors, were incubated with 5% CO2 at 37 °C at the concentration of 100 × 104/
ml with sera 20% obtained from 8 MGUS and 8 MM patients (matched for sex and age) or conditioned media to 
evaluate changes in surface expression of CD64 or CD16 after 24 hours. In another set of experiments, healthy 
HDNs (100 × 104/ml) were grown in 12-wells tissue culture plates in RPMI1640 Gibco) supplemented with 10% 
FBS and 1% penicillin/streptomycin and treated for 24 hours with recombinant human IL-6 (Biolegend, 715104), 
LPS (Cell Signaling Technology, #14011) or both, at final concentrations respectively of 20 ng/ml and 100 ng/ml. 
At the end of treatments, cells were collected and stained as previously described to detect CD64, CD16, Arg-1, 
STAT3pS727 and STAT5a, then washed with PBS, centrifuged for 5 min and resuspended in 300 μL of PBS for 
further flow cytometry analysis.

For more robust statistical evaluation, MFI values were converted to a resolution metric, such as the RD 
defined as (Mediantreatment − Mediancontrol)/(rSDtreatment + rSDcontrol) to further perform t-test to compare results of 
different experiments and runs.

Detection of Arg-1.  For immunofluorescence analysis of Arg-1 in neutrophils, the sections were incubated 
overnight in a humid chamber at 4 °C with primary antibody anti-Arg-1 (anti-rabbit, Sigma-HPA003595). After 
a rinse in PBS for 10 min, the sections were incubated for 2 h at room temperature with fluorescein isothiocy-
anate (FITC) conjugated goat anti-rabbit IgG (Sigma). In order to identify five fields with the largest number of 
immunostained cells, a first observation of the tissue sections under a 20 × objective was carried out. Then using 
40 × oil-immersion objective, the counting of the immune-positive cells was performed in each one of these 
fields. All observations were made with a Zeiss Axio Imager Z1 epifluorescence microscope (Carl Zeiss AG, Werk 
Göttingen, Germany), equipped with an AxioCam camera (Zeiss, Jena, Germany) for the acquisition of images.

Evaluation of suppressive activity of HDNs against allogeneic T-cells.  50 × 104 allogenic 
T-lymphocytes isolated from 5 healthy donors were labeled with 1 µM of Carboxyfluoresceinsuccinimidyl ester 
(CFSE) (BD Pharmingen) at 37 °C for 20 min, then added to a 24-well tissue culture plate in the presence of phy-
tohaemagglutinin (PHA-P, 5 mg/ml) (Sigma-Aldrich) to induce T cell proliferation and co-cultured with neutro-
phils (N) obtained from 5 MM, 5 MGUS or 5 healthy subjects (matched for sex and age) at ratio 1:2 and 1:8. The 
T-cell proliferation measured by CFSE dilution was evaluated by flow cytometry after 72 hours.

In addition, T-lymphocytes from 5 healthy donors were harvested, washed twice in staining buffer (PBS con-
taining 0.2% BSA and 0.1% sodium azide) and added to a 96-well polypropylene plate at concentration 5 × 105 
cells/well. After stimulation with 5 mg/ml PHA they were co-cultured with neutrophils (N) obtained from 5 MM, 
5 MGUS or 5 healthy subjects at ratio 1:2 and 1:8.

Then, at each time point (24, 48 and 72 hours), we evaluated the expression on T-lymphocytes of some activa-
tion markers such as HLA-DR, CD69 and CD71. PHA-stimulated T-cells were used as control.
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For flow-cytometry analysis, 50 × 104 cells/well were stained with the following monoclonal antibodies pur-
chased from Beckman Coulter: HLA-DR- PC5 (Clone Immu-357), CD3 ECD (clone UCHT1), CD69 PE (clone 
TP1.55.3), CD71 FITC (clone YDJ1.2.2). Staining with respective isotype-matched control antibodies was also 
included for each condition to detect nonspecific background staining. Density of expression of activation mark-
ers (Mean Fluorescent Intensity, MFI) were obtained and represented.

Statistical methods.  Statistical analyses for subject data and functional analyses were performed using 
Prism GraphPad Software (La Jolla, CA, USA). Two-tailed Student’s t-tests and Fischer’s exact tests were used 
to compare continuous and categorical clinical variables, respectively. Mann-Whitney U test was utilized for 
non-parametric data. For each neutrophil function measurement (phagocytosis and oxidative burst, CD64 and 
CD16 expression), means and standard deviations, median and IQR for non-symmetric variables were calculated 
and compared among healthy, MGUS and MM subjects by use of a two-tailed Student’s t test with Bonferroni cor-
rection. ANOVA test was used to compare means of more than two groups. Descriptive statistics were generated 
for analysis of results and p-value under 0.05 was considered significant. Qualitative results were summarized in 
MFI (mean fluorescence intensity) and in percentages.

Using as threshold the mean value plus 2 standard deviation in healthy subjects of both CD64 and CD16 MFI 
we identified four groups, designated as “low-CD64”, “high-CD64”, “low-CD16” and “high-CD16”. These thresh-
olds were then carried forward to predict overall survival.

Overall survival (OS) was defined as time from the date of initial diagnosis to the date of death for any reason 
or last follow-up. Follow-up times were described as medians by using the inverse Kaplan-Meier estimator [28]. 
Survival curves were obtained by using the Kaplan-Meier method and were compared with the log-rank test. The 
Cox proportional hazards model was used to calculate adjusted hazard ratios (HRs) and their 95% confidence 
intervals (CI). All statistical tests were two-sided, and the threshold for statistical significance was p = 0.05, per-
formed using MedCalc for Windows, version 12.5 (MedCalc Software, Ostend, Belgium).
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