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Wurtzite AlN film is a promising material for deep ultraviolet light-emitting diodes. However, some 
properties that attribute to its crystal orientation, i.e., c-axis orientation, are obstacles in realizing high 
efficiency devices. Constructing devices with non-c-axis oriented films is a solution to this problem; 
however, achieving it with conventional growth techniques is difficult. Recently, we succeeded in 
growing a-axis oriented wurtzite heavily Fe-doped AlN (AlFeN) films via sputtering. In this article, we 
report the electronic structures of AlFeN films investigated using soft X-ray spectroscopies. As-grown 
films were found to have conduction and valence band structures for a film with c-axis in film planes. 
Simultaneously, it was found that large gap states were formed via n-p and Fe-d hybridization. To 
remove the gap states, the films were annealed, thereby resulting in a drastic decrease of the gap states 
while maintaining a-axis orientation. We offer heavy Fe-doping and post annealing as a new technique 
to obtain non-polar AlN films.

Wurtzite III-nitride semiconductors centred on GaN are proven materials for light emitting diodes (LEDs) 
because they have direct band gaps covering the spectral region of ultraviolet (UV), visible, and infrared lights 
via band gap engineering for the past quarter-century1–4. AlN is one of the III-nitrides and it is a promising 
material for deep UV LEDs5,6 by virtue of its wide band gap of 6.1 eV7 along with its high thermal conductivity 
and chemical stability8. However, AlN and AlGaN with a high AlN mole ratio confront difficult issues to realize 
high efficiency devices owing to some electronic properties in the form of thin films, which are traced back to its 
crystal axis orientations, i.e. c-axis orientation.

In the c-axis direction of a wurtzite structure, electronic polarization can exist owing to a large deference of 
electronegativities between Al and N, which align along the c-axis, as shown in Fig. 1a. Electronic polarization 
can build internal electric fields in vertical LED structures, which cause low recombination efficiencies due to the 
quantum confined Stark effect9,10. Additionally, the split regimes in the top of valence band (VB) can be another 
obstacle. Optical dipole transitions between the top of the VB and the bottom of the conduction band (CB) are 
forbidden for the light with electric fields in the c-plane11, which result in low extraction efficiency.

Considering the above mechanisms of obstacles for the realization of high efficiency deep UV LEDs, laying 
c-axes in film planes would be a simple solution. Significant efforts have been made to grow films with m- and 
a-axes orientations, which are known as non-polar films12,13. However, with conventional techniques based on 
epitaxial growth regimes, there are difficulties in choosing an appropriate substrate14–17; moreover, wurtzite films 
are subjected to the formation c-axis orientation.

Very recently, we succeeded in obtaining a-axis oriented films via heavily Fe-doping AlN by radio-frequency 
sputtering18. Using this technique, a-axis oriented films can be grown with single crystal columnar structures 
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irrespective of the type of substrates, such as SiO2 glass and c-plane sapphire substrates18. In this study, we report 
the electric structures of AlFeN films analysed by soft X-ray absorption of Al and N K-edge and X-ray emission 
measurements of N K-edge. It was found that heavy Fe-doping gives rise to changes in the CB structures that 
were expected to be in a film with the c-axes in the film plane. Simultaneously, however, it was also found that 
several gap states were formed. Ab-initio band structure calculations implied that N-p and Fe-d hybridizations 
caused gap states when Fe atoms occupied the Al sites of wurtzite AlN. It is well known that gap states can be the 
sources of light absorptions and free-carrier killers, which leads to decreased light emitting efficiency. Therefore, 
we attempted to remove Fe from the AlN lattice via thermal annealing. It was shown that the annealing procedure 
can remove Fe from the lattice and reduce the gap states drastically while keeping the a-axis orientation. We offer 
heavy Fe-doping and post annealing of AlFeN as a promising new route to obtain a seed layer of a-axis oriented 
AlN for high efficiency deep UV LEDs.

Crystallographic Properties of As-Deposited AlFeN Films
Let us present an overview of the crystallographic properties of as-grown AlFeN films, which will be discussed 
in this paper. Figure 1b shows the X-ray diffraction (XRD) profiles of representative AlFeN films (Fe: 1.6%, 4.8%, 
8.1%, 19.4%, and 21.8%; film thickness: ~2.5 μm) with an undoped AlN film. For the film with low Fe concen-
tration of 1.6%, the profile had a single peak at around 36° similar to that of the undoped AlN, which indicates 
that the film with 1.6% Fe had a c-axis oriented wurtzite structure. At high Fe concentrations of 19.4% and 21.8%, 
the profiles also had a single peak but at around 58°, a slightly lower angle to wurtzite AlN (11–20). These results 
indicate that the films had an a-axis orientation considering the peak shifts at low angles, which are attributed 
to the increases in the lattice constants due to Fe-doping. In contrast, in the profiles of the films with 4.8% and 
8.1% Fe, multiple peaks appeared. The peaks can be indexed to wurtzite AlN, corresponding to the reflections of 
(10–10), (0002), (10–11), and (11–20) planes. This indicates that the film has a mixed orientation. Figure 1c shows 
the cross-sectional transmission electron microscopy (TEM) images of the AlFeN film with 8.1% Fe. The film 
with 8.1% Fe consists of a columnar structure, similar to the film with 19.4%18. As shown in the inset of Fig. 1c, 
electron diffraction patterns in the circled area in Fig. 1c showed multiple spots, such as 1–100, 0002, and 11–20, 

Figure 1. Crystal structure, crystallographic properties of AlFeN films. (a) Wurtzite structure with the names 
of axes and planes. (b) Representative XRD profiles of as-grown AlFeN films with an undoped AlN film. (c) 
Cross-sectional TEM images of AlFeN film with 8.1% Fe and corresponding electron diffraction patterns. (d) Fe 
K-edge XANES spectra of Fe in AlFeN film (Fe: 1.6%) and standard materials such as Fe metal (0), FeO (II), and 
FeN (III)19. (e) Fe concentration dependence of Fe K-edge XANES spectra of AlFeN in E // plane.
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implying that the columnar grains have different orientations such as m, c, and a, unlike the film with 19.4% Fe, 
where every columnar had an a-axis orientation18. This result is consistent with the result of XRD measurements.

Fe K-edge X-ray absorption near edge structure (XANES) measurements were conducted to reveal the local 
crystallographic and electronic structures of Fe in AlFeN films. Figure 1d depicts the Fe K-edge XANES spectra 
of Fe in AlFeN film (Fe: 1.6%) and standard materials such as Fe metal (0), FeO (II), and FeN (III)19. The main 
edge energy of Fe in AlFeN appears close to that of FeN (III). A pre-edge peak was clearly observed in the AlFeN 
film spectrum, similar to FeN where an Fe atom is surrounded by four nitrogen atoms with non-centrosymmetric 
condition of the zincblende structure20. These results imply that most Fe atoms in the film with 1.6% Fe have an 
oxidation state close to 3+ and occupy a site with non-centrosymmetric conditions, suggesting that Fe atoms 
in the AlFeN film occupy the Al sites of a wurtzite structure. Figure 1e shows the spectra of AlFeN films with 
various Fe concentrations. The main absorption edge energies and the existence of pre-edge peaks did not show 
a dependency on the Fe concentration. These results suggest that the Fe atoms in the AlFeN films occupy the Al 
sites of a wurtzite structure, irrespective of the orientations of the films.

Electronic Structure of As-Deposited AlFeN Films
Al and N K-edge XANES spectra reflect the electron-unoccupied partial density of states (PDOSs) of Al-p and 
N-p, respectively, which are the main components of the bottom of the CB of AlN. When the incident X-ray is 
linearly polarized, XANES spectra reflect the PDOSs with the same direction as the electric field E of the incident 
X-ray. Figure 2a,c show the Al and N K-edge XANES spectra of the as-grown films, respectively, obtained by 
the total electron yield mode at UVSOR in Okazaki, Japan. The solid and broken lines were obtained when the 
electric field vectors E of the incident X-rays were perpendicular and parallel, respectively, to the film plane. To 
analyse the experimental spectra, we also performed theoretical calculations on the XANES spectra for a wurtzite 
AlN using the FDMNES code21,22. Figure 2b shows the simulated Al K-edge XANES spectra for E //a, m and E //c. 
In the simulated spectra, clear differences between E //a, m (the spectra for E //a and E //m are degenerated) and 
E //c appeared; peak 2 is characteristic for E //a, m and peak 4 and peak 5 are characteristic for E //c, while peak 
1 and peak 3 commonly appear for both E //a, m and E //c. These features are significantly consistent with those 
previously reported, both theoretically23 and experimentally24. The experimental spectra of AlFeN with 1.6% 
Fe in Fig. 2a are significantly consistent with the theoretical spectra; the spectra for E ⊥ plane and E // plane are 

Figure 2. Experimental XANES and XES spectra, theoretical XANES and band structures. (a) Al K-edge 
XANES spectra of AlFeN films measured in E ⊥ plane and E // plane modes. (b) Theoretical Al K-edge XANES 
spectra of AlN in E //a- and m-axes and E //c-axis. (c) N K-edge XANES spectra of AlFeN films measured in E 
⊥ plane and E // plane modes. (d) Theoretical N K-edge XANES spectra of AlN in E //a- and m-axes and E //c-
axis. (e) Theoretical TDOS and PDOS of Al-p and N-p for AlN. (f) Theoretical TDOS and PDOS of Al-p, N-p, 
and Fe-d for Al33Fe3N36. (g) Theoretical PDOS of N-px and N-pz for Al33Fe3N36. The zeros in every energy axis 
(E-EH) of DOS are the highest occupied states by electrons at ground state. (h) Experimental XES spectra for 
AlFeN films with 4.8% Fe and 19.4% Fe with undoped AlN film.
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coincident with the theoretical spectrum for E //c and E //a, m, respectively. This result is consistent with the XRD 
result, indicating that the film with 1.6% Fe had c-axis orientation.

For the film with 3.3% Fe, slight sign of peak 2 appeared in the spectrum for the E ⊥ plane, which indicated 
that a small a- and/or m-axes oriented region grew in the film. For the E ⊥ plane, peak 5 became slightly small, 
which indicated that the volume of c-axis oriented region became small. Considering that no obvious peak, except 
the (0002) peak, appeared in the XRD profile of the film with 3.3% Fe, the volumes of the non-c-axis oriented 
regions were smaller than the detection limits of XRD measurements. By increasing the Fe concentrations up to 
8.1%, these tendencies were enhanced, which suggests that the volume of the c-axis oriented regions became small 
with Fe concentrations. These results are consistent with the XRD results. At 19.9% and 21.8% Fe, the spectra for E 
⊥ plane and E // plane resembled each other. Because the a-axis oriented AlFeN films have random orientation in 
plane18, all directions between the c-axis and m-axis can be parallel to the vector E for the E // plane mode, while 
a-axis is parallel to the vector E for the E ⊥ plane mode. In this case, the strongest peak 2, which is characteristic 
for a- and m-axes, and peak 1 and peak 3, which are a common characteristic in all directions, can appear in both 
modes (E // plane and E ⊥ plane). It should be noted that the Fe substitution for Al might affect the structure 
of CB at such high Fe concentrations. This will be discussed after an overview of the N K-edge XANES spectra.

Figure 2c shows the experimental N K-edge XANES spectra of AlFeN films. The theoretical spectra of N 
K-edge XANES for AlN are depicted in Fig. 2d. The E direction dependence of AlFeN with 1.6% Fe can be inter-
preted as a result of c-axis orientation. The Fe concentration dependence of the N K-edge spectra can also reflect 
the change in the orientation, similar to the Al K-edge XANES analyses. Noteworthy findings in N K-edge spec-
tra are the formation of the so-called pre-edge peaks at around 396 eV, indicated by the open triangle in Fig. 2c. 
Because the N atoms are thought to be bounded to Fe atoms directly, changes in N-p PDOS might occur through 
hybridization with Fe-d orbitals under the situation in non-centrosymmetric conditions.

To test the assumption described above, PDOSs of Al-p, N-p, and Fe-d for Al36−xFexN36 with total density 
of states (TDOS) for x = 0 (un-doped) and 3 (8.3% Fe) were calculated using the Vienna ab-initio simulation 
package (VASP)25,26 code and are depicted in Fig. 2e,f. The electron unoccupied states consisted of mainly Fe-d, 
and N-p was formed in the middle of the energy gap. These results support the assumption of the origin of the 
pre-edge peaks in the N K-edge XANES spectra. As shown in Fig. 2g, the shapes and numbers of N-px and N-pz 
are similar. This is considered the reason for the similarity in the relative shapes and strengths of the pre-edge 
peaks and the main peaks of the E // plane and E ⊥ plane spectra. As shown in Fig. 2f, Al-p components also have 
gap states, which, however, are very small. This can be a reason why the pre-edge peaks in the Al K-edge XANES 
spectra are visible only at high Fe concentrations of 19.9% and 21.8%.

In the electron-occupied DOS in AlFeN, the gap states lay directly above the top of VB, which consists of 
mainly N-p and Fe-d. To analyse the electron-occupied structure, X-ray emission spectroscopy (XES) for N 
K-edge was conducted and plotted in Fig. 2h. In the spectra of AlFeN films with 4.8% and 19.4%, small but clear 
signals between 394 eV and 396 eV were observed just above the main structures between 388 eV and 394 eV. This 
result implies that the electron occupied states were formed as suggested by the theoretical calculation. Owing to 
the weak anisotropy of the N-p PDOS structure (see Fig. 2g), in conjunction with the low resolution of the XES 
measurements compared to that of the XANES measurements, no obvious difference was observed in the shapes 
of the main structures between the AlFeN films of 4.8% and 19.4% Fe, which have c- and a-axis orientations, 
respectively.

Annealed AlFeN Films
As suggested above, as-grown AlFeN films have CB and VB structures with c-axis in film planes whereas large 
gap states were formed via N-p and Fe-d hybridization. Thus, Fe atoms in the Al sites of an AlN lattice are consid-
ered to be one of the origins of gap-states, which might cause low efficiency in LEDs when the LED structure is 
constructed on an AlFeN seed layer. To decrease the gap states, thermal annealing was conducted to remove the 
Fe atoms in an AlN lattice of the a-axis oriented AlFeN samples. The Fe concentration and film thickness were 
around 19.6% and 0.6 μm, respectively. The annealing temperature was 1200 °C. During the annealing process, 
the film surface was covered with an SiO2 glass under N2 gas flow. Figure 3a shows the annealing time depend-
ence of the XRD profiles. All films were shown to have single peaks between 58° and 59° of 2θ, suggesting that the 
films keep an a-axis oriented wurtzite structure. The peak positions of the annealed films slightly shifted toward 
a higher degree than those of as-grown films. The lattice constant a was estimated from the peaks and plotted in 
Fig. 3b. The lattice constant a decreased drastically after annealing for 10 min and then became close to that of 
AlN for longer annealing. This is due to the elimination of Fe from the wurtzite lattice. This tendency is opposite 
to that of doping, which increases the lattice constants. Fe segregation was confirmed by cross-sectional scan-
ning TEM (STEM) and energy dispersive X-ray (EDX) mapping analyses. Figure 3c shows the atomic number, 
Z, contrast (ZC) STEM images, maps of Fe, Al, and N, and SAED patterns of as-grown and annealed samples. 
A ZC image can reflect the distribution of atoms: a bright point originates from heavy atoms and a dark point 
originates from light atoms. The ZC image of an as-grown sample shows uniformity in contrast, while bright 
regions appeared in those of annealed samples. This result implies that Fe, which is the heaviest atom among Fe, 
Al, and N, segregated in the film. In the EDX map of Fe, agglomerations of bright signals were observed especially 
near the substrates of the annealed film, while only very weak signals were detected in the regions of maps of Al 
and N. It was confirmed by EDX analyses that the composition of the large bright region, indicated by the white 
arrow, was approximately 100% Fe. The SAED patterns support these results; additional spots were detected in the 
annealed samples corresponding to 110, 200, and 211 from α-Fe. Here, a noteworthy discovery is that the 11–20 
of wurtzite structure spots along the growth direction remained strong in the SAED patterns of the annealed sam-
ples, thus indicating that the films maintain a-axis orientation in the wurtzite structure. This is consistent with the 
results of the XRD analyses. As for the segregated α- Fe, there were no corresponding peaks in the XRD profiles of 
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the annealed samples. The reason for this may be attributed to the fact that each region of the α- Fe had a smaller 
volume than the detection limit of the XRD measurements.

To investigate the states of Fe near the surface, we conducted Fe K-edge XANES measurements in the con-
version electron yield mode, which is a surface sensitive method. Figure 3d shows the spectra of as-grown and 
annealed (10 min) AlFeN films and Fe metal. The spectrum of AlFeN annealed for 10 min has a similar shape as 
that of the Fe metal. After a longer annealing time, the spectra showed a sharp rise in the main edges, such as FeO 
(II), as depicted in Fig. 3e. These results imply that some Fe atoms escaped the lattice sites and were oxidized near 
the surface during the long annealing time. SiO2 glass is considered to be the source of oxygen, which covered the 
sample surface during annealing and/or residual oxygen in the annealing atmosphere.

Figure 4a,b show the Al and N K-edge XANES spectra, respectively, measured for E // plane in the fluorescent 
mode, which is bulk sensitive. In the Al K-edge XANES spectrum of the annealed film, the following remark-
able changes were observed: (i) the main peaks of the annealed film kept a structure observed in those of the 
as-grown film, while every peak became sharp and (ii) the intensities of the pre-edge peaks drastically decreased. 
Determining (i) implies that the annealed film has a CB structure with c-axis in the film plane. The sharp peaks 
might be due to the decrease in hybridization with Fe orbitals. Determining (ii) implies that the gap states can 
be annihilated by removing Fe from the lattice by annealing. Similar changes corresponding to (i) and (ii) were 
observed in the N K-edge XANES spectrum of the annealed film. In conjunction with the XRD results, these 
XANES results suggest that the annealed films keep their c-axis parallel to the film planes.

conclusion
The electronic structures in the vicinity of CB and VB of AlFeN films were investigated by Al and N K-edge 
XANES. It was found that as-grown films have electronic structures, which are expected in a-axis oriented 
films, while gap-states were formed in the gap. To remove the gap-states that cause low efficiency, the films were 
annealed, thereby resulting in a drastic decrease in the gap-states while maintaining an a-axis orientation. It was 
shown that the inclusions of Fe metals remained in the annealed films. Such inclusions in the seed layer could be 
sources of light absorptions, free-carrier killers, and electrical leakage, which may lead to decreased light emitting 
efficiency in an LED. It was also implied that Fe atoms remained in the surface region of the films as Fe-oxides, 
which should be clean when the films are used as a seed for non-polar LEDs. Thus, it is necessary to optimize 
the annealing procedures that can remove Fe inclusion and maintain the surface free from oxides. As already 

Figure 3. Crystallographic properties of annealed AlFeN films. (a) XRD profiles of as-grown and annealed 
AlFeN films. (b) Annealing time dependence of lattice constant a estimated from the XRD profiles. (c) ZC 
STEM images, maps of Fe, Al, and N, with selected area electron diffraction (SAED) patterns corresponding 
to the STEM images of as-grown and annealed AlFeN films. (d) Fe K-edge XANES spectra of as-grown and 
annealed AlFeN films with Fe metal measured using the conversion electron yield method. (e) Fe K-edge 
XANES spectra of annealed AlFeN films with various Fe oxides.
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reported in our paper18, the a-axis oriented AlFeN films have random orientation in the plane. The annealed 
films also exhibit random orientation in the plane, as suggested by the Al and N K-edge XANES analyses. To use 
the films as seed layers for non-polar LEDs, we propose two directions to develop our findings: obtaining single 
crystal films as seed layer for conventional LEDs and obtaining films comprising homogeneous pillars without a 
tilt in the a-plane for nanocolumn-LEDs27,28. Once these are achieved, heavy Fe-doping and post annealing can 
be used as a new technique to obtain a seed layer to realize non-polar AlN devices.

Methods
Synthesis of AlFeN films. AlFeN films were deposited on SiO2 glass substrates directly by radio frequency 
sputtering (ULVAC KIKO, Inc., RFS-200S) from an AlN target (Furuuchi Chemical, 99%) with Fe metal chips 
(Furuuchi Chemical, 99.9%) on it. The deposition temperature was 300 °C and a flow of Ar/N2 mixture (2: 1) at a 
pressure of 0.65 Pa was used (both are of 6 N purity from Iwatani Gas). The thicknesses of the prepared films were 
approximately 2.5 μm for the electronic structure analyses of as-grown films and approximately 0.6 μm for the 
annealing experiments. Fe concentrations were determined using energy dispersive X-ray fluorescence analysis 
(HITACHI High-Technologies, SEA5120). The Fe concentration is expressed in atomic percent with respect to 
the total cation content.

Annealing of AlFeN films. An infrared image furnace (ULVAC RIKO, Inc., MIRA-5000) was used to anneal 
the samples. The annealing temperature was 1200 °C and a flow of N2 gas at atmospheric pressure was used (4 N 
purity, Iwatani Gas).

XRD measurements. X-ray diffraction (XRD) measurements were conducted using Cu Kα in the 
out-of-plane mode (PANalytical, X’Pert MRD) at room temperature (RT).

TEM specimen preparation and imaging. Samples for transmission electron microscopy (TEM) 
were prepared by mechanical polishing, followed by ion-thinning methods. Cross-sectional TEM images were 
obtained using a JEOL JEM-2010 system at 200 kV.

fe K-edge XANES measurements. Fe K-edge X-ray absorption near edge structure (XANES) measure-
ments in the fluorescence mode for as-grown AlFeN films were conducted at the BL12C of the KEK photon fac-
tory (KEK-PF). For annealed AlFeN films, the measurements were performed in conversion electron detection 
mode at the BL01B1 of SPring-8. The electric field vectors E of the incident X-rays were parallel to the film plane. 
All measurements were performed at RT.

Al and N K-edge XANES spectroscopy. N and Al K-edge XANES measurements of the as-grown films 
were performed at the BL4B and BL2A of UVSOR, respectively, in the total electron yield mode. The electric 
field vectors E of the incident X-rays were parallel and perpendicular to the film plane, E // plane, and E ⊥ plane, 
respectively. For annealed AlFeN films, the measurements were performed at the BL27SU of SPring-8 in the 
fluorescence-detection mode. This mode was chosen because the electric resistivities of the annealed films were 
very high and thus, the total electron yield mode could not be applied. The electric field vectors E of the incident 
X-rays were parallel to the film plane. All measurements were performed in vacuum ~10−7 Pa at RT.

n K-edge XES spectroscopy. N K-edge X-ray emission spectroscopy (XES) of the as-grown films was per-
formed at the BL27SU of SPring-8. The excitation energy was 430 eV, which is above the absorption threshold of 

Figure 4. XANES spectra of annealed films. (a) Al K-edge XANES spectra of as-grown and annealed films. (b) 
N K-edge XANES spectra of as-grown and annealed films.
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N K-edge. The electric field vectors E of the incident X-rays were parallel to the film plane. The XES spectra were 
recorded in a 90° scattering geometry. All measurements were performed in vacuum ~10−7 Pa at RT.

Theoretical XANES spectra calculation. The Al and N K-edge XANES spectra of wurtzite AlN were cal-
culated using the ab-initio FDMNES21,22 code with full potential. The internal parameter of the wurtzite structure 
was 0.382. The lattice constants of the undoped AlN films obtained from the XRD measurements were applied to 
the model (a = 3.08675 Å and c = 5.03276 Å). The cluster radius for the calculation was 7 Å (approximately 144 
atoms were included).

Theoretical band structure calculation. TDOS and PDOS of Al33Fe3N36 were calculated using the 
first-principle density functional calculations using the VASP25,26. For the exchange and correlation energies, 
we adopted the spin-polarized generalized-gradient approximation with Perdew-Becke-Ernzerhof parameteri-
zation29. In the calculations, we used bulk 3a × 3a × 2c periodic supercells including 33 Al, 3 Fe, and 36 N atoms 
in the wurtzite structure. In this study, the lattice constants of the AlFeN films obtained from the XRD measure-
ments were applied in the periodic supercells (a = 3.14863 Å and c = 5.07895 Å). The Hubbard correction was 
applied to Fe with U30 parameter equal to 2 eV in Fig. 2f. (Refer to the supplemental for why U = 2 was selected in 
Fig. 2f.) The atomic positions were relaxed. The Brillouin zone integration was performed on a uniform 6 × 6 × 5 
k-point mesh. The nuclei and core electrons were described by the projector augmented plane-wave potential31 
and the wave functions were expanded in a plane-waves basis set with a cut-off energy of 408 eV.

STEM/EDX. Cross-sectional STEM and EDX images were obtained using STEM (Hitachi High-Technologies, 
HD-2700) operating under 200 kV, equipped with SDD (Bruker, QUANTAX200STEM). Cross-sectional samples 
were prepared using the focused ion beam system (Hitachi High-Technologies, FB-2200) with a Ga ion beam.
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