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integrated Lc–MS and Gc–MS-
based untargeted metabolomics 
studies of the effect of azadirachtin 
on Bactrocera dorsalis larvae
You Zhou1,2, De Qiang Qin1,2, Pei Wen Zhang1,2, Xiao Tian chen1,2, Ben Ju Liu1,2, 
Dong Mei cheng1,3* & Zhi Xiang Zhang1,2*

Azadirachtin exhibits excellent bioactivities against several hundred arthropods. However, current 
knowlege of its biochemical effect on B. dorsalis larvae is not deep enough. In this study, integrated 
LC-MS and GC-MS-based untargeted metabolomics were used to analyze the changes of endogenous 
metabolites and the biochemical effects of azadirachtin on B. dorsalis larvae. Azadirachtin has excellent 
bioactivities against B. dorsalis larvae in this study, leading to a longer developmental duration, lower 
survival rate, and low pupa weight. The effect of azadirachtin was investigated on a total of 22 and 13 
differentially abundant metabolites in the LC–MS and GC–MS-based metabolomics results, are selected 
respectively. Pathway analysis indicated that 14 differentially enriched metabolic pathways, including 
seven influential pathways, are worthy of attention. Further integrated key metabolic pathway analysis 
showed that histidine metabolism, d-glutamine and d-glutamate metabolism, biotin metabolism, 
ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and alanine, aspartate 
and glutamate metabolism in B. dorsalis larvae are significantly relevant pathways affected by 
azadirachtin. Although extrapolating the bioactivity results in this study to the practical project of B. 
dorsalis pest management in the field has limitations, it was found that azadirachtin has a significant 
effect on the primary metabolism of B. dorsalis larvae.

Bactrocera dorsalis is a destructive polyphagous and invasive insect pest of tropical and subtropical fruits and 
vegetables; this oriental fruit fly has been found to attack many types of commercial fruits and a wide variety of 
agricultural products1. Azadirachtin exhibits excellent bioactivities against agricultural, forestry, medical, and 
veterinary arthropods2–4. However, studies on the effects of azadirachtin on B. dorsalis are scarce. Azadirachtin is 
the main active ingredient in neem. It was reported that neem derivatives are ineffective when used as toxic bait 
for tephritid fruit flies5. Several studies reported that neem seed kernel extracts and azadirachtin deters oviposi-
tion of B. dorsalis adults6,7. Neem leaf dust significantly reduced the longevity and fertility of B. dorsalis adults by 
blocking ovarian development8. Neem extract could effectively reduce the fecundity, fertility, and post-embryonic 
development of freshly emerged B. dorsalis flies9. However, we found no previous studies in the literature on the 
activity of azadirachtin against the larvae of B. dorsalis.

The biological effects of azadirachtin include impacts on egg-laying behavior, feeding behavior, growth and 
metamorphosis, reproduction, activity, and histopathology10. The mode of action of azadirachtin against lep-
idopteran insects can be explained, in part, by effects on digestive enzymes, NADPH cytochrome reductase, 
and cholinesterase11. The physiological effects of azadirachtin include direct inhibition of cell division and 
protein synthesis12. The indirect effects of blocking the release of morphogenetic peptide hormones (PTTH 
and allatostatins) causes disruption of molting hormone from the prothoracic glands and juvenile hormone 
from the corpora allata12. Transcriptomics analysis to investigate growth inhibition in Drosophila larvae after 
exposure to azadirachtin showed that 28 genes are significantly up or down regulated, with genes involved in 
starch and sucrose metabolism, defense response, signal transduction, instar larval or pupal development, and 
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chemosensory behavioral processes were affected13. The 2DE proteomics analysis of azadirachtin showed that 21 
proteins were differentially expressed, which involved cytoskeletal organization, transcription and translation, 
hormonal regulation, and energy metabolism14.

Azadirachtin can also have effects at the biochemical level by impacting insect endogenous metabolites. 
Azadirachtin could interfere with serotonin pools in the neuroendocrine system of locusts15. It significantly 
decreased the lipids levels in the fat body, hemolymph, and ovary of Atractomorpha crenulata and the amino acid 
content in the fat body, testes, seminal vesicle, and MARGs of Odontopus varicornis16,17. Azadirachtin was also 
found to severely reduce protein, glycogen, and lipid contents of Plodia interpunctella18. The levels of cholesterol, 
uric acid, urea, and glucose decreased in azadirachtin-treated larvae of Hyphantria cunea compared with the con-
trol19. Quantities of fatty acids and their relative composition in Asian corn borer larvae were significantly affected 
by azadirachtin at 0.1–10 ppm20. The protein, lipid, and glucose contents decreased, whereas uric acid increased 
when Glyphodes pyloalis larvae were fed with neem-treated mulberry leaves21. These studies clearly showed that 
azadirachtin can affect various biochemical compounds, such as carbohydrates, fatty acids, amino acids, choles-
terol, uric acid, and urea. Such studies focused mainly on a few biochemical metabolites, and no further analysis 
was performed to determine the biological importance of these molecular changes.

Metabolomics, an important part of systems biology, identifies the entire profile of detectable metabolites con-
tained in a biological system; it has also been used to reveal alterations in the endogenous metabolite levels that 
may result from disease processes, drug toxicity, or gene function22. In addition, metabolomics is a powerful bio-
analytical tool and has been widely used in insect science, such as in the discovery of pesticide modes-of-action23, 
the pupal diapause of the cotton bollworm24, radiation-induced insect sterility technique25, and research on the 
Asian citrus psyllid Diaphorina citri26.

Hence we tested the bioactivities of azadirachtin against B. dorsalis larvae in this study. Thereafter, we intro-
duced an approach of integrated untargeted metabolomics using UPLC–QTOF-MS and GC–Q-MS to explore the 
changes in endogenous metabolites and the potential biological implications.

Results
Azadirachtin bioactivities against B. dorsalis larvae. Azadirachtin was found to exhibit significant 
bioactivities towards B. dorsalis larvae (Fig. 1d). As shown in Fig. 1a, with regard to the developmental duration, 
9.59 ± 0.27 days in the treatment (Tr) group was significantly longer than 8.23 ± 0.11 days in the control (CK) 
group (P < 0.01). As shown in Fig. 1b, in terms of survival, 19.78 ± 1.5% in the Tr group was significantly lower 
than 88.56 ± 1.4% in the CK group (P < 0.001). As shown in Fig. 1c, pupal weight, 0.084 ± 0.007 mg in the Tr 
group was significantly lower than 0.112 ± 0.003 mg in the CK group (P < 0.05).

Metabolic profiles analyzed by GC–MS and LC–MS. The unsupervised principal component analysis 
(PCA) was used to check the quality of the data from the GC–MS and LC–MS analyses. They showed that all CK, 

Figure 1. Bioactivities of azadirachtin against B. dorsalis larvae. Data were expressed as the mean ± SE. * 
Indicates P < 0.05, ** indicates P < 0.01, and **** indicates P < 0.001.
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Tr, and QC (quality control) samples were within the 95% Hotelling’s T-squared ellipse and significantly sepa-
rated into clusters. That is no outlier was found among these samples. In the GC–MS analysis, the first principle 
component (PC1) and second principle component (PC2) explained 28.4% and 27% of the total variance of all 
samples (Fig. 2a). In ESI− mode, the PC1 and PC2 explained 45.6% and 13.8% of the total variance of all samples 
(Fig. 2b). In ESI+ mode, the PC1 and PC2 explained 35.9% and 23.9% of the total variance (Fig. 2c).

The supervised partial least squares discrimination analysis (PLS-DA) was performed to identify the metab-
olites responsible for the separation between control and azadirachtin-exposed groups. The CK and Tr groups in 
these PLS-DA models were inside the 95% Hotelling’s T-squared ellipse and showed clear separation (Fig. 3). The 
7-folds internal cross validation and 200 times permutation test were further conducted to assess these models’ 
predictive accuracy and statistical significance. In the GC–MS analysis, the parameters of PLS-DA model’s pre-
dictive accuracy were R2Xcum = 0.48, R2Ycum = 0.985, and Q2Ycum = 0.843; with its corresponding statistical signif-
icance were R2 = 0.793 and Q2 = −0.0593 (Fig. 3a). In ESI− mode, the parameters of PLS-DA model’s predictive 
accuracy were R2Xcum = 0.576, R2Ycum = 0.999, and Q2Ycum = 0.96; with its corresponding statistical significance 
were 0.844 and 0.0944 (Fig. 3b). In ESI+ mode, the parameters of PLS-DA model’s predictive accuracy were 
R2Xcum = 0.573, R2Ycum = 0.992, and Q2Ycum = 0.959; with its corresponding statistical significance were 0.859 and 
0.107 (Fig. 3c). According to the criteria that if all blue Q2 values to the left are lower than the original points to 
the right or if the blue regression line of the Q2 points intersects the vertical axis at or below zero27, these PLS-DA 
models exhibited a low risk of overfitting. The above results indicated that these PLS-DA models could identify 
the differentially enriched metabolites between CK and Tr groups.

changed metabolites in B. dorsalis larvae between the CK and the Tr groups. The representative 
GC–MS and LC–MS total ion chromatograms (TICs) of B. dorsalis larvae tissue samples are shown in Fig. 4. The 
shape and quantity of peaks between the CK and the Tr groups varied. Approximately 7328 and 13,375 metabolite 
peaks were deconvoluted in ESI− and ESI+ mode of LC–MS. By contrast, 415 metabolite peaks were deconvo-
luted in GC–MS. These deconvoluted data were further processed through missing value imputations, filtering, 
and normalization in MetaboAnalyst 4.028. A total of 1979 and 3904 remaining peaks in ESI− and ESI+ modes in 
LC–MS and 235 remaining peaks in GC–MS were further annotated using references in existing databases. After 
the by-products in GC–MS and the exogenous compounds in LC–MS were removed, the differentially abundant 
metabolites were selected according to the VIP values from the PLS-DA model (VIP > 1.2) and the corrected P 
values from Student’s t-test (q value < 0.05). Table 1 shows that 15 of the 22 differentially abundant metabolites 
were upregulated in the LC–MS analysis. Table 2 illustrates that two of the 13 differentially abundant metabolites 
were downregulated in the GC–MS analysis. As shown in Tables 1 and 2, ten amino acids and derivatives of the 
differentially abundant metabolites were the most differentially abundant metabolites, followed by seven carbo-
hydrates, six lipids, six nucleosides, three organic acids, and two vitamins and cofactors.

Metabolic pathway of differentially abundant metabolites. The KEGG pathway analysis of differ-
entially abundant metabolites was performed by MetaboAnalyst 4.0 to identify the disturbed metabolic pathways 
caused by feeding with the azadirachtin diet. A schematic overview was constructed using the reference map 
deposited in the KEGG database (Fig. 5). Eighteen differential metabolites of 14 differentially enriched metabolic 
pathways present in the B. dorsalis larvae are worthy of attention. We summarized these differentially enriched 
metabolic pathways into amino acids, carbohydrates, nucleosides, and vitamin and cofactor metabolism.

Among these differentially enriched metabolic pathways, seven had pathway impact values exceeding 0.1, 
which was the threshold for relevance after the pathway enrichment and topology analysis. On the basis of the 
negative log(P) and impact values, we characterized histidine metabolism, d-glutamine and d-glutamate metab-
olism, biotin metabolism, ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and 
alanine, aspartate, and glutamate metabolism in B. dorsalis larvae as the significantly relevant pathways affected 
by azadirachtin; their impact values were 0.5, 0.33, 0.25, 0.25, 0.22, and 0.17, respectively (Fig. 6).

Figure 2. PCA score plots derived from (a) GC–MS, (b) negative ion mode (ESI−) and (c) positive ion mode 
(ESI+) in LC–MS metabolite profiles of B. dorsalis larvae.
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Discussion
In this study, azadirachtin mixed in an artificial diet was found to significantly prolong the developmental dura-
tion of larvae and decrease the larval survival rate and pupal weight. Although this situation is quite different 
from practical application in the field because B. dorsalis larvae are inside the fruit, and there is lack of evidence 
that azadirachtin penetrate the skin and flesh, the metabolomics analysis provides new insights into the biochem-
ical response of B. dorsalis larvae to azadirachtin.

Azadirachtin could significantly reduce the quantity and relative composition of fatty acids20. However, only 
six lipids or lipid-like molecules were found to be differentially abundant in this study, and none of the lipid 

Figure 3. PLS-DA score plots (left) with corresponding permutation test plots (right) derived from (a) GC–MS, 
(b) negative ion mode (ESI−) and (c) positive ion mode (ESI+) in LC–MS metabolite profiles of B. dorsalis larvae.
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metabolism pathways were enriched. Hence, the targeted metabolomics for fatty acids or lipidomics should be 
considered to explore a more comprehensive effect of azadirachtin on the lipids of B. dorsalis larvae.

Azadirachtin was found to affect the carbohydrates metabolism of B. dorsalis larvae. Succinic and malic acids 
were the two differentially enriched metabolites in TCA cycles in this study. The TCA cycle, known as the citric 
acid cycle, has two important functions. The first involves the intermediate compounds for the synthesis of amino 
and fatty acids. The other involves the formation of large quantities of ATP, which provides energy for various 
synthetic processes29. The downregulation of such metabolites in B. dorsalis larvae is expected to indicate that a 
shortage of intermediate compounds and energy in the B. dorsalis larvae fed with azadirachtin diet. Xylitol can be 
used in the TCA cycle and after conversion into xylulose and arabitol through pentose and glucuronate intercon-
versions (https://www.genome.jp/dbget-bin/www_bget?pathway:dme00040). So changes in the relative content 
of these sugars is expected to impact the generation of energy and intermediate compounds to maintain normal 
biological processes.

Azadirachtin was also found to affect the amino acid metabolism of B. dorsalis larvae. Glutamic acid is 
involved in many biochemical pathways and is regarded as a key metabolite linking carbon and nitrogen metab-
olism30. The relative high content of glutamic acid in treated larvae could be caused by histidine metabolism, 
d-glutamine and d-glutamate metabolism, and alanine, aspartate, and glutamate metabolism, through which 
nitrogenous metabolites are further converted into TCA cycles to make up the shortage of energy and interme-
diate compounds. As histidine regularly plays a key role in the active sites of enzymes31, it has to be maintained 
at a relative high content to meet the needs of enzyme reactions in B. dorsalis larvae fed with azadirachtin diet.

Azadirachtin also affected the vitamins and cofactor metabolism of B. dorsalis larvae, including biotin, also 
known as vitamin B7 or vitamin H. The relatively high content of biotin in treated larvae in this study could 
be related to the critical roles this cofactor plays in the intermediate metabolism of gluconeogenesis, fatty acid 
synthesis, and amino acid catabolism32. Myo-inositol is regarded as a vitamin-like essential nutrient33. Due to 
the shortage of intermediate compounds and energy caused by downregulation of succinic and malic acids, 
myo-inositol was converted into TCA cycles through galactose metabolism, thereby causing its relative low 
content in this study. Myo-inositol could also be partially responsible for poor growth of B. dorsalis larvae fed 
with azadirachtin diet, since its deficiency could result in inefficiency in digestion and food utilization and poor 
growth in shrimps and fish34.

Figure 4. Typical TIC of B. dorsalis larvae tissue extracts obtained from (a) GC–MS, (b) negative ion mode 
(ESI−) and (c) positive ion mode (ESI+) in LC–MS. Left plots were CK samples, and right plots were Tr 
samples.
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conclusions
Although it is inappropriate to extrapolate the bioactivity results in this study to the project of B. dorsalis pest 
management, the integrated metabolomics analyses have revealed that azadirachtin has a significant effect on 
the carbohydrates, amino acids, and vitamin and cofactors metabolism of B. dorsalis larvae. This provides new 
insights into the mode of azadirachtin, the main active ingredient in neem based pesticides.

Mode Classification
RT 
(min)

Precursor 
MZ Precursor Type VIP q value

Fold 
change Regulation

Theoretical 
mass Formula Name

ESI+

Amino acids and 
derivatives

1.89 190.9997 [M + H]+ 1.38 9.76E-04 1.171 Up 190.1106 C11H14N2O 5-Methoxytryptamine; 5-MeOT

3.46 118.0647 [M + H]+ 1.48 1.46E-04 0.852 Down 117.0790 C5H11NO2 Norvaline; D-Norvaline

3.48 209.0921 [M + H]+ 1.46 3.46E-04 0.865 Down 208.0848 C10H12N2O3 Kynurenine; L-Kynurenine

3.73 178.0494 [M + H]+ 1.23 6.73E-04 1.107 Up 177.0460 C6H11NO3S N-Formylmethionine

3.78 105.0699 [M + H]+ 1.22 1.58E-03 1.119 Up 104.0586 C3H8N2O2 L-2,3-Diaminopropionic acid

3.94 238.0355 [M + H]+ 1.21 6.67E-03 0.879 Down 237.0307 C7H11NO6S S-succinylcysteine

7.78 156.0763 [M + H]+ 1.26 1.03E-04 1.121 Up 155.0695 C6H9N3O2 Histidine; L-Histidine

8.91 148.0602 [M + H]+ 1.62 2.40E-03 1.331 Up 147.0532 C5H9NO4 Glutamic acid; L-Glutamic acid

9.85 396.3479 [M + H]+ 1.29 8.76E-04 1.152 Up 395.3399 C24H45NO3 N-Oleyl-Leucine

9.89 430.3321 [M + H]+ 1.34 2.04E-04 1.157 Up 429.3243 C27H43NO3 N-Oleoyl-Phenylalanine

Nucleosides, nucleotides 
and derivatives

0.57 493.0011 [M + H]+ 1.32 1.37E-04 1.170 Up 491.9848 C10H15N4O13P3
2′-Deoxyinosine-5′-triphosphate 
trisodium salt; dITP

0.57 508.9798 [M + H]+ 1.27 3.47E-05 1.153 Up 507.9798 C10H15N4O14P3
Inosine-5′-triphosphate trisodium 
salt; ITP

1.30 169.0356 [M + H]+ 2.14 3.69E-04 0.752 Down 168.0283 C5H4N4O3 Uric acid; Urate

3.36 252.1096 [M + H]+ 1.32 8.64E-04 1.184 Up 251.1018 C10H13N5O3
2′-Deoxyadenosine; 
Deoxyadenosine

4.50 590.0901 [M + H]+ 1.57 9.39E-03 0.760 Down 589.0822 C16H25N5O15P2
Adenosine 5′-diphospho-glucose; 
ADP-glucose

Lipids and lipid-like 
molecules

5.20 204.1238 [M + H]+ 1.54 1.46E-03 1.249 Up 203.1158 C9H17NO4
Acetyl-L-Carnitine; 
O-Acetylcarnitine

6.66 862.6348 [M + H]+ 1.33 5.94E-04 1.149 Up 861.6177 C46H87NO13
C16 Lactosyl Ceramide 
(d18:1/16:0)

7.58 383.3262 [M + H]+ 1.39 1.93E-04 1.170 Up 382.3236 C27H42O Cholest-4,6-Dien-3-One

9.22 510.3535 [M + H]+ 1.50 1.03E-03 0.825 Down 509.3481 C25H52NO7P
1-heptadecanoyl-2-hydroxy-sn-
glycero-3-phosphocholine

Vitamins and cofactors 1.30 262.1279 [M + H-H2O]+ 1.51 5.87E-05 1.176 Up 244.0882 C10H16N2O3S Biotin; Vitamin H

ESI−

Nucleosides, nucleotides 
and derivatives 0.73 167.0202 [M − H]− 1.96 3.43E-04 0.725 Down 168.028336 C5H4N4O3 Uric acid; Urate

Carbohydrates and 
carbohydrate conjugates 3.79 326.1265 [M − H]− 1.66 6.50E-05 1.366 Up 327.0954 C14H17NO8 Acetaminophen glucuronide

Table 1. Identification of differentially abundant metabolites in ESI+ and ESI− mode in LC–MS between the 
CK and the Tr groups.

Classification Metabolites VIP q value
Fold 
change Regulation

Retention 
time

Retention 
index

RI-RI 
(lib)

Match 
factor

Carbohydrates and 
carbohydrate conjugates

Erythritol 2.35 3.63E-09 0.828 Down 14.44 1509.7 — 87

Threitol; D-Threitol 2.35 1.82E-09 0.828 Down 14.54 1517.6 2.6 91

Xylulose; D-Xylulose 1.26 3.62E-04 1.060 Up 16.63 1694.5 34.5 88

Arabitol; D-Arabitol 2.35 1.81E-09 0.816 Down 17.11 1735.0 — 96

Xylitol 2.35 1.36E-09 0.816 Down 17.17 1739.7 −13.9 87

Galactitol 1.25 5.13E-04 0.943 Down 19.93 1971.6 −10.2 91

Organic acids and 
derivatives

Succinic acid; Succinate 1.55 4.80E-03 0.870 Down 11.70 1313.2 9.5 92

2,3-Dihydroxy-2-methylpropanoic acid 1.41 4.61E-05 0.936 Down 11.90 1326.1 — 88

Malic acid; Malate 2.63 3.46E-03 0.746 Down 14.21 1493.0 −45.2 92

Lipids and lipid-like 
molecules

Octadecadienoic acid methyl ester, 9,12-(Z,Z)-, n- 2.69 2.63E-08 1.285 Up 21.18 2082.2 −7 84

Octadecadienoic acid, 9,12-(Z,Z)- 1.24 1.54E-02 0.936 Down 22.37 2196.8 — 83

Nucleosides, nucleotides 
and derivatives UDP-N-acetylglucosamine 1.42 2.67E-04 0.930 Down 18.41 1840.6 22.6 88

Vitamins and cofactors Myo-Inositol 1.65 2.66E-05 0.920 Down 20.06 1984.4 37.2 92

Table 2. Identification of differentially abundant metabolites in GC–MS between the CK and the Tr groups.
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Materials and Methods
Chemicals and reagents. Methanol of HPLC grade was obtained from Tianjin Kermel Chemical Reagent 
Co., Ltd. (Tianjin, China). Chloroform and acetone were of analytical grade and obtained from the National 
Pharmaceutical Group (Shanghai, China). The ultrapure water was prepared by ELGA LabWater system. 

Figure 5. Schematic overview of the primarily affected metabolic pathways in B. dorsalis larvae due to feeding 
with the azadirachtin diet. The red characters indicate increased metabolites, and the green ones indicate 
decreased metabolites.

Figure 6. Metabolome map of significant metabolic pathways characterized in B. dorsalis larvae for the CK and 
Tr groups. Significantly changed pathways based on enrichment and topology analysis are shown. The x-axis 
represents pathway enrichment, whereas the y-axis represents pathway impact. Large sizes and dark colors 
represent major pathway enrichment and high pathway impact values, respectively.
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Pyridine, methoxylamine hydrochloride, and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA, 98%) with 
trimethylchlorosilane (TMCS, 1%) were obtained from Aladdin (Shanghai, China). Azadirachtin (>90%) was 
kindly provided by associate Professor Yong-Qing Tian of the Key Laboratory of Natural Pesticide and Chemical 
Biology of the Ministry of Education of South China Agricultural University.

Experimental procedures and bioactivities. The population of B. dorsalis was maintained in a labo-
ratory under 25 ± 1 °C, 16:8 h light:dark cycle, and 70–80% RH. The artificial larval diet consisted of corn flour, 
yeast, sucrose, paper towel, hydrochloric acid, sodium benzoate, banana, and water, whereas the adult diet con-
sisted of water, yeast, and sugar35,36.

These experiments contained two groups, namely, control (CK) and 1 μg/g azadirachtin treatment (Tr). The 
effects of azadirachtin on larval survival, developmental duration, and pupal weight were determined in accord-
ance with a previous report and were briefly summarized below37. The stock solution of 10,000 μg/mL azadirach-
tin was prepared with acetone and stored at 4 °C. For the Tr group, the accurate volume of stock solution was 
added and fully mixed to ensure that the final azadirachtin concentration in the artificial larval diet was 1 μg/g. 
The same volume of acetone was added to the CK group. B. dorsalis eggs collected on the same day were counted 
under a microscope. Three hundred eggs of each replicate were transferred to the diet to investigate larval sur-
vival, developmental duration, and pupal weight. Treatments for each group were performed in triplicate.

Sample collection. At the last instar of B. dorsalis larvae (8 days after inoculation), more than 100 larvae 
were collected and divided into two samples from each replicate of each group. These twelve samples were then 
snap-frozen in liquid nitrogen and stored at −80 °C. The stored larvae samples were ground into fine powder in 
liquid nitrogen and freeze-dried for 24 h until extraction.

Metabolite extraction, derivatization, and analysis for GC–MS. The metabolite extraction method 
was in reference to a published procedure and described briefly as below38. Approximately 50 mg of lyophilized lar-
vae powder from each sample was homogenized for 2 min with 300 µL of precooled solvent (V(chloroform):V(methanol): 
V(water) = 1:2.5:1) for metabolite profiling analysis on GC–MS. The samples were then centrifuged at 12,000 g 
for 15 min at 4 °C. A total of 250 µL of supernatant was transferred to a new centrifuge tube. The deposit was 
re-homogenized for 1 min after adding 300 µL of precooled methanol. Subsequently, the samples were centrifuged 
at 12,000 g for 15 min at 4 °C, and 250 µL of supernatant was incorporated into the first centrifuge tube. The 500 µL 
combined supernatant was centrifuged at 12,000 g for 15 min at 4 °C. Finally, a total of 450 µL of supernatant was 
transferred to another new centrifuge tube to make QC and experimental samples.

All samples, including the QC samples, were nitrogen-dried in GC vials at room temperature. The residue was 
derivatized using a two-step procedure. First, 80 µL of methoxyamine (20 mg/mL in pyridine) was added to the 
vial and kept at 30 °C for 90 min. Second, 80 µL of BSTFA (1% TMCS) was added to the vial and maintained at 
70 °C for 60 min39.

The 1 μL of derivatized sample was subjected to Agilent 7890 A/5975 C GC–MS system. It was analyzed in 
splitless mode with an HP-5MS capillary column (5% phenylmethylsiloxane: 30 m × 250 μm internal diameter, 
0.25 μm thickness; Agilent, J & W Scientific, Folsom, CA, USA). The parameters for GC–MS analysis were set 
in reference to a previous study40. First, helium as the carrier gas at a constant flow rate of 1.0 mL/min. Second, 
the instrument was kept at 50 °C for 1 min, ramped to 100 °C at a rate of 10 °C/min for 1 min, ramped to 200 °C 
at a rate of 10 °C/min for 1 min, ramped to 280 °C at a rate of 10 °C/min for 1 min, and ramped to 320 °C at a rate 
of 10 °C/min for 1 min. Third, the injector, transfer line, and ion source were set at 250 °C, 280 °C, and 230 °C, 
respectively. Finally, mass spectra were acquired with electron ionization mode (70 eV) in full scan mode (m/z 
50–650) and solvent delay was set at 5 min. The QC samples were acquired to evaluate stability during analysis. A 
saturated n-alkane mixture from C7 to C34 was also run at the beginning of the experimental work to determine 
retention indexes (RIs).

Metabolite extraction and analysis for LC–MS. Approximately 25 mg of lyophilized larvae powder from 
each sample was homogenized for 5 min with 800 μL of precooled solvent (V(methanol):V(water) = 1:1) for metabolite 
profiling analysis by LC–MS. The samples were then centrifuged at 30,000 g for 20 min at 4 °C. Approximately 
650 μL of supernatant was transferred to a new 1.5 mL polypropylene tube and then centrifuged at 25,000 g for 
20 min at 4 °C. Next, 550 μL of supernatant was transferred into another new 1.5 mL polypropylene tube to make a 
QC sample, which was prepared by pooling the same volume of supernatant from each of the samples.

The parameters for LC–MS analysis were set with reference to literature, with some modifications41. The 
samples were subjected to a 2777 C UPLC (Waters, UK) coupled with an Xevo G2 XS QTOF high-resolution 
tandem mass spectrometer (Waters, UK). The injection volume was 10 μL. Seperation was performed on a HSS 
T3 C18 column (100 mm × 2.1 mm × 1.8 μm, Waters). The column oven was maintained at 50 °C. The mobile 
phase consisted of solvents A (water + 0.1% formic acid) and B (acetonitrile + 0.1% formic acid), with a flow 
rate of 0.4 mL/min. The gradient elution program was set as follows: 0–2 min, 100% A; 2–11 min, 0% to 100% B; 
11–13 min, 100% B; and 13–15 min, 0% to 100% A. The Q-TOF mass spectrometer was operated in both positive 
and negative ion modes. For positive ion mode (ESI+), the detection parameters were set as capillary voltage: 
3.0 kV; sampling cone voltage: 40 V; ESI source temperature: 120 °C; desolvation temperature: 450 °C; desolvation 
gas: 800 L/h; cone gas: 50 L/h; source offset: 80; TOF acquisition mode: sensitivity; acquisition method: contin-
uum MSE mode; TOF mass range: 50–1200 Da; scan time: 0.2 s; and collision energy function 2: trap CE ramp 
20–40 eV. For negative ion mode (ESI−), the capillary voltage and desolvation temperature were set at 2.0 kV 
and 350 °C, respectively. The other parameters were set the same as those in the positive ion mode. During the 
acquisition, the leucine enkephalin signal was acquired every 3 s to calibrate the mass accuracy. Furthermore, QC 
samples were acquired to evaluate the stability of the LC–MS analysis during the whole acquisition.
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Data pre-processing and multivariate pattern recognition. The original GC–MS data were auto-
matically analyzed using the automatic mass spectral deconvolution and identification system (AMDIS) and 
identified by comparing to the database of Fiehn, Golm, and NIST1442,43. The RI and mass similarity match were 
considered in metabolite identification. If the total match factor was greater than 80, then the metabolite identifi-
cation was reliable44,45. Subsequently, the AMDIS output files were extracted and processed using MET-IDEA to 
obtain the final data set, which included sample information, metabolites, and their intensities46. Peaks caused by 
column bleeding and the BSTFA derivatization procedure were removed.

The original LC–MS data were converted into.abf files by using ABF converter software (https://www.reifycs.
com/AbfConverter/). MS DIAL software (http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/index.
html) with the LC–MS/MS spectral database from MassBank of North America (http://mona.fiehnlab.ucdavis.
edu/) was used for peak exaction, data baseline filtering, baseline calibration, peak alignment, deconvolution 
analysis, peak identification, and peak integration47,48. The metabolites were filtered by removing exogenous com-
pounds, such as drugs or compounds of plant origin, on the basis of their likelihood to be present in biological 
samples49.

Total area normalization was performed to reduce the systematic biases within the experiment50,51. Data were 
log transformed and Pareto scaled for multivariate analysis to remove the offsets and adjust the importance of 
high and low abundance metabolites to an equal level52. Multivariate statistical analysis was performed using 
SIMCA 14.1 demo (Umea, Sweden). PCA showed the distribution of the original data. Supervised PLS-DA was 
applied to obtain a high level of group separation and to identify the variables responsible for classification53. 
The PLS-DA model was validated using sevenfold cross validation. The model quality was assessed based on R2 
and Q2 scores, and the permutation test was conducted to further validate this model34. The PLS-DA model was 
used with the first principal component of VIP values combined with Student’s t-test to determine significantly 
differentially abundant metabolites between CK and Tr. The q values (adjusted P values), which were raw P values 
from the t-test adjusted using the Benjamini and Hochberg procedure (BH method), were applied to correct for 
multiple comparisons45. The fold change in each metabolite abundance was calculated by comparing the mean 
values of the peak areas obtained from Tr and CK.

Pathway analysis. Analysis of metabolic pathways affected by azadirachtin was performed using 
MetaboAnalyst 4.028. This system is a free web-based tool that uses the high-quality KEGG metabolic pathway 
database as the backend knowledgebase. The hypergeometric test was used for over representation analysis 
and the out-degree centrality was used for pathway topology analysis. The significantly affected pathways were 
selected either by P values from pathway enrichment analysis or by impact values from pathway topology anal-
ysis45,54. The impact values exceeding 0.1 and the negative log(P) values exceeding 2.0 were set as the thresholds 
in this study.
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