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Synergistic effect of cisplatin 
chemotherapy combined with 
fractionated radiotherapy 
regimen in HPV-positive and HPV-
negative experimental pharyngeal 
squamous cell carcinoma
Simona Kranjc Brezar1,6, Ajda Prevc1,6, Martina Niksic Zakelj1, Andreja Brozic3, Maja Cemazar   1,2, 
Primoz Strojan4* & Gregor Sersa   1,5*

HPV infection renders oropharyngeal squamous cell carcinomas more radiosensitive, which results 
in a favorable prognosis for HPV-positive patients treated with radiation alone or with concurrent 
platinum-based chemotherapy. The degree of radiosensitivity in fractionated regimens has not yet 
been fully explored; therefore, in this study, the radiosensitivity of HPV-negative tumors (FaDu) was 
compared to that of HPV-positive tumors (2A3) subjected to concurrent cisplatin chemotherapy and 
fractionated versus isoeffective single-dose tumor irradiation in immunodeficient mice. HPV-positive 
tumors were approximately 5 times more radiosensitive than HPV-negative tumors, irrespective of the 
irradiation regimen. In both tumor models, concurrent cisplatin chemotherapy and the fractionated 
regimen induced significant tumor radiosensitization, with a 3- to 4-fold increase in the tumor growth 
delay compared to that of single-dose irradiation. Furthermore, the degree of radiosensitization 
induced by cisplatin chemotherapy concurrent with the fractionated irradiation regimen was much 
higher in HPV-positive tumors, where a synergistic antitumor effect was observed. Specifically, after 
combined therapy, a 26% higher survival rate was observed in mice with HPV-positive tumors than in 
mice with HPV-negative tumors. These data suggest that HPV-positive tumors are more radiosensitive 
to fractionated regimen than to single-dose irradiation with concurrent cisplatin chemotherapy acting 
synergistically to irradiation.

HPV-positive squamous cell carcinoma (SCC) of the oropharynx is an increasingly common disease and is in 
many ways distinct from its HPV-negative counterpart, which is caused by smoking and excessive alcohol con-
sumption1. In the clinic, it was observed that HPV-positive oropharyngeal SCC responds better to treatment with 
radiotherapy and concurrent platinum-based chemotherapy2,3.

This observation was confirmed in a number of preclinical and clinical studies2,4–10. Furthermore, the under-
lying mechanisms were explored. These studies suggested that the reason for the better response of HPV-positive 
SCC to the treatment may be impaired DNA damage repair in HPV-infected tumor cells5–7. This impairment is 
probably caused by HPV-viral proteins, E6 and E7, which interfere with the host cell cycle to promote the repro-
duction of the virus11–13. Furthermore, the immune response to viral proteins may contribute to better treatment 
outcomes in HPV-positive tumors, as the presence of HPV antigens may render the tumors more immunogenic14.
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Due to the improved response of HPV-positive oropharyngeal SCC to nonsurgical treatments, several studies 
evaluating different protocols of treatment de-escalation were initiated in patients with these tumors. The results 
of these studies showed that an approximately 20–30% deintensification of radiotherapy in combination with 
concurrent chemo- or immunotherapy in HPV-positive tumors is feasible and safe and leads to fewer side effects, 
with preservation of tumor control and survival rates15–17.

In our previous study of experimental tumor xenografts, we demonstrated a 20% increase in radiosensitivity in 
HPV-positive 2A3 tumors compared to that in HPV-negative FaDu tumors by single-dose tumor irradiation6. We 
proposed impaired DNA repair mechanisms and G2/M cell accumulation as possible underlying mechanisms6. 
However, the degree of radiosensitization in fractionated regimens with concurrent cisplatin treatment, a stand-
ard treatment for these tumors in the clinic, which may also add to radio-immunosensitization, has not yet been 
fully explored. Therefore, the aim of the present study was to compare HPV-positive tumors to HPV-negative 
tumors in response to concurrent cisplatin chemotherapy and fractionated irradiation in comparison to isoeffec-
tive single-dose tumor irradiation.

Materials and Methods
Cell lines.  All cell lines were cultured at 37 °C in a 5% CO2 humidified atmosphere. The pharyngeal SCC cell 
line FaDu (ATCC®, Gaithersburg, MD) was cultured in RPMI 1460 medium (Thermo Fisher Scientific Inc., 
Rockford, IL). The HPV E6 and E7 viral protein-expressing cell line 2A3 (derived from the FaDu cell line, a gift 
from Prof. Dadachova18) was cultured in Dulbecco’s Minimum Essential Medium (Thermo Fisher Scientific) 
supplemented with 1 mg mL−1 G418 disulfate salt solution (Sigma-Aldrich LLC, St. Louis, MO). Both media 
were supplemented with 5% fetal bovine serum (Thermo Fisher Scientific), 10 mM L-glutamine (Thermo Fisher 
Scientific), 100 U/mL penicillin (Grünenthal, Aachen, Germany) and 50 mg/mL gentamicin (KRKA, Novo Mesto, 
Slovenia). The methods used to determine the presence and expression of the HPV16 E7 gene in the 2A3 cell line 
and the corresponding results are described in Prevc et al. 2018, Supplementary Materials6.

Cell cycle analysis.  The cells were plated on Petri dishes at a density of 4 × 105 and incubated for 24 h. For 
the combined treatment, 0.2 µg/mL cisplatin was added to the cell medium 20 min prior to irradiation (Fig. 1a). 
The cells were then irradiated with 2 Gy (single dose) or three times 2 Gy (fractionated irradiation, one fraction 
per day) at a dose rate of 1.8 Gy min−1 using a Gulmay 225 X-ray system (Gulmay Medical Ltd.) with 0.55 mm 
copper and 1.8 mm aluminum filtering. Twenty-four hours after the treatment (Fig. 1a,b), the cells were trypsin-
ized and prepared for flow cytometry DNA analysis according to modified Otto’s method19. Briefly, the cells were 
resuspended in 0.2 M citric acid (Farmalabor Srl, Canosa di Puglia, Italy) and 0.5% Tween-20 (VWR Chemicals, 
France) for 20 min, centrifuged for 5 min at 470 g (Heraeus MULTIFUGE 1S-R, Kendro Laboratory Products 
GmbH, Langenseebold, Germany) and fixed in 3 ml of 70% alcohol at 4 °C. Twenty-four hours later, the cells were 
centrifuged (470 g, 5 min), washed once with PBS, again centrifuged for 5 min at 470 g, resuspended in 50 µL of 
RNase A (100 µg/mL, Qiagen GmbH, Hilden, Germany) and stained with the DNA binding dye propidium iodide 
(50 µg/mL, Sigma Aldrich, Buchs Switzerland). Then, cell cycle analysis of the samples was performed using a 
FACSCanto II flow cytometer (BD Biosciences). DNA histograms of the number of cells against the observed 
fluorescence intensity were obtained. The resulting cell cycles were analyzed with ModFit LT software (Verity 
Software House). For each sample, the distribution of cells in the G0/G1, G2/M and S phases was determined.

In vivo study.  Female SCID mice (6–8 weeks old, C. B-17/IcrHsd-Prkdcscid; Envigo, Italy) were maintained 
on a 12 h light–dark schedule under specific pathogen-free conditions at constant room temperature and humid-
ity. Food and water were provided ad libitum. For induction of subcutaneous tumors, a 100 μL suspension of 
2 × 106 FaDu or 5 × 106 2A3 cells, prepared from cell cultures in vitro, was injected subcutaneously into the 
shaved backs of the mice. At a 40 mm3 tumor volume, the mice were randomly divided into groups of at least 8.

Treatment protocols were approved by the Ministry of Agriculture, Forestry and Food of the Republic of 
Slovenia (permission No. 34401-1/2015/16) based on the approval of the National Ethics Committee for 
Experiments on Laboratory Animals. Animal experiments were carried out in accordance with the UK Animals 
(Scientific Procedures) Act, 1986, and in accordance with the guidelines for animal experiments of the EU 
Directive 2010/63/EU.

For combined treatment with cisplatin, cisplatin (4 mg/kg, 100 μL, Cisplatina Kabi; Fresenius Kabi AG, 
Bad Homburg, Germany) was injected intravenously, with the volume depending on the weight of the mice. 
Twenty minutes after the cisplatin injection, we performed either single-dose irradiation or the first fraction 
of the fractionated regimen (Fig. 1c,d). For local irradiation, mice were placed in Pb carriers, and the tumors 
were irradiated. For uniform dose distribution throughout the tumor volume, two opposite sides of the tumor 
were irradiated with 50% of the total dose (dose rate 1.92 Gy min−1) using a Gulmay 225 X-ray system (Gulmay 
Medical) with 0.55 mm copper and 1.8 mm aluminum filtering. Mice were irradiated either by a single dose of 
10 Gy or by 8 fractions of 2 Gy (one fraction per day in 8 consecutive days) (Fig. 1c,d). The number of fractions 
was selected as a 2 Gy fraction regimen, isoeffective to a 10 Gy single dose, calculated by the following Eq. (1),

α α= β + β +D /D ( / d )/( / d ) (1)1 2 2 1

where D1 was the total single-dose irradiation, d1 was the total fraction of single-dose irradiation, α/β was esti-
mated to be 10 Gy for head and neck SCC tumors, and d2 was the fraction size, set to 2 Gy20.

Tumor growth was monitored three times a week by measuring the tumor diameters using a Vernier caliper 
until the tumor volume reached 300 mm3 (data used for Kaplan-Meier survival curves). Tumor volume was cal-
culated using the Eq. (2),
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π= × × ×V ( a b c)/6 (2)

where a, b and c are three perpendicular dimensions of the tumor. Tumor growth delay was calculated as the 
difference between the tumor doubling time of the treated groups and the doubling time of the pertinent control 
group. In addition, general animal well-being was determined by monitoring the animal weight and normal tissue 
damage by the skin reaction in the irradiated field around the tumor (5 mm), three times per week.

Statistical analysis.  Statistical analysis and graphical representation were performed using SigmaPlot 
Software (Systat Software, UK). Data were tested for normality of distribution using Shapiro-Wilk test. The 
arithmetic mean (AM) and standard error of the mean (SE) were calculated. Statistically significant differences 
between experimental groups were determined using one-way analysis of variance (one-way ANOVA) followed 
by a Holm–Sidak test. The difference between experimental groups was considered significant if the p-value was 
<0.05. In addition, the mode of action (additivity, synergism, and antagonism) of treatments with independent 
mechanisms was evaluated by the method developed by Spector et al.21. Survival estimates were obtained by the 
method of Kaplan-Meier and compared by the log-rank test22,23.

Results
Single treatments.  In this study, we used FaDu tumors as an HPV-negative tumor model and 2A3 tumors 
as an HPV-positive tumor model. Tumors were irradiated with two isoeffective regimens, i.e., 10 Gy single-dose 
irradiation or a fractionated regimen (8 × 2 Gy). Indeed, the tumor growth delays after 10 Gy single-dose irra-
diation and fractionated irradiation were similar in both tumor models. The tumor growth delay in FaDu tum-
ors was 2.9 ± 1.0 days after single-dose irradiation and 3.4 ± 0.9 days after fractionated irradiation, p = 0.31; in 
2A3 tumors, it was 15.6 ± 2.3 days after single-dose irradiation and 18.1 ± 6.6 days after fractionated irradiation, 

Figure 1.  Scheme of the treatment of HPV-negative (FaDu) and HPV-positive (2A3) cells and tumors with 
concurrent cisplatin (CDDP) and a single-dose or fractionated irradiation regimen. (a) Time course of cell 
treatment with concurrent CDDP and a single-dose irradiation (2 Gy, IR) on day 2 for flow cytometry analyses. 
(b) Time course of cell treatment with concurrent CDDP fractionated irradiation regimen (3 × 2 Gy, FIR) for 
flow cytometry analyses. (c) Time course of tumor treatment with concurrent CDDP and IR (10 Gy) (d) Time 
course of tumor treatment with concurrent CDDP and FIR (8 × 2 Gy). CDDP was injected intravenously 20 min 
prior to single-dose or fractionated irradiation regimen on the first day only.
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p < 0.05. However, 2A3 tumors were 5.3 times more radiosensitive to 10 Gy single-dose irradiation (p < 0.001) 
and 5.4 times more sensitive to fractionated irradiation (p < 0.05). In addition, 2A3 tumors were 2.6 times more 
sensitive to cisplatin treatment alone (p < 0.05) than FaDu tumors (Fig. 2).

Concurrent cisplatin treatment and irradiation.  When tumors were irradiated in combination with 
concurrent single cisplatin administration 20 min before irradiation, significant radiosensitization was observed 
in both tumor models. The tumor growth delay after concurrent cisplatin with single-dose irradiation was 
13.9 ± 1.7 days (p < 0.05 to single-dose irradiation alone) in FaDu tumors, while in 2A3 tumors, it was 25.3 ± 2.6 
days (p < 0.05 to single-dose irradiation alone) (Fig. 2). Thus, 2A3 tumors were more radiosensitive in com-
bined treatment than FaDu tumors, resulting in a 1.8 times longer tumor growth delay after concurrent cisplatin 
chemotherapy with single-dose irradiation.

Furthermore, radiosensitization was significantly greater when cisplatin was combined with a fractionated 
regimen than when cisplatin was combined with single-dose irradiation (p < 0.05) (Fig. 2). In fact, the combined 
therapy had a synergistic effect in both tumor models, calculated according to Spector’s formula. Specifically, the 
tumor growth delay was 58.7 ± 10.1 days in FaDu tumors (p < 0.05 to fractionated irradiation) and 86.9 ± 4.3 
days in 2A3 tumors (p < 0.05 to fractionated irradiation) (Fig. 2). Again, the effect was more pronounced in 
HPV-positive 2A3 tumors than in FaDu tumors, with a 1.5 times longer tumor growth delay after concurrent 
cisplatin chemotherapy with the fractionated regimen (p < 0.05).

Furthermore, concurrent cisplatin treatment combined with the fractionated regimen also resulted in supe-
rior survival rates in both tumor models, while there were no cures after the combination of single-dose irradi-
ation and cisplatin chemotherapy. A 26% difference in survival rates was observed between HPV-positive 2A3 
tumors and HPV-negative FaDu tumors in favor of the former (56% vs. 30%, p < 0.05) (Fig. 3).

Toxicity.  Single treatments alone, as well as combination of cisplatin treatment with single-dose or fraction-
ated irradiation, did not evoke any systemic toxicity. Maximal animal weight loss in the group of mice treated with 
cisplatin and single-dose irradiation was 5% in the first 14 days after treatment completion (data not shown). Skin 
reactions were observed only in the group of mice treated with cisplatin combined with single-dose irradiation. 
Thirty percent of animals presented skin reactions, which manifested as edema and mild erythema that com-
pletely resolved 25 days after the treatment.

Cell cycle distribution.  To explore the mechanism of radiosensitization, cell cycle redistribution was meas-
ured 24 h after cisplatin treatment combined with single-dose irradiation (2 Gy) or 24 h after the third fraction of 
irradiation in the fractionated regimen combined with cisplatin treatment in vitro. In both schedules, cisplatin 
was administered only once, i.e., 20 min before the first 2 Gy irradiation. The cell cycle analysis in HPV-negative 
and HPV-positive cells demonstrated primarily S phase arrest 24 h after cisplatin treatment alone; compared 
to the irradiation and combined treatment a significantly higher proportion of cells was obtained in S phase 
(p < 0.05). The combined cisplatin treatment with single-dose as well fractionated irradiation resulted in G2/M 
phase arrest; compared to the control groups (treatment with cisplatin or irradiation alone; p < 0.05), a signifi-
cantly higher proportion of cells was obtained in G2/M phase. This G2/M arrest was significantly more evident in 
HPV-positive 2A3 cells than in HPV-negative FaDu cells (p < 0.05) and was 72 h later even more pronounced. In 
addition, combined treatment with the fractionated irradiation regimen and cisplatin resulted in a higher propor-
tion of 2A3 cells in G2/M phase than treatment with cisplatin and single-dose irradiation, which may contribute 
to increased sensitivity in vivo (Fig. 4). In both tumor cell lines, the percentage of the cells in S phase significantly 
decreased after fractionated irradiation (p < 0.05) compared to that observed after single-dose tumor irradiation 
(Fig. 4).

Figure 2.  Tumor growth delay of HPV-negative (FaDu) and HPV-positive (2A3) tumors after concurrent 
cisplatin (CDDP) treatment combined with single (IR, 10 Gy) or fractionated irradiation (FIR, 8 × 2 Gy). Data 
represent AM ± SE, n = 8–12. *p < 0.05 between tumor models.
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Discussion
Our previous study demonstrated that HPV-positive pharyngeal tumors were 30% more sensitive to single-dose 
irradiation and 20% more sensitive to concurrent cisplatin therapy than HPV-negative tumors. The current study 
confirms the previous findings and extends them to a clinically relevant fractionated regimen. These results sug-
gest that HPV-positive tumors respond better to fractionated radiotherapy with or without concurrent cisplatin 
chemotherapy than HPV-negative tumors. A 3- to 4-fold increase in tumor growth delay was observed after frac-
tionated irradiation compared to single-dose irradiation, together with superior survival when combined with 
concurrent cisplatin therapy. A difference of 26% was found between survival rates recorded in HPV-positive 
and HPV-negative tumors (56% vs. 30%, p < 0.05). These data indicate that HPV-positive tumors are more sen-
sitive to fractionated irradiation than to single-dose irradiation with concurrent cisplatin treatment. A higher 
sensitivity of HPV-positive tumors to cisplatin treatment alone and cell cycle redistribution during fractionated 
irradiation even after the first fraction, i.e., higher accumulation of HPV-positive cells than HPV-negative cells in 
G2/M phase, which is most sensitive to irradiation, could be one of the underlying mechanisms for the increased 
efficacy of this combined treatment.

Overall, patients with HPV-positive oropharyngeal SCC tumors respond better to radiotherapy than those 
with HPV-negative tumors and have a better prognosis2,24,25. The mechanisms of increased radiosensitivity 
observed in HPV-positive cells have been the subject of many studies4,5,7,8,26–30. It has been suggested that this 

Figure 3.  Kaplan-Meier survival curves of the mice with HPV-negative (FaDu) or HPV-positive (2A3) tumors 
after concurrent treatment with i.v. injection of cisplatin (CDDP) and single (IR) (a) or fractionated irradiation 
(FIR) (b). *p < 0.05 between treatments for FIR vs FIR + CDDP in FaDu tumors; **p < 0.05 between 
treatments for IR 10 Gy + CDDP vs FIR + CDDP in FaDu tumors; ***p < 0.05 between treatments for FIR vs 
FIR + CDDP in 2A3 tumors; ****p < 0.05 between treatments for IR 10 Gy + CDDP vs FIR + CDDP in 2A3 
tumors; #p < 0.05 between treatments for FIR + CDDP in FaDu vs FIR + CDDP in 2A3 tumors; n = 8–12 mice. 
CTRL, the control group.
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effect is due to impaired DNA repair mechanisms, cell cycle dysregulation and increased levels of reactive oxygen 
species, caused mainly by HPV-related proteins E6 and E7. In fact, E6 protein binds to the p53 protein, and E7 
binds to the Retinoblastoma (Rb) protein, which both mediate proteasomal degradation of targeted proteins 
and consequently abrogate apoptosis and senescence in host cells or arrest cells in G2/M phase, which is the 
most vulnerable to irradiation4,8,31–33. Furthermore, irradiation of HPV-positive cells induces fast progression of 
cells through S phase with subsequent arrest in G2/M phase4,6,8. The cell accumulation in this phase of the cycle 
correlates with increased levels of apoptosis and DNA double-strand breaks and decreased levels of mitosis in 
vitro4,6–8. Consequently, this may lead, together with other mechanisms, to higher radiosensitivity (up to 30%) of 
HPV-positive tumors in vivo, as observed in our previous study on single-dose irradiation6. In the current study, 
we determined an increased proportion of HPV-positive cells in G2/M phase after a single-dose or fractionated 
irradiation regimen in vitro. Additionally, a better response of HPV-positive tumors in vivo to both single-dose 
(up to 5.4-times prolonged tumor growth delay) and fractionated irradiation regimens (up to 5.3-times prolonged 
tumor growth delay) was recorded compared to that of their HPV-negative counterparts, thus confirming our 
previous results and expending them to the fractionated regimen. These results are in line with recent findings in 
clinical studies where treatment of a reduced intensity in HPV-positive oropharyngeal tumors was found to be 
equally effective as standard treatment regimens15,17. The results of these studies showed that a 20–30% decrease 
in the total dose of fractionated irradiation (from standard 70 Gy to 56 Gy or 50 Gy) for HPV-positive tumors is 
safe and feasible, with local control and survival remaining as high as those observed after the standard irradia-
tion dose16,17.

In published studies, different HPV-positive cell lines have shown considerable variations in sensitivity not 
only to irradiation7,26,27 but also to cisplatin compared to HPV-negative cells8,34, and the same was observed in 

Figure 4.  Cell cycle redistribution of HPV-negative (FaDu) and HPV-positive (2A3) cells after cisplatin 
(CDDP) treatment combined with single-dose (IR 2 Gy) (a) or fractionated irradiation (IR 3 × 2 Gy) (b). In the 
single-dose regimen, cells were analyzed 24 h after irradiation, and fractionated regimen cells were analyzed 
24 h after the last irradiation. Data were obtained from three independent experiments with 5,000 events 
measured in each sample (mean ± standard error). *p < 0.05 to other experimental groups in G2/M phase; 
**p < 0.05 between tumor models; ***p < 0.05 between single and fractionated irradiation alone or combined 
with cisplatin in 2A3 cells in G2/M phase; †<0.05 to other experimental groups in the S phase #p < 0.05 between 
cisplatin and irradiation groups in the single vs fractionated regimen in the corresponding tumor model.
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the combined treatment setting. Thus, the degree of radiopotentiation can vary; therefore, one of limitations of 
our study is the use of only one tumor model. Further studies employing other tumor models are warranted to 
confirm the radiopotentiating effect obtained by cisplatin in combination with fractionated irradiation. In clinical 
practice, cisplatin adds a benefit to radiotherapy, with significant improvement of overall survival at five years in 
head and neck SCC patients35,36. It is known that cisplatin treatment increases the duration of S phase and arrests 
cells in the G2/M phase8,34,37–39, which could contribute to radiosensitization. In the present study we share similar 
observations. Furthermore, radiation-induced arrest in the G2/M phase occurred later and was more sustained 
in HPV-positive than HPV-negative cells4. Our data demonstrate a significant increase in G2/M arrest after con-
current cisplatin treatment combined with a single-dose or fractionated irradiation regimen, which is more pro-
nounced (up to 2.9-fold) in the HPV-positive tumor model than in the HPV-negative model. The obtained results 
differ slightly from the previous ones6 and the reason might be the lower dose of irradiation (2 Gy compared to 
5 Gy) and a slightly higher dose of cisplatin (0.2 μg/ml compared to 0.1 μg/ml). A higher dose of irradiation was 
found to induce higher G2/M arrest in our previous study6 and also shown in other studies4,7,8.

Interestingly, both tumor models responded much better when cisplatin treatment was combined with frac-
tionated irradiation than with single-dose irradiation; in the former case, the effect was synergistic. In fact, the 
tumor growth delay after combined treatment with cisplatin and fractionated irradiation was improved up to 
4 times in both tumor models compared to that of the single-dose radiation modality. The survival difference 
between the two tumor models when treated with fractionated irradiation was 26% in favor of HPV-positive 
tumors, which had a 1.5 times longer tumor growth delay.

One of the possible mechanisms responsible for the synergistic effects of cisplatin treatment concur-
rent with the fractionated regimen is the involvement of immunomodulation by the combined treatment. 
Immunomodulatory effects of radiation and cisplatin treatment have been previously confirmed in preclinical 
and clinical studies40–47. Radiation can induce an immunogenic death of tumor cells, which then serve as a source 
of tumor antigens. Additionally, cisplatin-induced major histocompatibility complex I expression, improved 
recruitment and proliferation of immune effector cells, upregulation of lytic activity of cytotoxic effector cells and 
downregulation of the immunosuppressive tumor microenvironment have been shown to add to the antitumor 
response42. Thus, an important shortcoming of our study remains the inability to evaluate the contribution of 
the immune response to the antitumor effects, as the tumors were growing on immunodeficient mice. Indeed, 
radiation therapy with concurrent cisplatin resulted in a partial response of tumors in the absence of an immune 
response (immunodeficient B6129S7-Rag1un1Mom/J mice), while 50% of the complete response was obtained in 
immunocompetent animals (C57Bl/6 mice)26. Furthermore, boosting the immune response with the modulated 
adenoviral vaccine that targets HPV oncogenes E6 and E7 in combined chemoradiotherapy treatment cured 90% 
of HPV-positive tumors in immunocompetent animals but none in immunodeficient animals26,48,49. Additional 
research revealed that irradiation of HPV-positive cancer cells induces the reduction of CD47 (cluster of dif-
ferentiation 47) expression, which stimulates phagocytosis via dendritic cells and results in immune-mediated 
cell death of HPV-positive cancer50. Additionally, selectively decreased CD47 expression induced by radiation 
of HPV-positive tumor cells in combination with cisplatin treatment efficiently improved immune-mediated 
tumor clearance in vivo in immunocompetent but not immunodeficient Rag1 mice50. However, the chosen treat-
ment regimen for HPV-positive and HPV-negative tumors in immunodeficient animals in these studies26,50, i.e., 
concurrent cisplatin treatment and 8 Gy irradiation given once a week for three weeks, was less effective than 
ours, resulting only in a tumor growth delay and no survivors. Similar results were obtained in our study with 
single-dose irradiation, with or without concurrent cisplatin therapy, which resulted in a prolonged tumor growth 
delay without surviving animals. However, cisplatin treatment before the first fraction of irradiation and fraction-
ated irradiation (in total 8 × 2 Gy) acted synergistically, indicating the role of irradiation as an inducer of immu-
nogenic cell death. Previous studies have shown that low dose irradiation in itself has an effect on macrophages 
thereby supporting T cell responses51. In addition, oncoproteins E6 and E7 make HPV-positive tumors highly 
recognizable to the immune system, thus inducing HPV-specific T cell response, which favors tumor control52. 
However, in a proportion of patients with a HPV-positive tumor immune response to HPV is weak or even 
absent and subsequently has a worse outcome upon standard therapy than those a HPV-specific T cell response52. 
Therefore, we can only speculate that although immunodeficient SCID animals were used, the innate immune 
response was elicited, mediated mainly by natural killer cells, macrophages, and granulocytes that synergized 
with cisplatin therapy. Overall, local irradiation can act synergistically with other therapies, but the antitumor 
efficacy of combined treatment is determined by a fraction dose of the irradiation.

Conclusion
In conclusion, we confirmed that the response of HPV-positive pharyngeal SCC is better than the response of 
HPV-negative tumors after fractionated irradiation. Furthermore, radiosensitization by concurrent cisplatin 
treatment at isoeffective irradiation doses was still present in both tumor models but was more pronounced after 
fractionation than after single-dose irradiation. Namely, the combined treatment acted synergistically, resulting 
in a 56% survival rate after the fractionated regimen in mice bearing HPV-positive tumors and only 30% in mice 
bearing HPV-negative tumors. The fractionated regimen increased the accumulation of cells in G2/M phase, 
which could be one of the underlying mechanisms of the improved response of HPV-positive tumor cells to 
chemoradiation.

Data availability
All data generated or analysed during this study are included in this published article.
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