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extracting forest parameters based 
on Stand Automatic Segmentation 
Algorithm
pengxiang Zhao, Linghan Gao* & ting Gao

forest stand segmentation is a critical process for forest management and inventory. the forest stand 
segmentation accuracy will determine the forest stand level parameters quality. in this study, we 
developed an automatic forest stand segmentation algorithm based on ArboLiDAR, a software used 
to process Light Detection and Ranging (LiDAR) point cloud data. We then optimized the parameters 
for the algorithm to the Dayekou forest area on Qilian Mountain in China to find the most suitable 
parameters for automatic stand segmentation. further, we extracting the forest parameters at the 
stand level based on Bysh method. our results showed that the limited region growing method based 
on the gradient is the most suitable one for analyzing automatic stand segmentation in the studied 
area. Among our tested parameters groups, the fifth group contains the optimal parameters for the 
studied area. in addition, for forest parameters, the R2 of mean height (H), average diameter at breast 
height (D), basal area (G), and Stand volume (V) is 0.744, 0.720, 0.562, 0.696, respectively. The RMSE 
value is 5.24%, 28.57%, 19.93%, and 17.66%, respectively. Our study serves as a technical basis and 
reference for future studies that perform more efficient analyses on forest resource inventory in China.

Forests play a vital role in their areas with economically important products such as timber and several envi-
ronmental benefits such as air quality improvement, water-flow filtering, and climate regulation1. Reliable and 
up-to-date information on forest structure helps the management of forest resources more effectively2. Scanning 
Airborne LiDAR is an active remote sensing technique not only able to capture the entire forest canopies 
three-dimensional structure with high precision but also proves to be more stable than conventional aerial or 
satellite spectral imaging3–5. This makes Airborne LiDAR a promising system for investigating variations in forest 
structure6.

Applying Airborne LiDAR to retrieve forest parameters can be dated back to the early 1980s7,8. Many studies 
identified significant relationships between Airborne LiDAR and forest parameters field measurements such as 
height, basal area. It can also support the generation of vegetation structure and biomass broad-scale assess-
ments9–13. In Garcia’s paper14, the different biomass fractions of a Mediterranean forest (the total above ground, 
the branches, and the foliage) was estimated using LiDAR height, intensity data and a-priori information on spe-
cific species, achieving R² values greater than 0.85, 0.80, and 0.90 for black pine, Spanish juniper and Holm oak, 
respectively. Silva et al.15 developed multiple regression models predicting Eucalyptus plantations stem volume 
from selected LiDAR metrics, with a model coefficient overall determination of 0.87, and a root mean squared 
error of 27.60m3ha-1.

Traditional regression methods used in retrieving forest parameters from LiDAR data often require a signif-
icant amount of plot data16. However, obtaining ground truth data necessary can be expensive. One particular 
regression method, known as Sparse Bayesian regression, has proved to be more effective than other regression 
methods with only a limited number of ground truth samples need to be acquired for analysis17. Nevertheless, 
to date, there are few methods that have been closely examined for how it might contribute to forest parameter 
estimation.

In this paper, we investigated the Sparse Bayesian regression model that was first developed by Tipping18,19 and 
assessed how effectively it might be applied to Airborne LiDAR data in order to generate accurate forest structure 
parameters. This paper also explored how this proposed method might be integrated successfully with the outputs 
of commercial software such as ArboLiDAR.

Forest stand segmentation is a critical task for stand-level forest parameters extraction because the seg-
mentation process results are used as a fundamental input for the additional process required to extract some 
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parameters. Both forests stands segmentation and parameters extraction are examined in this paper. Forest stands 
are basic units and can be defined in terms of tree species or tree maturity. From a remote sensing point of 
view, forest stand segmentation should be carried out according to a specific segmentation algorithm. Many 
studies have focused on segmentation algorithms development based on remote sensing data. Several automatic 
image segmentation approaches were developed, such as (i) thresholding technique, (ii) boundary-based method 
(edge-detection), (iii) global optimization approach based on energy functions or Bayesian20,21, (iv) region-based 
method22, (v) watershed algorithm23,24, and (vi) hybrid technique25,26.

Although there are many algorithms for segmentation, most of them are aimed at images, and few studies have 
been conducted on specific regions, especially forest areas. With LiDAR technology application, research on seg-
mentation algorithms based on LiDAR data and multi-source remote sensing data has attracted a lot of attention.

Sullivan et al.27 proposed the low-density airborne LiDAR use for object-oriented image segmentation and 
supervised classification. The segmentation is performed using a region growing approach. Spatially adja-
cent pixels are grouped into homogeneous discrete image objects or regions. Hay et al.28 developed Multiscale 
Object-specific Segmentation (MOSS) and showed that it can be used to automatically delineate objects ranging 
from individual tree crowns to forest stands.

Pyysalo et al.29 carried out a single tree crowns reconstruction from laser scanner data using the obtained 
vector model for feature extraction. The results showed that dense laser scanner data can be used to extract the 
details of upper forest canopies and tree height information. The lower crown found less detail and the parame-
ters extracted from that part were less accurate, but trendsetting. Morsdorf et al.30 introduced a new approach to 
derive the structure of the upper canopy by segmenting single trees from small-footprint LiDAR data and deduc-
ing their geometric properties. The objective is to reconstruct a geometric forest scene using a paraboloid model 
and information about tree position and height, crown diameter and base height.

Zhang et al.31 used an object-based algorithm to classify tree species using LiDAR and hyperspectral data 
for two study areas. Their results show that individual tree species can be identified in urban forests using the 
object-based algorithm with multi-source remote sensing data fusion. Dalponte et al.32 defined a novel adaptive 
thresholding method that can remove any subjectivity in the thresholding process by using hyperspectral and 
airborne LiDAR for Airborne Remote Sensing System (ALS) data in the automatic individual tree crown (ITC) 
delineation.

In addition to the above studies, there are many LiDAR applications in forestry inventory33–36. However, even 
though this method was successfully applied to segment forest stands, it remains an open question as to whether 
it can generate a similar success when merging Airborne LiDAR data with aerial photos, where there are usually 
only three color bands R(red), G(green), and B(blue) available. This study investigated the performance of “gradi-
ent and region growing algorithm” (GARGA) method in stands segmentation with LiDAR data and aerial image 
data based on ArboLiDAR (Arbonaut).

In summary, the objectives of this paper are:1) evaluate whether Sparse Bayesian regression is effective in 
estimating forest stand parameters. 2) assess region growing algorithm applicability for stand segmentation 
when combining Airborne LiDAR data with aerial photos. 3) evaluate ArboLiDAR applicability to conduct forest 
inventory in the north-west of China.

Materials and Methods
Study area. The study area is located in the Dayekou forest area on Qilian Mountain in Zhangye city, Gansu 
Province. The center coordinates of the study area are approximately 100°15′ E, 38°32′ N. The study area contains 
the water conservation forest in the Heihe basin, which belongs to the Qilian Mountains National Nature Reserve, 
and also contains the Heihe integrated remote sensing forest hydrological experiment station. The LiDAR aerial 
data was acquired on June 23, 2008. The Heihe integrated remote sensing experimental data and the Dayekou 
basin flying airborne LiDAR data sets were derived from Yong et al.37.

In this study, the field plot data acquisition occurred between June 2008 and August 2010. Since the trees 
growth rate is slow within two years, it can be used as verification data for our study. In the forest area, plot 
sampling was conducted along a 1000-meter transect and a supersampling area of 300 m × 340 m. Along the 
1000-meter transect, 20 m × 20 m square plots were established at an interval of 50 m, and 20 plots were estab-
lished in total. Among the established plots, 19 plots were selected for our study. The super sample was divided 
into 255 20 m × 20 m plots, and 75 plots were selected to study. Therefore, a total of 94 plots were selected for the 
study, 60 of which were used to build the model, and 34 of which were used to test the model (see Fig. 1).

The satellite imagery is obtained by CCD camera on unmanned aerial vehicle(UAV). The satellite imagery and 
lidar data were obtained by the UAV flight of China Academy of forestry in 2008. The website is http://westdc.
westgis.ac.cn/search?q = LiDAR + CCD.

Method. Field data. The central location of each plot was recorded using a Differential Global Positioning 
System (DGPS) devices and corrected using post-processing techniques. Diameter at Breast Height (DBH), tree 
height and crown of all individual tree in each plot were rerecorded. Forest stand characteristics: Lorey’s mean 
height (H), average diameter at breast height (D), basal area (G), and Stand volume (V) were calculated using 
previously established models based on the measured tree-level information38 (Eqs. 1–4), respectively.
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where hi, gi and di represent the height, the basal area and the diameter of i-tree in each plot, respectively. N rep-
resents the number of stems in a plot. For this study, g  denotes the mean of the basal area in one plot. The unit 
parameter of H, D, G, V is m, cm, m2, m3/ha, respectively.

Data preparation for stand segmentation. Forest stands are the basic units used in forest management. They are 
used as inventory units and operational units. The automatic segmentation approach developed in this study took 
into account the timber size and forest density. This information was derived from LiDAR data. Other informa-
tion can be obtained from aerial images.

In general, segmentation was done using raster data as input. Therefore, we created suitable raster data using 
LiDAR information. The raster pixel size can be set to 4 m × 4 m, which can show the high quality of differ-
ent vegetation parameters. Smaller pixel sizes would provide too detailed information about the forest structure 
small-scale variation. We were interested in generalized forest stand level information instead of information 

Figure 1. Map of the Dayekou forest in Zhangye city, Gansu Province, northwest China, showing the study area 
location.
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about a single tree and a small gap in the forest. In this study, we used raster data for the stand height, and we 
derived the stand density from LiDAR data and aerial image raster classification.

The vegetation height can be derived directly from LiDAR data. It is often more efficient to create a raster with 
height attributed to each pixel, but in this study, a percentile height (usually 85 percentile) was used instead of 
the maximum height to eliminate outliers. Vegetation height at the 85 percentile means the height where 85% of 
the all LiDAR data hits lie below that height. Each height raster pixel contains the actual height value in the given 
percentile. The height raster has a good correlation with the average tree height.

The density raster describes the ratio between the number of LiDAR vegetation points and the total number 
of LiDAR points within a pixel. The vegetation points are those with altitude (Z value) higher than the height at 
the given percentile. The pixels value range in the density raster is from zero (no forest) to one (very dense forest). 
The density raster, in particular, has a good correlation with forest basal area.

The aerial images classification describes the information about vegetation species and land-cover. The maxi-
mum likelihood method was used to classify the original aerial image. It was assumed that each class in each band 
is normally distributed, and the likelihood of the given pixels in the training sample can be calculated. Eventually, 
the pixels were merged to the class of maximum likelihood. The classification band has a good correlation with 
forest species composition.

After obtaining the raster data, we modified the rasters for better segmentation. In this study, we used 
median-filtering and mean-shift filter methods to modify the raster data. The median filtering method applies a 
moving window and calculates a median of the values within that window to the center pixel of the window in 
the input raster. The purpose of this method is to eliminate isolated noise points by creating a greater difference 
in pixel value close to the surrounding pixels. The mean-shift filtering method is an iterative filtering method that 
filters the image in a given spatial and spectral radius. It keeps the nonlinear image borderline. Finally, we gen-
erated a composite band of the height raster, density raster, and classification raster for the stand segmentation.

Algorithm of stand automatic segmentation. The automatic segmentation method iteratively created the seg-
mentation over many phases. First, a gradient image of the segmentation raster was produced. A gradient showed 
the variation of the values in the area of interest. When creating the gradient image, the band-wise weight can be 
given. Meanwhile, seed points were placed in suitable areas during every iteration. The seed points were always 
the local minimal points within a pixel area.

Second, a limited iterative region growing method was used to find areas similar to the seed point environ-
ment in every iteration step. Firstly, this method was used to find the promising seed points and segment out the 
homogenous areas around those seeds using the region growing algorithm. Secondly, new seeds were added only 
on the unsegmented areas by gradually decreasing the seed-finding criteria; then, the region growing was re-run, 
starting from the combined seeds from all previous iterations39.

Finally, we merged the insufficiently small pixels of the resulting segmentation. In the merging analysis, the 
mean and standard deviation of the sum band were calculated. The segments were then merged with the neigh-
boring segments, and the most optimal segment was based on these values. If the most optimal neighbor was 
below the band-unique merging threshold, it can be combined with the segment. If the initial segment was the 
most optimal for the neighboring segment, it can be merged as well. After merging, the mean and standard devi-
ation were recalculated.

The automatic segmentation method did not have a universal parameters combination that can be applied 
in all environments. The parameters values depend always on the area inventoried, the segmentation variable 
raster type, and the requirements for the segmentation. The segmentation algorithm parameters include the 
gradient-band weight, region growing band weight, priority function, and the competition threshold value. The 
merging algorithm parameters include the mean difference, standard deviation difference, band weight, maxi-
mum area, and small segment area. In this study, we set three parameters groups to a segment based on the field 
situation and image data. By comparing the stand automatic segmentation results under different parameter set-
tings and manual segmentation results, the most suitable parameter combination setting was found for the study 
area based on an automatic segmentation algorithm.

Forest parameters extracting. Sparse Bayesian regression model is able to automatically apply different weight-
ings according to different variables relevance within an estimation and it has shown good performance when 
the plot data amount is limited. In this study, a Sparse Bayesian regression model is formulated automatically by 
an algorithm that compares different weighted combinations of feature values with all other values to derive the 
weights optimal distribution and a features optimal set. By automating the model formulation and the sample 
plot selection, this approach offers increased flexibility when it comes to prediction17. Four forest parameters 
included: H, D, G, and V were used as estimated variables. Meanwhile, 76 predicted variables default defined by 
ArboLiDAR were derived from the Airborne LiDAR data mainly including: different height percentiles for the 
first-pulse and last-pulse return; the mean height of the first-pulse return above 5 meters (the high-vegetation 
return); the standard deviation of the first-pulse return; the ratio between the first-pulse return below 1 meter and 
all of the first-pulse returns; the ratio between the last-pulse returns below 1 meter and all the last-pulse returns; 
and several intensity-related features. These Airborne LiDAR variables are based on features that were originally 
described by together with those referenced in the user manual for ArboLiDAR40.

In this study, 60 plots of data were selected randomly to construct the Sparse Bayesian model. The model 
was trained based on the following principal steps: First of all, constructing a model at plot-level which was the 
basis of how the estimation model was then defined. Adding plots boundary data to the ArboLiDAR project 
and completing the attribute tables with the estimated variables, which is calculated from the measured plots. 
Then, predicted variables from the Airborne LiDAR data were calculated. An inventory model was then gen-
erated using the measured variables and predicted variables. This process required a few iterations in order to 
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construct a model that could properly reflect the statistics, the plot location, and the overall inventory process. 
After the process of conducting model at plot-level, the ArboLiDAR software verifies the model by adopting the 
Leave-One-Out (LOO) method so it decided whether this model was suitable for the forest parameters estimation 
at stand-level. This study achieves a better result at this step. Thus, the forest inventory results at stand level were 
estimated based upon the results of segmentation successfully. In order to match the size of the actual field plots, 
the minimum cells of the segmentation results were re-sized into 20 ×20 meters first. Then LiDAR variables of all 
cells were calculated. These variables were used as input variables of ArboLiDAR generated inventory results with 
LiDAR variables of cells as input variables based on the model built. Finally, the inventory results were aggregated 
to the stands level so that forest parameters of 381 forest stands were obtained.

Accuracy evaluation. 34 plots of data were selected randomly to validate the performance of this model. 
Correlation analysis between the measured data and the estimated data were conducted using the open-source 
software “R3.2.2”, which provides a statistical computing environment41. The RMSE% (in the paper, RMSE is 
defined as a percentage of the mean value), and the Pearson coefficient squared (R2), together with Bias% (in this 
paper, Bias% also defined as a percentage of the mean value), were selected to validate the model42–44 (Eqs. 5 and 6),  
respectively.
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where mi represents the forest parameters from the field data measured value; ei denotes the forest parameters 
estimated value according to the Airborne LiDAR data that was generated by the ArboLiDAR system; n is the 
validation plots number.

Results
Data preprocessing. The original LiDAR data point cloud contained many small noise points and different 
object categories, which need to be processed by the classification filter to obtain better data results for the seg-
mentation operation.

The point cloud data for this area were divided into noise (low and high points), ground points, low vegeta-
tion, and forest points based on LiForest (http://greenvalleyintl.com/). They were shown as light brown, dark 
brown, yellow, and green, respectively, in Fig. 2. In addition, we extracted the digital terrain model (DEM) based 
on the ground points and processed the elevation normalized operation to eliminate the topography influence 
for the results of the stand segmentation. We intended to obtain pure height information. It can be seen from 
the longitudinal section in Fig. 2 that all objects were distributed along the same horizontal line without terrain 
factors influence, such as slope and elevation.

Figure 2. Classification of cloud points (transverse and longitudinal section).
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Generating composite band (DHH). In the stand automatic segmentation algorithm, the composite data 
(height, density, and aerial photo classification, referred to as DHH) were needed. The height raster can extract 
more accurate height information. The density raster has a strong correlation between stand density, basal area, 
and volume. The aerial photos classification (1 m resolution) can obtain more accurate object information. The 
three sets of data synthesis enhanced the overall information and provided a better basis for the automatic seg-
mentation algorithm.

The height and density raster were extracted based on ArcGIS (http://www.esri.com/). The extracted height 
and density data were filtered using the median filter and mean-shift filter in order to smooth the edges and elim-
inate the errors in the data. The height range was 0–27.057 m and the density range was 0–0.994153, which are 
presented in Fig. 3.

Figure 3. Four maps (a–d) represent density raster, height raster, classification of aerial photo and composite 
band (DHH), respectively.
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The aerial photos classification was achieved based on ENVI (http://www.esri.com/). The objects were divided 
into bare land, low vegetation (moss and shrub), and forest using the maximum likelihood method, based on the 
field situation and aerial photo information. In Fig. 3, the classification results were expressed as brown, light 
green, and dark green. In addition, the classification accuracy was examined using the kappa coefficient. The 
kappa coefficient was 0.8 for the classification result. Therefore, the classification accuracy was good according 
to the kappa coefficient evaluation criteria proposed by Cohen45,46. In these criteria, the result can be used for 
correlation analysis and prediction when the kappa coefficient ranges from 0.6–0.8.

The combination of the height, density, and classification data from the aerial images are shown in Fig. 3, 
composite band (DHH). Then, the stand automatic segmentation operation was accomplished by setting the 
parameters of segmentation and merging based on DHH.

Stand automatic segmentation. Setting segmentation parameters. The stand automatic segmentation 
operation included two steps: segmentation and merging. The most critical element of stand automatic segmenta-
tion algorithm is the segmentation parameters setting. In this study, we intended to find the optimal segmentation 
parameters combination using many factors through the multi-parameter settings in order to obtain the best 
segmentation result for this study area. Stand automatic segmentation can provide a reference for the subsequent 
development of forest inventory.

Based on the algorithm requirements, the scenario illustrated by the aerial photo, point cloud data, and field 
investigation, we set up seven sets of segmentation parameters and corresponding merging parameters. This 
information is listed in Tables 1 and 2.

In Table 1, the three bands weights (density, height, and aerial photo classification) in the gradient algorithm 
and the region growing algorithm had an impact in the stand automatic segmentation, because different bands 
had different emphasis and forest information. In addition, the settings of the priority function and competition 
threshold in the region growing algorithm were needed for the segmentation. During the parameter setting pro-
cess, we only set up two different sets of priority functions and competition thresholds because the terrain and 
pixels influence was avoided in early data processing, so those two parameters had little influence on the segmen-
tation results. The key segmentation parameters were the setting of the band weights in the gradient and region 
growing. Five different band weights were set up for different situations and are listed in Table 1.

Setting merging parameters. In Table 2, the band weights setting corresponds to the band weights in Table 1 for 
the merging parameters. The mean difference and standard deviation difference parameters were set up accord-
ing to three bands mean and standard (density, height, and aerial photo classification) extracted from DHH. The 
merging operation should be performed at least four times to reduce the small segmentation area. In addition, the 
setting of the merging value increased accordingly. In general, the merging parameters setting was the same for 
the different stand automatic segmentation because the mean and standard deviation of three bands was the same 

1 2 3 4 5 6 7

Segmentation Parameters Gradient band weights 0.3/0.3/0.3 0.4/0.3/0.3 0.3/0.4/0.3 0.3/0.3/0.4 0.3/0.3/0.3 0.4/0.3/0.2 0.3/0.3/0.3

Region growing band 
weights 0.3/0.3/0.3 0.4/0.3/0.3 0.3/0.4/0.3 0.3/0.3/0.4 0.3/0.3/0.3 0.4/0.3/0.2 0.3/0.3/0.3

Priority function 0.0/0.1/0.15/0.2/0.3/0.5/1.0 0.0/0.1/0.2/0.3/0.5/0.7/1.0 0.0/0.1/0.15/0.2/0.3/0.5/1.0

Competition threshold 0.02 0.04

Table 1. Segmentation parameter settings.

1 2 3 4 5 6 7

Merging1 Parameters Mean difference 0.05/1.0/2.0

Standard deviation difference 0.0/1.0/0.2

Band weights 0.3/0.3/0.3 0.4/0.3/0.3 0.3/0.4/0.3 0.3/0.3/0.4 0.3/0.3/0.3 0.4/0.3/0.2 0.3/0.3/0.3

Merging2 Parameters Mean difference 0.1/1.5/2.5

Standard deviation difference 0.008/1.5/0.4

Band weights 0.3/0.3/0.3 0.4/0.3/0.3 0.3/0.4/0.3 0.3/0.3/0.4 0.3/0.3/0.3 0.4/0.3/0.2 0.3/0.3/0.3

Merging3 Parameters Mean difference 0.15/1.8/3.0

Standard deviation difference 0.015/1.8/0.6

Band weights 0.3/0.3/0.3 0.4/0.3/0.3 0.3/0.4/0.3 0.3/0.3/0.4 0.3/0.3/0.3 0.4/0.3/0.2 0.3/0.3/0.3

Merging4 Parameters Mean difference 0.2/2.0/3.2

Standard deviation difference 0.02/2.0/0.75

Band weights 0.3/0.3/0.3 0.4/0.3/0.3 0.3/0.4/0.3 0.3/0.3/0.4 0.3/0.3/0.3 0.4/0.3/0.2 0.3/0.3/0.3

Maximum area 50000

Small segment area 500

Table 2. Merging parameter settings.
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every time. The merging parameters setting was consistent for all seven experiments sets. The maximum area and 
small segment area settings were the same because the study area was fixed.

Segmentation results. The stand automatic segmentation operation was completed using ArboLiDAR software 
(http://www.arbonaut.com/en/). The smoothing and merging operations of small corresponding patches can be 
performed to make the results more fluent and easy to observe after standing automatic segmentation. The results 
of seven segmentation processes based on different parameters are shown in Fig. 4. In order to better present the 
automatic segmentation results, we added a line for manual segmentation as a contrast. Manual segmentation was 
based on the actual field situation, the forest map provided by the local forestry department, the aerial image, and 
the measured parameters of the study area in 2008 and 2010. Therefore, the manual segmentation result reliability 
was high. These results can serve as a reference to evaluate the automatic segmentation results.

Table 3 is a comparison of the segmentations stand number conducted after manual and automatic segmen-
tation. It can be seen that the number of manual is less than that of automatic segmentation. The number of seg-
mentations is almost the same in the seven groups.

Figure 4 presents the results of the seven automatic and manual segmentations. The stand automatic segmen-
tation results are shown in blue, and the manual segmentation line is shown in red. Compared with the different 
results of the automatic segmentation, the results showed that the automatic segmentation of image 5 was the 
best, followed by image 1 and image 7. The automatic segmentation results are not significant in images 2–6. 
In the magnified region of the selected part in every segmentation image, the automatic segmentation result 
was not the same. However, compared with the manual segmentation result the automatic segmentation results 
were more detailed and had more standpoints. After each automatic segmentation, it was found that the forest 
stand number was approximately 380, and the manual segmentations number was 332. The stand segmentations 
number also showed that the automatic segmentation was finer and more comprehensive. However, through a 
comparison between the results of each automatic segmentation, it was found that the segmentation features in 
details were still significantly different from each other. The automatic segmentation result in image 5 was obvi-
ously better than the other automatic segmentation results. It was noticeable that the segmentation effect of the 
non-forest land and low vegetation was apparent, and there was no uniform division of non-forest into a stand. At 
the same time, the automatic segmentation result was close to the manual segmentation result. Image 1 and image 
7 showed no significant difference with image 5 in terms of the forest segmentation. However, the results in the 
segmentation of non-forest land and low vegetation were not very good. Image 2, 3, 4, and 6 had a good effect on 
the segmentation of a forest land small area, but it was not very satisfactory in the overall segmentation result, and 
the results were very different from the manual segmentation result. In addition, those four kinds of automatic 
segmentations were not very detailed in the non-forest land and low vegetation area.

Results of stand parameters extracting. Table 4 presents the accuracy of the results. Figure 5 shows 
scatter plots of the plot-level field-based measured versus LiDAR-based retrieved parameters with linear fits. 
Figure 6 shows the maps of four stands parameters distribution in the study area. For the forest parameter H, the 
measured value derived from the plot data and the estimated value obtained from the Airborne LiDAR data have 
a strong correlation, with R2 measure of variation being 0.744, with a relative RMSE equal to 5.24%, with a relative 
Bias about 1.64%. For the parameter D, the R2 correlation measure is 0.720, relative Bias is 24.27%, and relative 
RMSE is 28.57%. For the parameter G, the R2 is 0.562, and Bias equal to 1.89%, RMSE equal to 19.93%. The 
Volume parameter (V) also have a correlation with R2 0.696, relative RMSE equal to 17.66%, relative Bias equal to 
4.2%. For all of the parameters, the P-value significance measurement is less than 0.001. The relative RMSE and 
relative Bias value are smaller, supporting a high confidence level in the results. An interesting observation arising 
from Fig. 4 is that, in this study area, most of the region has an H value that ranges between 15 and 25 meters. 
D value, meanwhile, ranges between12 and 17centimeters. The value of V ranges between 200 and 300 m3/ha.  
The reason for this situation is that the tree species belong to mature forest in this area, so the height and DBH of 
trees are large. At the same time, the tree species are dense and there are more trees in the fixed sample plot, the 
volume is large.

Discussion
This study attempted to evaluate the ArboLiDAR application in the north-west of China. We used an automatic 
stand segmentation technique based on a gradient algorithm and a region growing algorithm. In the algorithm, 
the segmentation parameters setting is the key factor that determines the segmentation results.

From the stand segmentation results, the different segmentation parameters setting makes the stand automatic 
segmentation effect very different. In general, the combination with the automatic stand segmentation settings 
parameters showed that the proportion of density, height, and aerial photo classification were the same in the 
stand automatic segmentation for the study area. It needs to consider these three factors and cannot highlight the 
privileges of only one particular factor. The stand automatic segmentation is a comprehensive consideration of all 
forest characteristics aspects and the same as manual segmentation. The automatic segmentation result in image 
5 is closer to the manual segmentation result. In addition, image 1 and image 7 can be used to estimate the forest 
parameters in forest inventory if only the forest area segmentation result is considered, which means, without 
considering the non-forest area result.

From the stand parameters extracting results, forest parameters H, D, V obtained from the model have a 
strong correlation with their corresponding field parameters and obtained an R2 correlation measure more than 
0.6. These indicated that the Sparse Bayesian regression is suitable for generating useful information about the 
kind of area in this study. Overall these results not only indicate that the Airborne LiDAR data can retrieve forest 
stand parameters with a high degree of precision but also demonstrate the ArboLiDAR effectiveness to process 
and obtain forest structure information of this study area. This study also generated the maps of each forest 
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parameters distribution. This being the case, targeted forest-tending, one of the most important forest manage-
ment activities conducted by local wardens and managers47, has the potential to be significantly assisted through 
reference to these maps. This kind of information is also useful to various forestry departments when trying 
to determine which method should be adopted for forest management. Some of the information, for instance, 
the volume, is also of potential interest for the assessment of such things as biomass, the carbon cycle and the 
atmosphere48.

Airborne LiDAR data have been applied to forest inventory widely, but which model can achieve good perfor-
mance in practice still explored by researchers. This paper investigated a way of using the software ArboLiDAR 
to run a stand delineation algorithm that is able to combine Airborne LiDAR data with aerial photography. This 

Figure 4. Results of stand automatic segmentation under different parameters.
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function was suitable to be promoted in China, especially conducting the forest inventory at large range area, 
which can replace the manual method to delineate stands boundary. Besides, a way of using Sparse Bayesian 
regression to estimate forest stand parameters was also presented. Estimating forest parameter such as H, D, G, 

Mark Number Segmentation Stand Number

Manual Segmentation 332

Automatic Segmentation 1 376

Automatic Segmentation 2 378

Automatic Segmentation 3 380

Automatic Segmentation 4 383

Automatic Segmentation 5 381

Automatic Segmentation 6 380

Automatic Segmentation 7 386

Table 3. Results of stand segmentation number.

Parameters Units R2 Adjusted R2 P-value RMSE% Bias%

H m 0.744 0.736 0.000 5.24% 1.64%

D cm 0.720 0.710 0.000 28.57% 24.27%

G m2 0.562 0.549 0.000 19.93% 1.89%

V m3/ha 0.696 0.687 0.000 17.66% 4.20%

Table 4. Precision information of stand parameters.

Figure 5. Scatter plots for forest parameters.
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and Stand volume (V) achieved good precision. For the same study area, another research team conducted a sim-
ilar forest inventory research, HeQisheng et al.48, obtained forest parameters using stepwise multiple regression 
models, results shown that height, stand density and crown width, with R2 precision measurement for H of 0.729, 
and for Diameter at Breast Height (D) of 0.588. It can be seen that the results obtained in this study are at least as 
good as these, if not better.

There are some deficiencies in the study. First, the point cloud data and aerial data classification accuracy will 
affect the stand automatic segmentation results in data preprocessing. Second, the segmentation parameters set 
can only be applied to the specific region. This means that appropriate parameter selection will be required for 
different research areas. Finally, although the Dayekou forest is a typical forest region in Northwest China, it can 
only represent parts of China and not all forests in the country. Based on the results and shortcomings of this 
research, we will focus on the above problems, avoid errors in the study, perform a deeper analysis of the software 
principle, and make our approach more adaptable so that it can be applied to additional Chinese forest areas.

Figure 6. Spatial distribution of the stand parameters. These maps can also serve as a reference for forest 
management.
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conclusion
Using Airborne LiDAR data, field data from the DayeKou forest zone, and aerial photo used as a forest mask, the 
GARGA algorithm has been used to segment stands borders, the Sparse Bayesian regression approach has been 
used to produce various forest parameters estimates over the study area. Forest parameters such as H, D, G, and 
V have been estimated and achieved high precision. Therefore, conclusions obtained from the results are: 1) A 
GARGA algorithm is able to obtain good segmentation results using both Airborne LiDAR data and aerial pho-
tography when applied to stand segmentation; 2) Airborne LiDAR data is able to retrieve forest stand characteris-
tics with high precision when a Sparse Bayesian regression methodology is adopted; and 3) The LiDAR software, 
ArboLiDAR, which was developed for forest inventory, has a potential to be used in the northwest of China, 
because it delineates stands automatically with high accuracy levels. This powerful functionality would seem to 
offer clear benefits to the Chinese community. When it comes to estimating forest parameters the software also 
performs well but has some limitations because researchers are not currently able to gain access to the source code 
or the data structure. In the future, our studies will concentrate on exploring how to develop even more advanced 
methods for the remote sensing of China forest characteristics.
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