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core-shell gold-nickel 
nanostructures as highly selective 
and stable nonenzymatic glucose 
sensor for fermentation process
Xuejin Gao1, Xinzhao Du1, Danye Liu2, Huihui Gao1,3,4,5, pu Wang1,3,4,5 & Jun Yang  2*

non-enzymatic electrodes based on noble metals have excellent selectivity and high sensitivity in 
glucose detection but no such shortcomings as easy to be affected by pH, temperature, and toxic 
chemicals. Herein, spherical gold-nickel nanoparticles with a core-shell construction (Au@ni) are 
prepared by oleylamine reduction of their metal precursors. At an appropriate Au/ni ratio, the core-shell 
Au@ni nanoparticles as a sensor for glucose detection combine the high electrocatalytic activity, good 
selectivity and biological compatibility of Au with the remarkable tolerance of ni for chlorine ions (cl−) 
and poisoning intermediates in catalytic oxidation of glucose. this electrode exhibits a low operating 
voltage of 0.10 V vs. SCE for glucose oxidation, leading to higher selectivity compared with other Au- 
and Ni-based sensors. The linear range for the glucose detection is from 0.5 mmol L−1 to 10 mmol L−1 
with a rapid response time of ca. 3 s, good stability, sensitivity estimated to be 23.17 μA cm−2 mM−1, 
and a detection limit of 0.0157 mM. The sensor displays high anti-toxicity, and is not easily poisoned by 
the adsorption of cl− in solution.

Highly sensitive and selective detection of glucose is critical in chemical industry, clinical diagnosis, fermentation 
engineering and food industry, etc. During the fermentation process, glucose, as the main carbon source, plays 
an important role in the growth and synthesis of bacteria. In the existing glucose detection methods, except for 
iodometry1, chromatography2, micro-Raman spectroscopy3, fluorescence spectroscopy4, photoelectrochemical 
method and colorimetry5,6, electrochemical method has been widely used due to it can obtain detection results in 
real time by simple operation. Electrochemical glucose sensor accounts for approximately 85% of the biosensor 
industry, and is a booming realm7.

Conventional glucose sensors relying on immobilization of glucose oxidase (GOx) as molecular recognition 
elements on various substrates have been the research hotspots in the past few decades. These enzyme-based sen-
sors usually have good selectivity and high sensitivity in glucose detection. However, the enzyme is susceptible to 
pH, temperature, and toxic chemicals because of the complexity of the fermentation environment8–10. The perfor-
mance of GOx sensor is also affected by the dissolved oxygen degree and the diffusion rate of hydrogen peroxide. 
In addition, for online glucose detection, the biosensor must be able to withstand high temperature (∼120 °C) 
steam sterilization in order to prevent contamination during the fermentation process. In this sense, common 
factors such as pH value and dissolved oxygen are often used to indirectly assess the glucose concentration.

Great efforts have been made for direct glucose determination at non-enzymatic electrodes like Pt11–13, 
Au14–16, transition metals and alloys17–22 to avoid the above-mentioned drawbacks of enzyme-based sensors. 
Nonenzymatic electrochemical glucose sensors based on nanosized gold have been extensively studied because 
of their high electrocatalytic activity, good selectivity and biological compatibility. Typically, Shu et al. fabricated 
high-quality three-dimensional (3D) Au-graphene nanocomposites through a one-step process23. Li et al. pre-
pared macroporous Au films with higher roughness using the macroporous Cu films as templates followed by 
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a galvanic replacement24. Zhou et al. reported a gold nanoparticle-constituted nanotube array electrode, which 
offers an extended linear detection range of glucose from 1 mM to 42.5 mM25. Nevertheless, the bare gold elec-
trode is unable to work during long fermentation cycles due to its poisoning by chloride ions and the intermedi-
ates formed during reaction process, which block the active sites, and unable to maintain good selectivity in the 
fermentation environment with many impurities26,27. Therefore, the addition of a second metal, i.e. to generate 
bimetallic nanoparticles or nanocomposites28–35, is often used to improve the sensor performance. In principle, 
the second metal can effectively manipulate the electronic and geometric properties of the nanoparticles, leading 
to their higher selectivity and reactivity. In particular, the bimetallic nanoparticles with core-shell architectures 
could offer good stability and superior electronic properties, compared with other types of nanostructures. The 
metal shell shields the core metal from poisoning and corrosion in fermentation medium, while the strain and 
ligand effects of the core metal endow the shell metal with features favorable for electrocatalysis. Indeed, dur-
ing the last few years, there has been a tremendous growth in the interest in applying bimetallic nanoparticles 
combining Cu, Ni, or Co with noble metals in catalysis36. Lee et al. introduced a macroporous Au–Pt hybrid 3D 
electrode fabricated by electroplating platinum nanoparticles onto the surface of the coral-like macroporous Au 
having a roughness factor (RF) of 2024.737. Aoun et al. investigated the underpotential deposition of various 
ad-metals (Cu, Ag, Ru, Pt, Pd and Cd) on the Au electrode. They found that the Ag ad-atoms of 1/3 monolayer 
(ML) onto the Au(111) surface lead to a decrease in peak potential for glucose oxidation (∼0.2 V vs SCE) and 
its higher selectivity38. On the other hand, Ni electrode has also been the most widely utilized non-enzymatic 
electrode for determining glucose in alkaline media39–42. Compared to other metals, Ni-based sensors display 
remarkable efficiency in catalytic oxidation of glucose and are not affected by the adsorption of chlorine ions and 
oxidized intermediates. Xu et al. prepared a Ni/TiO2 sensor formed by a hydrothermal ion exchange method, 
and they found that the stability and anti-toxic properties of the prepared sensor are significantly enhanced43. 
However, the selectivity of nickel-based sensors is too low because of their catalytic capability at high operating 
voltage for the oxidation of various substances44.

In this work, taking advantages of metallic Au and Ni, we report the synthesis of spherical Au@Ni nanoparti-
cles with a core-shell structure through a seed-mediated growth in oleylamine. In this strategy, Au nanoparticles 
served as seeds are prepared in advanced by oleylamine reduction of their metal precursors. Then in the presence 
of Au seeds, the Ni precursors are reduced for the formation of core-shell Au@Ni nanostructures. The obtained 
Au@Ni nanostructures supported on carbon substrates (Au@Ni/C) are characterized by XRD, XPS, TEM, and 
EDS. We will demonstrate that the oxidation of glucose on core-shell Au@Ni nanostructures is similar to that on 
the surface of pure Au particle. The core-shell nanostructures protect the active sites on the particle surface from 
the adsorption of chloride ions and intermediates, and the formed Ni layer allows the formation of metal-OH 
sites, analogous to the Au-OH sites on pure Au particle surface, at more negative potentials, which can avoid the 
oxidation of other interfering substances in the fermented liquid on the sensor38. Then the sensitivity, selectivity 
and stability of the prepared electrode towards glucose oxidation are evaluated through electrochemical charac-
terizations in 0.1 M NaOH (pH = 13). The results show that the core-shell sensor may detect the glucose during 
fermentation process with excellent selectivity and stability, implying a great potential as an enzyme-free glucose 
sensor for fermentation process.

Results and Discussion
characterization of the Au@ni/c electrode. The crystalline structure and the existence of Au and Ni 
element in the prepared core-shell nanoparticles were investigated by XRD. Figure 1A shows two characteristic 
diffraction peaks at 44.5°and 51.8°, corresponding to the (111) and (200) crystalline planes of face-centered cubic 
(fcc) Ni phase, respectively. The other five characteristic diffraction peaks at 38.2°, 44.4°, 64.6°, 77.5°and 81.9° 
can be indexed to the(111), (200), (220), (311) and (222) crystalline planes of fcc Au. The XRD characterization 
suggests that the nanoparticles are composed of Au and Ni elements.

XPS tests of the samples were performed to investigate the composition of Au@Ni/C nanocatalyst. The XPS 
pattern of Au 4 f for Au@Ni-C was show in Fig. 1B, in which the two peaks center at 84.5 eV and 88.1 eV corre-
spond to the binding energies of Au4f7/2 and Au4f5/2, respectively. The peaks centered at 857.4 eV and 873.6 eV 
shown in Fig. 1C correspond to the Ni metals at oxidized state, suggesting the easy oxidation of Ni in air. In addi-
tion, for Ni, the satellite peaks in its XPS spectra are also observed, as shown in Fig. 1C.

The TEM images (Fig. 2A,B) of core-shell Au@Ni nanoparticles before and after loading on carbon substrates 
reveal that the particles are spherical with size distribution from 7 nm to 12 nm and are evenly distributed on the 
carbon substrates. Figure 2C shows the high-resolution TEM (HRTEM) image, confirming that the core-shell 
particles have good crystallinity, in which well-defined lattice spacings of 0.235 nm and 0.203 nm at the core and 
shell region well match with the Au(111) and Ni(111) planes, respectively. The line scanning analysis of a single 
Au@Ni particle is shown in Fig. 2D, which proves that Au in the nanoparticles is mainly located in the core 
region, while Ni is found throughout the whole particle, definitely manifesting the formation of Au@Ni nanopar-
ticles with a core-shell construction.

The EDS analysis was also applied to investigate the chemical composition of the as-prepared core-shell nan-
oparticles. Figure S1 in Supplementary Information (SI) shows the EDS spectrum of the core-shell Au@Ni parti-
cles, in which the co-presence of Au and Ni elements is clearly confirmed (among other elements appeared in the 
EDS spectrum, the Cu signal comes from the copper grid, while the Si and Cr are actually oxygen and a system 
tag error, respectively). The atomic ratios for Au@Ni/C samples prepared by growing different masses of Ni(acac)2 
on Au seeds are 0.74/0.47 and 0.67/0.23, respectively, well consistent with the ratios in their metal precursors.

electrochemical measurements. The CV curves of Au@Ni/C sample were used to investigate its electro-
catalytic properties towards glucose oxidation. As show in Fig. 3A, the CV curves show significant differences in 
current density in 0.1 M NaOH solution in the presence (red line) and absence (blue line) of 10 mM glucose. The 
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Figure 1. XRD pattern of Au@Ni/C electrode materials (A); XPS spectra of Au 4f (B) and Ni 2p (C) of Au@
Ni/C electrode materials.

Figure 2. TEM images of core-shell Au@Ni nanoparticles (A) and Au@Ni/C samples (B); HRTEM image of a 
single Au@Ni nanoparticle on carbon substrate (C); the line scanning analysis of a single Au@Ni nanoparticle (D).
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CV curves obtained from core-shell nanoparticles show four oxidation peaks at ca. −0.5 V, −0.035 V, 0.2 V and 
0.6 V and one reduction peak at ca. 0.26 V. Among them, the A, B and C peak of the CV curves indicate a typical 
two-step oxidation process of Au element towards glucose although a thin Ni layer has been formed on the Au 
surface. The electrocatalytic mechanism for the Au@Ni electrode towards glucose is a multistep one15. At first, the 
glucose molecules are dehydrogenated and adsorbed on the surface of the Au@Ni core-shell particles. Then the 
population of metal-OHads sites on the electrode increases with the larger potential and subsequently mediates 
catalytic oxidation of the intermediates toward gluconolactone.

Analogous to the glucose oxidation on pure gold surface45, the glucose oxidation on core-shell Au@Ni 
electrode highly depends on the quantity of metal-OHads and the premonolayer oxidation of metal to form 
metal-OHads. The A peak could be attributed to the dehydrogenation of glucose to form adsorbed intermediate 
products. The accumulation of the intermediates due to the limited number of metal-OHads sites formed at lower 
potential (−0.5 V) blocks the active sites of the Au@Ni/C electrode surface, leading to the decrease of current 
density. The B peak at ca. 0.2 V is related to the consecutive catalytic oxidation of adsorbed intermediates because 
the amount of metal-OHads sites is increased. Actually, an oxidation peak should be observed at a further positive 
potential, corresponding to the formation of metal oxides, but it is covered by D peak. In the negative potential 
scan, there is an increase in current density at ca. −0.035 V because the reduction of the surface metal oxides 
would occur at the potential more negative than 0.2 V, and metal-OHads sites are enough for catalytic oxidation 
of glucose. Wang’s group has reported a similar result that there is a sharp increase in anodic current density at a 
potential of ca. 0.10 V15.

The D and E peak in CV curves associated with the conversion between Ni(II) and Ni(III), have the similar 
CV features for Ni-based electrode18. The reaction mechanism of Ni metal in alkaline medium for the electrocat-
alytic oxidation of glucose can be expressed as follows:

+ → +− −Ni 2OH Ni(OH) 2e (1)2

+ → + +− −Ni(OH) OH NiO(OH) H O e (2)2 2

+ → +NiO(OH) Glucose Ni(OH) glucolactone (3)2

As shown in SI Fig. S2A, the CVs of the Au@Ni/C electrode in 0.1 M NaOH solution containing 5 mM glucose 
at different scan rates were recorded to estimate the kinetics of the direct oxidation of glucose on the electrode 
surface. In SI Fig. S2B,C, the current densities of peak a and b are both proportional to the square root of the 
scan rate in the range of 10‒500 mV s−1, confirming that the electro-catalytic oxidation reaction of glucose is a 
diffusion-controlled process15.

Figure 3. CVs of the as-prepared Au@Ni (A) and Au2@Ni electrode (B) in the presence (red curve) and 
absence (blue curve) of 10 mM glucose in 0.1 M NaOH solution with the scanning rate of 50 mV s−1.
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By reducing the Ni ratio in core-shell Au@Ni nanoparticles (Au2@Ni), we further investigated the effect of Ni 
shell thickness on the electrocatalytic performance of the core-shell catalyst. The experiment results presented 
in Fig. 3B show that within the scope of the experiment, the Ni shell thickness does not significantly affect the 
catalytic capability, indicating within rational Au/Ni range, the core-shell Au@Ni nanoparticles as a sensor can 
combine the advantages of Au and Ni for glucose detection.

Amperometric response of the Au@ni/c to glucose oxidation. For amperometric sensing applica-
tions, the operating voltage should be chosen to measure current response within continuous addition of glucose 
and the interfering species in the fermentation process at a fixed time. SI Table S1 lists composition of the sub-
stance in the fermentation broth, and the data are from Beijing Four Rings Biopharmaceutical Co., Ltd. The corn 
steep liquor mainly provides major elements contain C, N and trace elements such as P, Fe, K, Ca, etc. required for 
the growth and fermentation of culture, sometimes replaced by molasses which is also have trace substances such 
as vitamins, bacterial proteins and growth promoting factors. Fructose, lactose, sucrose and vitamin C (ascorbic 
acid, AA) in fermentation broth could be easily oxidized at a relative positive potential, and often interfere with 
the detection of glucose. The normal concentration of glucose is much higher than those of fructose (12~24% 
of molasses), lactose (11.60~19.30% of corn steep liquor, 12~24% of molasses), sucrose (24~47% of molasses) 
and AA (≪ 1% of molasses). Therefore, fructose, lactose, sucrose and AA are selected as the main interfering 
species during the experiment. The sensitivity and selectivity of the sensor was evaluated at voltage range from 
0.05 V to 0.55 V with successive addition of glucose and interfering species (the ratio of glucose/fructose/lactose/
sucrose/vitamin C (ascorbic acid) is 5/1/1/1/0.1) in 0.1 M NaOH soultion to determine the detection voltage. The 
amperometric responses of 1 mM glucose and interfering species on the Au@Ni/C electrode at different applied 
potentials were shown in Fig. 4. The result clearly indicates that the core-shell electrode not only has the highest 
response to the oxidation of glucose at 0.55 V, but also has the highest amperometric response of interfering spe-
cies due to the low selectivity of nickel-based electrode for catalytic oxidation of glucose. When the potential is in 
the range of 0.05-0.2 V, the electrocatalytic oxidation of glucose is due to the formation of AuOHads on the Au@
Ni/C electrode, which results in exaltation of the selectivity of the as-prepared electrode. As shown in Fig. 4, the 
addition of interferent species produces little or no significant signal compared with glucose, indicating that the 
Au@Ni/C electrode obtained in this study has a high selectivity for glucose sensing. Taking the sensitivity and 
selectivity into consideration, 0.10 V vs SCE was chosen for assessing the performance of the as-prepared sensors.

Figure 5A shows the current responses of Au@Ni-C electrode to successive addition 250 μL of glucose solu-
tion (0.1 M) in 50 ml electrolyte solution at 0.10 V. The result displays a relatively wide linearity with glucose con-
centration ranging from 0.5 mM to 10 mM with a correlation coefficient of 0.993 and the outstanding sensitivity 
of 23.17 μA mM−1 cm−2. The LOD (Limit of detection) of sensors is 15.7 μM, as show in Fig. 5B and calculated by 
the formula in term of LOD = 3σ/b, where σ is the standard deviation of background signal which is obtained by 

Figure 4. Amperometric response of an Au@Ni/C electrode to successive addition of 1 mM glucose, 0.2 mM 
fructose, 0.2 mM lactose, 0.2 mM and 0.02 mM ascorbic acid in a continuously stirred solution of 0.1 M NaOH 
at 0.05 V and 0.10 V (A), 0.15 V (B), 0.20 V (C), and 0.55 V (D), respectively.
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measuring the current response of the Au@Ni-C sensor in the blank solution for ten times, and b is the sensitivity 
of the Au@Ni-C sensor.

The performance of Au-based and Ni-based sensors reported recently is summarized in Table 1. As com-
pared with other sensors, The Au@Ni/C catalysts exhibit enhanced sensitivity and selectivity due to their lower 
operating voltage for electrocatalyzing the oxidation of glucose in comparison with other Au- and Ni-based sen-
sors. This is due to on one hand the selective catalytic oxidation of glucose by Au, and on the other hand, the Ni 
ad-layer loaded onto the surface of Au NPs, whcih changes the charge of the sensor to allow the formation of 
more metal-OHads sites at more negative potentials46.

Reproducibility, stability and anti-toxic of the Au@ni/c electrode. To study the reproducibility 
of the Au@Ni/C sensor, five electrodes prepared under the same conditions were evaluated by comparing the 
amperometric responses in 0.1 M NaOH solution with 5 mM glucose. Figure 6A shows that the relative standard 
deviation (RSD) is no more than 3.6% for the five electrodes, indicating the excellent electrode-to-electrode 
reproducibility.

The long-term stability of the nonenzymatic sensor is another performance indicator for a glucose biosensor. 
The Au@Ni/C sensor was assessed through recording the current response of 5 mM glucose at intervals over a 
period of one week, and the prepared electrode was stored in air when not in use. Figure 6B displays the inves-
tigation results that the measured peak current density retains more than 90% of the initial current response in 
continuous tests, showing that the glucose sensor has a superior long-term stability.

The anti-toxic of sensors is also a main factor that can influence the stability. The traditional gold electrodes 
are often adsorbed by Cl−, an abundant species in fermentation broth, which leads to the occupation of the active 
sites of Au surface and further cause inhibition of the formation of Au-OHads. Figure 6C,D show the CV curves of 
the Au@Ni/C and Au/C electrode in the absence and presence of 50 mM and 100 mM Cl− in a 0.1 M NaOH solu-
tion containing 5 mM of glucose. The results show that the presence of Cl− has no significant effect on the peak 
current in the range from 0–0.25 V for Au@Ni/C electrode but has apparent effect on the pure Au/C electrode. 
The existence of Ni shell can protect the sensor from affecting by the adsorption of Cl− in solution, as confirmed 
by the comparison of the results in Fig. 6C,D, and this is also benefit for enhancing the stability of sensor.

In this study, we have fabricated core-shell Au@Ni nanoparticles by oleylamine reduction of their metal pre-
cursors, and then constructed a non-enzymatic glucose sensor by loading these core-shell particles on carbon 

Figure 5. Current response of an Au@Ni/C electrode to successive addition of 0.5 mM glucose in a 
continuously stirred solution of 0.1 M NaOH at 0.10 V (A), inset shows the corresponding calibration plots; the 
lowest detectable concentration of an Au@Ni/C electrode towards glucose in 0.1 M NaOH solution at 0.10 V 
(B), inset is a magnified view of the curve boxed by the red frame.
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substrates. The Au@Ni/C sensor exhibits good anti-intereference capability to impurities in the fermentation 
broth, excellent stability and high tolerance to the adsorption of Cl− and oxidation intermediates. Therefore, we 
believe it is highly applicable for glucose detection during fermentation. A real-time sampling method for practi-
cal applications is currently being investigated.

Catalysts
Applied 
potential (V)

Sensitivity  
(μA cm−2 mM−1)

Linear range 
(mM)

Detection 
limit (μM) ref.

Au@Ni/C 0.10a 23.17 0.5‒10.0 15.7 This study

Au/ITO 0.15a 23.0 0‒11.0 5.0 15

Au/GtO 0.16a 98.7 0‒25.0 99.0 14

Au NPs 0.24b 87.5 0.1‒25.0 50.0 47

Au nanotube array 0.25a 0.0013 1.0‒42.5 10.0 25

Au/MWCNT/Nafion 0.30b 0.4 0.05‒20 20.0 48

Macroporous Au 0.40b 39.53 1‒20 25.0 37

Au/rGtO 0.16a 39.8 0‒10 63.0 14

Au-rGO-SWCNT 0.15‒0.25b — 0‒80 0.0022 16

Au/NiAu MNAs 0.40a 483 0.005‒31 1.0 18

Au@Cu2O 0.65a 715 0.05‒2.0 18.0 21

Au-Pt hybrids 0.40a 39.53 1‒20 25.0 37

Ni-Au MCL 0.55b 506 0.02‒10 14.9 49

Au-Ni bimetal 0.40a 1.30 0.01‒20 0.29 50

Au@Pt/Au 0.35b 8.28 0.01‒10 0.4457 51

Table 1. Comparison of the performance of Au@Ni/C in this study and Au or Ni-based electrodes reported 
recently for glucose detection. aThe reference electrode is a saturated calomel electrode. bThe reference electrode 
is an Ag/AgCl electrode.

Figure 6. Current densities of five Au@Ni/C electrodes in 0.1 M NaOH containing 5 mM glucose at 0.10 V 
by amperometric measurements (The current densities were normalized to the first electrode) (A); current 
densities of 5 mM glucose in 0.1 M NaOH solution tested every half day by amperometric measurements (The 
current densities were normalized to the first day) (B), the current densities are the average values of triplicate 
determinations; CVs of the Au@Ni/C (C) and Au/C (D) electrode with the presence and absence of different 
concentration of Cl− ions.
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Methods
General materials. Tetrachoroauic acid tetrahydrate (HAuCl4·3H2O, ACS reagent, ≥47.8% Au basis) 
and Nickel(II) acetylacetonate (Ni(acac)2, 95%) were purchased from Sigma-Aldrich. Vulcan XC-72 carbon 
substrates were purchased from Cabot. Oleylamine (80–90%, technical grade), and Nafion solution (5% in a 
mixture of lower aliphatic alcohols and water) were purchased from Aladdin Reagents. D-(+)-glucose (biotech 
grade), D-(−)-fructose (EP grade), sucrose (molecular biology grade), α-lactose monohydrate (BC grade) and 
L-ascorbic acid (USP grade) were obtained from the Sangon Biotech Co. Ltd. n-hexane (99.5%), acetic acid (98%) 
and ethanol (99.5%) were from Beijing Chemical Works. Solutions of glucose, D-fructose, sucrose, α-Lactose 
monohydrate and ascorbic acid (AA) were prepared using 0.1 M NaOH solution immediately before each exper-
iment. Additionally, all the experimental measurements were carried out at room temperature.

Synthesis of core-shell Au@ni nanoparticles. In a typical synthesis of core-shell Au@Ni nanoparti-
cles, a solution of 82.37 mg (0.2 mM) of HAuCl4·3H2O in 10 mL of oleylamine was placed in a three-necked flask 
equipped with a condenser and heated at 110 °C in a nitrogen atmosphere under magnetic stirring for 4 h for the 
reduction of Au3+ ions by oleylamine, which also severs as the capping agent. These Au nanoparticles were then 
used as seeds for the formation of Au@Ni and Au2@Ni core-shell nanoparticles. For the synthesis of Au@Ni and 
Au2@Ni core-shell nanoparticles, different masses of Ni(acac)2 (51.38 mg (0.2 mM) and 25.69 mg (0.1 mM) for 
Au@Ni and Au2@Ni, respectively) were immediately added to the 10 mL of Au nanoparticle solution. The mixture 
was then heated to 240 °C for 1 h under the nitrogen flow with rapid magnetic stirring. After reaction, the above 
solution was cooled down to 160 °C and aged there for 1 h. The resulting nanoparticles were then cooled down 
to room temperature. The nanoparticles in the solution were purified by precipitation with ethanol, and washed 
twice with ethanol to remove the free ligands, and then re-dispersed in hexane.

fabrication of Au@ni/c electrodes. 120 mg of Vulcan XC-72 carbon substrates was added to the 
colloidal solution of core-shell Au@Ni nanoparticles, and the mixture was vigorously stirred for 2 h. The 
carbon-supported nanoparticles were precipitated by ethanol, followed by re-dispersion in acetic acid. Then the 
Au@Ni/C particles were placed in a three-necked flask and heated at 120 °C under rapid magnetic stirring for 2 h 
for removing the oleylamine on the surface of the nanoparticles. The Au@Ni/C was collected by centrifugation 
and washed once with ethanol and then dried at 80 °C overnight in vacuum. A glassy carbon electrode (GCE) of 
5 mm in diameter was polished sequentially with slurries of 0.3 and 0.05 μm alumina, and then sonically washed 
sequentially in 50 wt% nitric acid, ethanol and deionized water for 1 min in each. After washing, the electrodes 
were dried with nitrogen gas. The prepared Au@Ni/C (14 mg) was re-dispersed in the mixed solution containing 
950 μL ethanol, 50 μL deionized water and 100 μL Nafion solution (5 wt%), and then sonicated for 30 min to form 
a homogeneous ink. Then, 10 μL of as-prepared catalyst ink was loaded on clean GCE followed by drying in air.

Sample characterizations. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) 
were performed on the JEOL JEM-2100F electron microscope. A drop of the nanoparticle solution was dis-
pensed onto a 3 mm carbon-coated copper grid for the TEM measurements. Energy dispersive spectrometer 
(EDS) analysis was used to analyze the chemical compositions of the synthesized nanoparticles. Powder X-ray 
diffraction (XRD) patterns were recorded on a Rigaku D/Max-3B diffractometer with Cu K alpha radiation 
(λ = 0.15406 nm). X-ray photoelectron spectroscopy (XPS) analyses were conducted on a VG ESCALAB MKII 
spectrometer.

electrochemical measurements. The Electrochemical measurements were carried out in a lab-made 
electrochemical cell at room temperature, connected to a Bio-logic VMP1 potentiostat. The saturated calomel 
electrode (SCE) and platinum mesh electrode (1 × 1 cm−2) were used as the reference electrode and counter 
electrode, respectively. Cyclic Voltammogram (CV) performed in the potential range from −1.0 V to 1.0 V vs. 
SCE with a scan rate of 50 mV s−1 was used to observe the onset-potential of prepared sensor towards the catalytic 
oxidation of glucose to gluconolactone. The amperometric technique was carried out in the applied potentials 
chosen from the CV results for assessing the performance of Au@Ni/C sample towards glucose oxidation. The 
current obtained in the above experiment was recorded when the transient reaches a steady state.
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