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comparison of cartilage Mechanical 
properties Measured During creep 
and Recovery
Hattie c. Cutcliffe1,2 & Louis e. Defrate1,2,3*

the diagnosis of osteoarthritis (oA) currently depends on the presence of pain and radiographic 
imaging findings, which generally do not present until later stages of the disease when the condition 
is difficult to treat. Therefore, earlier detection of OA pathology is needed for improved disease 
management. Ex vivo cartilage studies indicate that changes in the mechanical function of cartilage 
occur as degeneration progresses during OA. Thus, measurement of the in vivo cartilage mechanical 
response may serve as an earlier indicator of oA pathology. though mechanical characterization is 
classically performed during loading, the unloading (recovery) response of cartilage may also enable 
determination of mechanical response. Therefore, the purpose of this study was to validate the use of 
the recovery response for mechanical characterization of cartilage in a controlled, ex vivo environment. 
To do so, confined compression creep and recovery tests were conducted on cartilage explants (N = 10), 
and the resulting mechanical properties from both the creep and recovery phases were compared. No 
statistically significant differences were found in the mechanical properties between the two phases, 
reinforcing the hypothesis that unloading (recovery) may be a good surrogate for loading.

Osteoarthritis (OA) is a degenerative disease of articular cartilage and affects over 27 million Americans1. OA is 
currently diagnosed via the presence of pain and radiographic features, such as osteophytes and joint space nar-
rowing, from which cartilage loss is inferred2–4. Unfortunately, radiographic imaging techniques rely upon gross 
morphological changes to be present in the tissue, which may not occur until late in the disease2. Further, gross 
morphological changes visible on radiography do not always correlate with pain or functional impairment3. As 
an alternative, magnetic resonance imaging (MRI) has been used to assess OA5; however, radiography remains 
the traditional modality for clinical OA assessment and diagnosis2,3. Currently, treatment for end-stage OA is 
limited and includes pain management or joint replacement surgery to restore function and reduce pain3. While 
these treatment strategies ameliorate symptoms associated with the disease, they do not directly treat or reverse 
cartilage degeneration. Therefore, earlier detection of OA degeneration is needed for more effective disease man-
agement and treatment.

Prior to gross morphological changes, other changes occur in cartilage tissue during the progression of OA6. 
These include compositional changes, such as the loss of proteoglycan content7–9, the loss of collagen content and 
organization9,10, and changes in tissue hydration6,8. These changes alter the tissue’s response to mechanical load 
and thus its mechanical function8,9,11–14. Altered mechanical function may also contribute to further pathology 
and degeneration within the tissue11. As such, mechanical response may represent a biomarker of OA pathology. 
Because these compositional and mechanical changes potentially occur prior to the onset of pain or gross imaging 
findings, detection of these mechanical changes may lead to an earlier diagnosis of OA.

Cartilage mechanical assessment is classically performed in the ex vivo environment by excising explants of 
cartilage tissue, or by exposing the cartilage surface and indenting upon it15–18. As such, in vivo application of these 
techniques is limited, especially as diagnostic or prognostic tools. On the other hand, previous work has used MR 
imaging to measure in vivo cartilage response by quantifying changes in cartilage volume and thickness19–35. In 
these studies, an exercise activity is used to mechanically load the cartilage tissue, and MR images from before and 
after the activity are compared to quantify the resulting deformation. This technique is possible due to cartilage’s 
viscoelastic nature36,37. During loading, cartilage exhibits time-dependent behavior, which is primarily due to 
water flow out of the tissue37–39 but is also due in part to the intrinsic viscoelasticity of the extracellular matrix40–44. 
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Because of this time-dependent behavior, MR images can be used to measure load-induced deformation, such as 
changes in cartilage thickness or volume19,20.

Furthermore, due to the viscoelastic nature of cartilage tissue, mechanical characterization of cartilage 
requires knowledge of the strain-time history. Therefore, cartilage’s mechanical response may be quantified in vivo 
using this MRI methodology by assessing deformation repeatedly after different intensities or doses of exercise. 
For example, prior work by our group45 varied the duration and intensity of walking to quantify how cartilage 
strain changed over time after walking. This was analogous to a creep test, where the load was applied and held 
for a set duration, and the resulting strain was measured across time during that duration. However, this para-
digm—repeated applications of pre/post MR imaging and exercise—led to an expensive and time-intensive study.

Alternatively, adapting this current in vivo MRI methodology45 to assess the reversal of cartilage strain during 
the recovery period after loading may lead to a more efficient study design, while still enabling assessment of the 
mechanical response (Fig. 1). As previously stated, water flows out of the tissue during loading and deformation 
accumulates in a time-dependent manner within the cartilage37–39. Conversely, upon the removal of load during 
the recovery period, water flows back into the tissue, causing the reversal of the deformation over time as the car-
tilage returns to its baseline state. If the unloading trajectory is similar to the loading trajectory, then measuring 
the strain history during recovery should allow for similar mechanical characterization as measuring the strain 
history during creep.

Therefore, the purpose of this study was to measure and compare the mechanical response of healthy cartilage 
to loading (creep) and unloading (recovery). Specifically, the mechanical response was studied in a controlled 
ex vivo environment by conducting confined compression creep and recovery tests on porcine cartilage explants 
from the tibial plateau and femoral trochlea. Our goal was to compare the strain trajectories during loading and 
unloading to determine whether the recovery response may be used as a surrogate measure for the creep response 
when making mechanical assessments of healthy cartilage tissue in vivo. This represents a first step toward under-
standing whether measurements of recovery in OA cartilage may serve as earlier indicators of cartilage pathology.

Results
Overall, explants in this experiment experienced a mean strain of 12.8% ± 8.9% at creep equilibrium (end of the 
creep phase). Explants recovered to 99.0% ± 0.9% of their baseline thickness by the end of the recovery phase 
(baseline thickness: 0.75 ± 0.18 mm). Furthermore, no statistically significant differences were found in mechan-
ical properties between the creep and recovery phases (Fig. 2). The mean aggregate moduli were 0.71 ± 0.50 and 
0.68 ± 0.48 MPa (creep and recovery, respectively), and the mean characteristic times (Eq. 1c, a measure of how 
quickly equilibrium is reached) were 11.6 ± 5.2 and 12.6 ± 7.3 min, respectively. Cartilage location (tibial plateau 
vs femoral trochlea) had a statistically significant main effect on both of the mechanical properties (aggregate 
modulus and characteristic time) measured in this study.

Furthermore, statistically significant correlations were found between the aggregate moduli of each phase 
(Pearson r = 0.996), and between the characteristic times of each phase (Pearson r = 0.897) (Table 1). Additionally, 
the characteristic times of each phase were significantly correlated with the aggregate moduli of each phase, 
respectively (Table 1).

Lastly, the mean average residual between creep and recovery phases in this experiment represented an error 
of 5.4% ± 3.3% of the final (60 minute) creep strain, indicating a high degree of similarity between the creep and 
recovery responses in the confined compression environment. Indeed, a calculation of the pairwise differences 
between creep and recovery at each point in time (Fig. 3) illustrates that the mean pairwise difference remained 
low at all times.

Figure 1. Comparison of loading and unloading (recovery) response of cartilage.
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Discussion
The mechanical response of cartilage changes as the tissue progresses from a healthy to a degenerated state, such 
as during OA pathology6–10,46. Therefore, measurement of the tissue’s mechanical response may serve as a useful 
biomarker of cartilage disease. Because traditional methods for the characterization of mechanical response are 
invasive when applied to cartilage tissue, they are not well suited for in vivo applications. Therefore, the devel-
opment of a method to noninvasively assess the cartilage mechanical response in vivo is needed, which may be 
accomplished using MRI45. To this end, the current study evaluated the use of the recovery strain trajectory as a 
surrogate for the creep strain trajectory in healthy cartilage in a controlled, ex vivo environment, in order to vali-
date the assessment of healthy cartilage recovery for quantifying in vivo mechanical properties.

Figure 2. Creep and recovery deformation response corridors (mean ± 1 standard deviation) across all explants 
(N = 10). Mechanical properties (aggregate modulus and characteristic time) were not statistically significantly 
different between the creep and recovery phases.

Aggregate Modulus Characteristic Time

Creep Recovery Creep Time Recovery

Aggregate Modulus
Creep r = 1.000 r = 0.996,

(p < 0.0001)
r = −0.851,
(p < 0.0018)

r = −0.720,
(p < 0.0188)

Recovery r = 1.000 r = −0.843,
(p < 0.0022)

r = −0.718,
(p < 0.0194)

Characteristic Time
Creep r = 1.000 r = 0.897,

(p < 0.0004)

Recovery r = 1.000

Table 1. Pearson Correlation Coefficients Between Outcome Variables.

Figure 3. Pairwise differences in deformation response (creep minus recovery) at each point in time (mean ± 1 
standard deviation) across all explants (N = 10).
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Importantly, this study did not find statistically significant differences in either the aggregate modulus or the 
characteristic time between the creep and recovery phases. This finding motivates the use of the recovery phase 
as a surrogate for the creep phase, especially for measurement of bulk properties or response such as the total 
(engineering) strain within the tissue, as measured in the current study. This is useful as classically, mechanical 
properties are assessed during the loading response, but the unloading (or recovery) response is more accessi-
ble in vivo using MRI techniques. Therefore, understanding whether the recovery response reflects the loading 
response ex vivo is crucial for validating this in vivo approach. Moreover, the mean characteristic times measured 
in this study, 11.6 ± 5.2 min for creep and 12.6 ± 7.3 min for recovery, are on the same order as those measured 
in vivo. Specifically, in a prior study45, the mean in vivo creep trajectory of healthy human tibial cartilage had a 
characteristic time of 17.2 minutes. While future exploration of cartilage recovery in vivo is needed to determine 
whether the in vivo creep response may be represented by the in vivo recovery response, the findings of the cur-
rent study support this idea.

Additionally, the current study found that the average residual, defined as the expected error between the 
creep and recovery response at any point in time, was low: it represented 5.4% ± 3.3% of the final (60 minute) 
creep strain. However, the average residual was not zero. Further, larger pairwise differences were seen at early 
time points (0–800 seconds) than at later time points (Fig. 3). These observations are consistent with prior litera-
ture, which also did not find the creep and recovery phases to be perfectly reversible39,47–50. These differences may 
be due in part to the extracellular matrix’s intrinsic viscoelasticity under compression41,44. However, it may be that 
these slight differences are due to strain-dependent permeability51, in which the tissue’s permeability decreases 
as the strain in the tissue increases. A decrease in permeability indicates more resistance to fluid flow, making it 
more difficult for fluid to enter or leave the cartilage matrix. Therefore, at early times in the creep response, there 
is little strain within the tissue and the permeability is near its maximum, making it easier for fluid to flow out of 
the tissue and strain to accumulate in response to the sustained load. Conversely, at early times in the recovery 
response, there is a large amount of strain in the tissue (the strain is near its maximum) and the permeability is 
lower, making it more difficult for fluid to flow back into the tissue and for strain to dissipate. This is supported by 
our observations of the pairwise differences (Fig. 3), which we defined as the creep response minus the recovery 
response at each point in time. The positive values at early times (0–800 seconds) indicate that the creep defor-
mation was typically larger than the recovery deformation at these early times, which is consistent with a larger 
relative permeability at this point in creep than in recovery. In the current study, the permeability was assumed 
to be constant (Eq. 1, see Methods section). In the presence of strain-dependent permeability, a slower recovery 
is expected due to a large amount of tissue compaction and minimal permeability at early times, indicating that 
longer times are needed to reach equilibrium in the recovery phase. Indeed, this was also observed in the current 
study, as the characteristic recovery time was typically longer than the characteristic creep time (11.6 ± 5.2 min 
for creep and 12.6 ± 7.3 min for recovery), though these differences were not significant. Future studies investigat-
ing incorporation of a strain-dependent permeability term when modeling the creep and recovery deformation 
would be beneficial to test this hypothesis. Nonetheless, the observed pairwise differences are small, especially at 
later times throughout the deformation ( > 800 seconds), leading to a small average residual and nonsignificant 
differences in the creep and recovery characteristic times.

In this study, statistically significant differences in mechanical properties between cartilage from the tibial pla-
teau and femoral trochlea were found, which is consistent with prior literature indicating that regional differences 
exist in mechanical properties (for example, between femoral and tibial cartilage)47,48,52–54. Porcine tibial and fem-
oral cartilage was found to have aggregate moduli during creep of 1.17 ± 0.48 and 0.40 ± 0.18 MPa, respectively. 
Likewise, the creep characteristic times were 7.4 ± 3.2 and 14.4 ± 4.4 min, respectively. Further, these mechan-
ical property values—both for the modulus and characteristic time—are consistent with literature values of ex 
vivo cartilage mechanical properties measured via confined compression9,14,54–56. Finally, upon reaching recovery 
equilibrium (end of the recovery phase), explants recovered to within 99.0% ± 0.9% of their baseline thickness, 
confirming previous reports of thickness recovery upon load removal in ex vivo creep experiments39,47–49. Future 
work is needed to expand on these results by testing degenerated or OA cartilage, to understand whether pathol-
ogy affects the loading response in the same manner as it affects the unloading response.

Overall, measuring the recovery response may be a useful surrogate for the creep response, especially in the 
in vivo context of measuring cartilage mechanical function where the recovery phase is more accessible via MRI 
than the loading phase. This study investigated recovery of healthy cartilage in the controlled ex vivo environment 
of confined compression, and did not find statistically significant differences in cartilage mechanical properties 
(aggregate modulus and characteristic time) between the creep and recovery phases. These results help validate 
the use of the recovery response to measure in vivo mechanical properties, with the eventual goal of leveraging 
mechanical changes as prognostic or diagnostic indicators of cartilage degeneration. The findings of this study 
motivate the investigation of creep and recovery in degenerated cartilage to further validate whether the recovery 
response is indicative of the creep response in OA, and whether mechanical changes may represent earlier indi-
cators of cartilage degeneration than pain or radiographic findings.

Materials and Methods
Mechanical testing. Ex vivo confined compression creep and recovery experiments were carried out using 
full-thickness cartilage explants (N = 10) from porcine femurs and tibiae. Skeletally mature porcine knee joints 
were obtained intact from already deceased animals from a local abattoir, so Institutional Animal Care and Use 
Committee (IACUC) approval was not required. Joints were dissected to expose the articular cartilage surfaces 
of the femur and tibia, and 5 mm diameter cartilage explants were harvested from the medial and lateral tibial 
plateaus and medial and lateral femoral trochlea of the joints. Explants were harvested from visually healthy 
regions of cartilage, identified as areas with a Collins grade of 057. After harvest, explants were promptly wrapped 
in PBS-soaked gauze and stored at −20 °C until testing.
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Explants were thawed at room temperature for 30 minutes prior to mechanical testing (as a result, explants 
experienced only one freeze-thaw cycle in this experiment). After thawing, 3 mm diameter cylindrical plugs were 
cut from the original 5 mm diameter explants and loaded into a confined compression chamber filled with PBS 
for mechanical testing (Fig. 4). The diameter of the cylindrical chamber within which the explants were loaded 
was 3 mm, resulting in a very tight fit between the explant and the lateral walls of the confined compression cham-
ber. Further, a stainless steel porous platen (McMaster-Carr, Douglasville, GA) with porosity = 0.95 comprised 
the bottom of the confined compression chamber, allowing fluid to flow out of and into the tissue during creep 
and recovery, respectively.

Creep and recovery tests were performed in load control on an MTS Acumen 3 materials test system (MTS 
Systems Corporation, Eden Prairie, MN). The measured force and displacement data were recorded at a sampling 
rate of 50 Hz. The test battery included four steps: 1) cyclic preconditioning (peak-to-peak sinusoid of −0.1 N to 
−0.5 N at 0.10 Hz, 100 cycles), to ensure explants reached a repeatable steady-state level of hydration throughout 
the depth of the tissue58; 2) a preload (−0.1 N, 60 min), to allow explants to equilibrate to a baseline thickness 
under a small compressive load39,47; 3) a creep load (−0.5 N, 60 min), to measure the strain response during creep; 
4) a recovery load (−0.1 N, 60 min), to measure the strain response during recovery (Fig. 5a). Notably, the preload 
and recovery levels (−0.1 N) were the same to ensure that the change in force occurring between steps 2 and 3 
was equal in magnitude and opposite in direction to that occurring between steps 3 and 4. The preload, creep, 
and recovery loads were each applied at a rate of 0.05 N/s. Further, the magnitude of the change in force (0.4 N) 
during creep and recovery was chosen to result in less than 20% strain in the tissue at equilibrium37,39,49. Similarly, 
the preconditioning cycled between the same creep and recovery loads (−0.1 N and −0.5 N), and consisted of a 
0.10 Hz sinusoid for 100 cycles as this rate and number have been shown to be sufficient for the tissue to reach a 
dynamic equilibrium in which no further ratcheting strain occurs per cycle58. Finally, the preload, creep load, and 
recovery load were each held for 60 minutes to allow the explants to reach equilibrium in each phase. When the 
recovery load was initiated, there was no evidence that the indenter pulled away from the explant. Specifically, 
negative force readings (indicating compression) were maintained throughout the testing.

Data analysis. After testing, the data trace from each explant was checked to ensure that explants reached 
equilibrium. Equilibrium was defined as a change in explant height less than 0.6 microns over the final 60 seconds 
of creep, corresponding to a change in explant height less than 0.010 microns per second at the end of the creep 
phase9,49. All explants included in the analysis met this equilibrium criterion.

Next, the biphasic creep solution (Eq. 1)37 was fit to the measured creep and recovery deformation responses 
(Fig. 5b,c) separately to calculate the tissue’s characteristic time (τ0) and aggregate modulus (HA) during both 
the creep and recovery phases. The characteristic time (Eq. 1c) represents the time constant of the exponential 
term of Eq. 1a when n = 0, corresponding to the first term in the summation55. The fit procedure was performed 
in MATLAB (version R2018a, Mathworks, Natick, MA) using the nonlinear least-squares curve-fitting algo-
rithm lsqcurvefit. Baseline thickness was defined as the mean explant thickness over the final five minutes of the 
preload phase (step 2 of the test battery, described above). Similarity between the creep and recovery response was 
assessed via the average residual, defined as the mean absolute error between the creep and recovery strain curves 
across time for a given explant, expressed as a percent of the final (60 minute) creep strain (Fig. 5c). Therefore, 
the average residual represents the expected error at any point in time between the creep and recovery curves for 
a given explant. Likewise, the mean average residual across multiple explants represents the mean expected error 
between the creep and recovery phases. Statistical analyses were performed in SAS (version 9.4, SAS Institute, 

Figure 4. Confined compression fixturing.
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Cary, NC) with p < 0.05 indicating significance. Outcome variables assessed were the aggregate modulus and 
characteristic time from each phase (creep and recovery). One-way repeated-measures analyses of variance 
(ANOVA) were performed to test for differences in outcome variables between the creep and recovery phases. 
Cartilage location (tibial plateau vs femoral trochlea) was included as a factor to examine differences in mechani-
cal properties across location. Further, Pearson correlations were calculated between outcome variables. Data are 
summarized using the mean ± one standard deviation unless otherwise indicated.
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where u = surface displacement, h = baseline thickness, σ0 = applied stress,
HA = aggregate modulus, τ = time constant, τ0 = characteristic time, and
k = permeability.
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The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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