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Automatic vocal tract landmark 
localization from midsagittal MRi 
data
Mohammad eslami  *, christiane neuschaefer-Rube   & Antoine Serrurier *

the various speech sounds of a language are obtained by varying the shape and position of the 
articulators surrounding the vocal tract. Analyzing their variations is crucial for understanding speech 
production, diagnosing speech disorders and planning therapy. identifying key anatomical landmarks of 
these structures on medical images is a pre-requisite for any quantitative analysis and the rising amount 
of data generated in the field calls for an automatic solution. The challenge lies in the high inter- and 
intra-speaker variability, the mutual interaction between the articulators and the moderate quality of 
the images. This study addresses this issue for the first time and tackles it by means of Deep Learning. 
it proposes a dedicated network architecture named Flat-net and its performance are evaluated and 
compared with eleven state-of-the-art methods from the literature. the dataset contains midsagittal 
anatomical Magnetic Resonance Images for 9 speakers sustaining 62 articulations with 21 annotated 
anatomical landmarks per image. Results show that the Flat-net approach outperforms the former 
methods, leading to an overall Root Mean Square Error of 3.6 pixels/0.36 cm obtained in a leave-one-
out procedure over the speakers. the implementation codes are also shared publicly on GitHub.

In speech, the sounds of a language are produced by varying the shape and position of the organs surrounding the 
vocal tract. This region is characterized by a high inter- and intra-speaker variability, both in the space and time 
domains. Analyzing and modeling the shape of the vocal tract articulators is therefore crucial for speech produc-
tion research1–3 and for diagnosis and therapy of related disorders, including speech disorders4,5, velopharyngeal 
insufficiency6 and swallowing dysfunctions7. The vocal tract area extends from the glottis to the lips and is sur-
rounded by various structures such as the larynx, the epiglottis, the velum, the tongue, and the upper and lower 
lips. Despite the high variability, the organisation of these structures is similar among all speakers. Measuring and 
analyzing their variability implies therefore to know the deformation of these similar structures across speakers 
and articulations. A pre-requisite to achieve this is to match similar pertinent anatomical features on these struc-
tures across speakers and articulations. The key component for this purpose is to identify on each articulation 
the same pertinent anatomical landmarks characterizing these structures or demarcating them. It constitutes the 
general framework of the study.

Articulatory speech production studies often rely on midsagittal images of the vocal tract area and Magnetic 
Resonance Imaging (MRI) constitutes in this approach an essential modality8–10. Identifying landmarks of the 
vocal tract area on these images has always been done manually or as a byproduct of manual segmentation3,11. If 
such a manual approach fulfilled the needs until nowadays, the exploding number of data in this field due to the 
rise of real-time MRI12 and the recent progress in data science call undoubtedly for an automatic approach. This 
study aims at solving this issue and is to our knowledge the first study to address it.

This objective takes place in a larger framework in biomedical engineering and computer vision where local-
izing anatomical landmarks on biomedical images, sometimes referred to as detecting keypoints, has already 
been considered in other contexts. As an illustration, this has for instance been considered for the aortic valve 
on Computer Tomography scans13, for cephalometric landmarks on lateral cephalograms14,15, for finger joints on 
X-ray and MRI or for spine landmarks on volumetric Computer Tomography scans16,17. It has also been consid-
ered as a key element of more global registration processes, such as between fundus photographs and MRI for 
the eye18 and between series of biological microscopic images19. Regions of interests have also been identified by 
means of landmark localization, such as for the brain for Alzheimer’s disease diagnosis20 or to detect changes in 
facial temperature21. One can finally also mention the use of landmark identification for research on non-human 
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animals22. This short review emphasizes the importance of anatomical landmark localization from images for a 
large variety of applications and this study lengthens this non-exhaustive list with speech production.

Within the existing literature, two fields of application appear more particularly active and connected to our prob-
lem. The first is the localization of landmarks for the face, rich of an abundant research from landmark identification 
on two-dimensional photographs23,24 to landmark identification on three-dimensional Ultrasounds for fetuses for 
instance25,26. A recent and comprehensive review is provided by Wu et al.27. It represents a challenging issue due to the 
high variability of the shapes, poses, occlusions, and lighting conditions. Similarly, localizing the position of the joints 
of the body on images to estimate the human pose is also a long-standing problem28. It is also a challenging issue in 
computer vision due to the high variability of the postures, body shapes, actions, clothes and scenes.

The goal and contribution of this study is to propose a fully-automated end-to-end image analysis methods 
for localizing key anatomical landmarks in the vocal tract area from midsagittal MRI data. As emphasized earlier, 
the need for such a method in the field is required and has never been attempted so far. It is aimed to be used in 
the future for new speakers for which no prior data are available. Considering the existing methods of the liter-
ature and the recent rise of data science to solve such problems, Deep Learning (DL) appears as the inescapable 
approach29. Indeed, DL approaches in image processing tasks appear to outperform most of traditional techniques 
while bringing more robustness to noise30. In image processing, Deep Neural Networks usually take the particular 
form of Convolutional Neural Networks (CNNs)31. This study intends therefore to provide a CNN architecture 
able to solve our specific problem. This method and the associated network will be referred to as Flat-net in this 
paper. As detailed in the method section, the design of this method is inspired from existing solutions listed ear-
lier. It takes notably advantage of the concept of heat-maps32, which are images where the maximum intensities 
correspond to the landmark coordinates. It transforms interestingly coordinates in images, leading to input and 
output data of same nature, and appears powerful to deal with landmarks in image processing16,32.

In addition, in an attempt to compare our solution with existing approaches found in the literature for land-
mark or joint localization in other contexts, eleven state-of-the-art methods have been adapted to our problem 
and implemented as our competitors: (1) four methods from the facial landmark localization literature, (2) one 
method from the human pose estimation literature and (3) six generic methods from the literature on landmark 
localization in medical images and based on heat-maps.

One of the challenges of DL approaches lies in the very large amount of data necessary for training. 
Standardised datasets are publicly available for classical problems such as facial landmark detection or body pose 
estimation33,34. No benchmark exists for the problem described in this study and datasets in the field of articula-
tory speech analyses are usually rather limited and characterized by high shape and noise variability3. The dataset 
considered for this study is in line with this observation and therefore much more limited and heterogeneous 
than the datasets mentioned above, increasing all the more the challenge. However, preliminary analyses35 taking 
advantage of DL algorithms for image segmentation carried out on this exact dataset proved the feasibility of such 
an approach. The code for the methods considered in this study is publicly available, either by ourselves or by 
other research groups, for research and validation purposes.

The rest of the paper is organized as follows: in section Methods, the dataset, the anatomical landmarks, the 
methods, and the evaluation schemes are presented; the section Results reports the experimental results; finally, 
the methodology and the results are discussed in the section Discussion, together with the perspectives.

Methods
Data. The study considers static midsagittal MRI recorded between 2002 and 2011 from 9 French speakers (5 
males, 4 females), referred to as subjects in this study, sustaining 62 different articulatory positions, also referred 
to as classes in the context of machine learning, designed to be representative of the French phonemic reper-
toire3,36. This study does not include any human experiments more than the use of non-invasive MRI data collec-
tion mentioned above. All the methods and data acquisition were carried out in accordance with the guidelines 
and regulations of the local ethic committee called CPP, ’Comité de Protection des Personnes’37 (English transla-
tion: Committee for the Protection of People) and the recording protocols were approved by this ethic committee. 
All subjects were older than 18 and an informed consent was obtained from all of them. The images have been 
recorded either on a 1.5 or on a 3 Tesla MRI scanner and have a field of view of 256 × 256 mm2 and a resolution of 
1 mm per pixel. Note that two speakers have been discarded in comparison to Serrurier et al.3 and Valdés Vargas36 
due to the significantly lower quality of the images, the different fields of view and the different sizes of the images.

21 anatomical landmarks relevant to the study of the speech articulations have been identified. They represent 
either characteristic landmarks of the speech articulators, such as the tip of the tongue, or the junction between 
two articulators. They are listed in Table 1 and illustrated for one articulation of one subject in Fig. 1. They have 
been manually identified on all images of the dataset by an expert. Note that the upper and lower teeth land-
marks (UT and LT) denote dental structures and, as such, are not distinguishable from the air on MRI data. They 
have been determined for each subject by contrast with soft tissues on an articulation acquired on purpose and 
reported on the other images using their relative position with the hard palate. Please refer to Serrurier et al.3 for 
further information regarding this procedure as well as the data collection and processing.

challenges. Localizing landmarks of the vocal tract area on midsagittal MRI images presents particular char-
acteristics. Figure 2 shows a few articulations from different subjects illustrating the diversity of the dataset. The 
main challenges are summarized in the following list.

•	 The shapes and positions of the vocal tract articulators are characterized by a high variability, due to the vari-
ety of the speech task and to the different morphologies and articulatory strategies of the speakers to perform 
a same task.

https://doi.org/10.1038/s41598-020-58103-6
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•	 Some articulators such as the tongue, velum, lips and epiglottis present a high variability in the vocal tract 
area, leading to very different locations in the dataset associated to the landmarks VT, TT, TS, LLSV, ULPV, 
ET and TE.

•	 Some tissues may touch each others for certain articulations, leading to hardly distinguishable landmarks at 
these locations, such as TE, TS and ET.

•	 The larynx area appears very difficult to capture on midsagittal MRI data, leading to a confusing area on the 
images and hardly identifiable landmarks, such as PL and EG.

•	 Some articulators may occasionally show very different shapes than in the large majority of the articulations, 
such as the velum rolled up against the tongue for a few articulations36, leading to unusual location of the 
landmark VT.

•	 Two important landmarks for speech production analyses are the teeth landmarks UT and LT, which are not 
directly visible on the images, as mentioned earlier.

•	 The images are recorded at different times with different scanners, leading to variable quality and noise levels. 
Similarly, the quality and noise level may not be homogeneous within a single image.

•	 Despite the high variability, the size of the available dataset, i.e. 9 subjects with 62 articulations, hence 558 
articulations, is rather limited in comparison to those usually used for landmark localization in the literature, 
e.g. over 10 K images for mentioned refs. 23,34,38.

Methods. In order to compare the method proposed in this paper with the current state-of-the-art in the 
field, eleven methods taken from the literature have been adapted to our problem and implemented: (1) five 
methods from the literature related to facial landmark detection and body pose estimation and (2) six general 
methods for landmark localization and based on the concept of heat-maps. Our method, referred to as Flat-net, is 
inspired by these methods and presented at the end.

Methods from facial landmark detection and body pose estimation. The five methods considered in this section 
are the dlib, HyperFace, Deep Alignment Network, Shape Fitting by Deep-Regression and Multi-Context Attention 
Model methods and are presented as follows.

dlib. The algorithm available as part of the dlib library is an implementation of the ensemble of regression trees 
presented in 2014 by Kazemi and Sullivan39. This technique takes advantage of simple features with fast comput-
ing capacities, e.g. the pixels’ intensity differences, to directly estimate the landmark locations. These locations are 
subsequently refined with an iterative process made of a cascade of regressors and using gradient boosting. Note 
that the dlib method is the only method considered in this study not based on DL.

HyperFace. The HyperFace method makes use of an end-to-end DL network for simultaneous face detection, 
landmark localization, pose estimation and gender recognition23. It exploits the intermediate layers of a deep 
CNN, such as the ResNet-10140, by connecting together the intermediate feature maps to further predict the vari-
ous desired outputs. The last layers of the HyperFace network are fully connected layers.

Deep alignment network. The Deep Alignment Network (DAN) is a method based on a DL to localize facial 
landmarks24. It consists of multiple stages of CNNs, where each stage improves the locations of the facial land-
marks estimated by the previous stage. A key element of the system is the use of heat-maps within each stage.  

Abbreviation Name Description

ANS Anterior Nasal Spine Anterior nasal spine

EG Epiglottis-Glottis Junction between the epiglottis and the glottis

ET Epiglottis Tip Tip of the epiglottis

LC Lip-Chin Labiomental groove

LLSV Lower Lip Skin Vermillion Vermillon border of the lower lip

LLV Lower Lip Vermillion Junction between the wet and dry vermillion of the lower lip

LT Lower Teeth Upper point of the lower incisors

N Nose Most anterior point of the tip of the nose

NM Neck-Mandible Junction between the horizontal submandibular line and vertical neck line

NP Nose-Philtrum Junction between the philtrum and the external nose

NPX Nasopharynx Upper point of the nasopharynx

PL Pharynx-Larynx Junction between the pharyngeal wall and the posterior supraglottic region

PNS Posterior Nasal Spine Posterior nasal spine

TE Tongue-Epiglottis Junction between the tongue and the epiglottis

TJ Tongue-Jaw Junction between the tongue and the jaw

TS Tongue Sub Most posterior point of the sublingual cavity

TT Tongue Tip Tip of the tongue

ULPV Upper Lip Philtrum Vermillion Vermillon border of the upper lip

ULV Upper Lip Vermillion Junction between the wet and dry vermillion of the upper lip

UT Upper Teeth Lower point of the upper incisors

VT Velum Tip Tip of the velum

Table 1. List of the landmarks of interest for vocal tract area MRI image analysis.
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In their approach, a heat-map is defined as an image with highest intensity values at the exact locations of all the 
considered landmarks and decreasing intensities around as a function of the distance to the nearest landmark. 
The last two layers of each stage are fully connected layers.

Shape fitting by deep-regression. The Shape Fitting Deep-Regression (SFD) method has been proposed recently. 
It combines CNNs with model-based fitting algorithms of the landmark positions such as obtained by Principal 
Component Analysis (PCA)41. The PCA is included in the network using a dedicated layer type. This network 
is characterized by a fast computing performance and can process until several hundreds of frames per second.

Multi-context attention model. The Multi-Context Attention Model (MCAM) method is an extended version 
of the DL stacked hourglass networks42 designed for human pose estimation and body joint localization43. It gener-
ates heat-maps describing the body joint locations by using multiple resolutions, conditional random fields and an 
original layer type combining various convolutional layers together. For training, the ground truth heat-maps are 
generated by 2-D Gaussians centered on the joint locations. The generated heat-maps contain all joint locations 
together and are further split into partial heat-maps for each body joint by means of an extra spatial classifier. 
Since the network is designed to localize 16 body joints, two of these networks are necessary in practice in the 
current study to localize the 21 landmarks.

Heat-map-based methods. Previous methods aim at detecting landmark coordinates from images. One limita-
tion of these approaches come from the different nature of the input and output data. An alternative to overcome 
this is to consider the landmark coordinates as images via heat-maps in output. One of the pioneering attempt 
to implement such approach can be attributed to Pfister et al.32 for landmark coordinate detection for body pose 
estimation.

In this approach, a single landmark is described as a full image, the heat-map, with a maximal intensity on the 
landmark location. Several landmarks can be considered on the same heat-map or can be described as several 
channels of an image (or tensor), leading to the heat-maps in channels (one heat-map per landmark).

Localizing the landmarks on an image consists therefore in generating the associated heat-maps, instead of 
the vectors of the landmarks’ coordinates as for the previous studies. The landmark locations are then straightfor-
wardly derived from the heat-maps as the points with maximal intensity in each channel. This kind of approach 

Figure 1. MRI superimposed with the 21 anatomy landmarks of the study.

Figure 2. Five images of the database illustrating the variability.
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appears particularly appropriate for medical image processing16,17. Note that this concept of heat-map is related to 
the concept of heat-maps mentioned in the DAN and MCAM methods. However, in these methods, the heat-maps 
contain all landmark/joint locations together and are not directly provided as output of the networks.

Practically in using heat-maps in channels, for an input image of size N × N, the network generates L output 
heat-map images (i.e. tensor H ∈ RN×N×L) where the lthheat-map (Hl ∈ RN×N×1) has the maximum intensity value 
at the location of the estimated lth landmark. The normalized target heat-maps are obtained via a Gaussian hat 
with a σ (=10 in our experiment) pixels and a maximum of 1 around each landmark location. Figure 3 shows an 
example of the combination of 3 heat-maps created for 3 landmarks and displayed as the 3 channels of a single 
RGB image. The predicted location of the lth landmark corresponds to the location of the maximum value in the 
lth predicted heat-map:

= = . . .( )x y H x y l L, argmax ( , ), 1, , (1)p p l x y l,

Six methods based on the generation of heat-maps are considered in this section. The first five methods make 
use of the implementation proposed by Payer et al.16 and for which the code is publicly available. Payer et al. inves-
tigate several DL approaches for landmark localization on medical images based on the generation of heat-maps. 
They implement existing networks such as Downsampling-net, ConvOnly-net, and U-net. They also propose a new 
architecture called SpatialConfiguration-net and its extension with embedded U-net16,17. These five methods show 
promising results for localizing diverse landmarks on various biomedical image modalities as mentioned in the 
introduction16,17 (finger landmarks on X-Ray and MRI, cranium landmarks on lateral cephalogram X-Ray and 
spine landmarks on Computer Tomography scans). These methods are briefly described below, please refer to 
the dedicated references16,17 for further details. The last method presented in this section, the pix2pix’s generator 
network covers our own implementation of the concept of heat-maps into the existing pix2pix network.

Downsampling-net. The Downsampling-net (DS-net) methods alternates convolution and pooling layers in 
the network. The downsampling approach ensures covering large image areas with small kernel sizes but poor 
accuracy in localization has to be expected due to the associated low resolution of the resulting heat-maps16. This 
network with its default hyper-parameters did not converge in our experiment.

ConvOnly-net. The ConvOnly-net (conv-net) method aims at overcoming the low resolution of the generated 
heat-maps mentioned above by discarding all pooling and strided convolution layers16. This network results in 
six convolution layers.

U-net. The U-net44 is a well-known architecture for medical image processing, more specifically for segmenta-
tion. The U-net includes convolutional layers with skip connections and pooling layers in an auto-encoder archi-
tecture, making efficient the processing of large images even with small kernel size. The implementation proposed 
by Payer et al.16 and used in this study is a slightly modified version, where for instance the maximum pooling has 
been replaced by an average pooling.

SpatialConfiguration-net. The SpatialConfiguration-net (SCN) method combines interestingly the local 
appearance of the landmarks with their spatial locations in reference to all other landmarks. It consists of three 
blocks. The first block is made of three convolutional layers with small kernel sizes, resulting in local appearance 
heat-maps. The second and third blocks refine the outputs of the first block by considering the spatial configura-
tions and by combining them with the initial outputs to discard the unrealistic results16.

SpatialConfiguration-net with embedded U-net. The SpatialConfiguration-net with embedded U-net 
(SCN(U-net)) method is an extension of the SCN method which embeds a U-net network into the local appear-
ance extraction block16,17.

pix2pix’s generator network. This architecture exploits the generator component of the pix2pix network45, 
referred to in the following as p2p-GN, standing for pix2pix’s generator network. It is based on a hourglass-shaped 
CNN with skip connections. This network is specifically designed to analyze and generate images, hence particu-
larly adapted in our case for the generation of heat-maps from MRI. It has already proved to be very efficient for 

Figure 3. Superposition of 3 heat-maps for 3 different landmarks, represented as the 3 channels of a single RGB 
image (right), and superimposed on the corresponding input MRI image (left).
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such tasks46. In the current study, this network is adapted to generate particular types of images, the heat-maps. 
The loss function as well as the hyper-parameters are those reported by45. Experimental analyses showed that 
this network produces better results when it does not generate more than 3 heat-maps at the same time. For this 
reason the prediction of the 21 heat-maps are split into 7 different networks. The additional number of weights 
resulting from the use of 7 networks in this approach is discussed in section Results.

Proposed network architecture. This section details our own solution to solve the problem. It implements the 
concept of heat-maps-in-channels described in the previous section and proposes a dedicated network for the 
generation of such heat-maps.

Flat-net. The proposed architecture Flat-net is presented in Fig. 4. As indicated by its name, it does not contain 
any pooling, down and up sampling nor fully connected layers but considers various kernel sizes and dilation 
rates. It is designed to explore in the first layers the image at different resolutions, so as to deal with the different 
morphologies, and combine the resulting feature maps in a second step to output the desired heat-maps. In layers 
L1 and L2, convolutional filters of kernel size 9 × 9 are applied consecutively using 5 different dilation rates. The 
generated feature maps are then concatenated in layer L3. It is followed by a convolutional layer of kernel size 
5 × 5 and three consecutive convolutional layers of kernel size 1 × 1. The activation functions for all convolu-
tional layers are Relu, except the last layer (L7) using tanh. The number of filters used for each layer is indicated 
in the Fig. 4. The loss is measured as the mean absolute error between the predicted and the desired heat-maps. 
Since there is no pooling in this architecture, the concatenation of the layer L3 leads to a very large size tensor, 
causing practical memory issues. To solve this problem, similarly to the p2p-GN approach, the prediction of the 
21 heat-maps are split in practice into 5 different networks. Again, the additional number of weights resulting 
from the use of 5 networks in this approach is discussed in section Results.

implementation and evaluation. The 9 × 62 input grayscale images are converted into grayscale RGB 
by simple channel repetition to comply with the input format of the networks. Considering the relatively lim-
ited number of data, the dataset is augmented47 via 10 different arbitrary methods as follows: (1) Addition of a 
Gaussian intensity noise of mean equal to 0 and variance to 12.75, (2) Blurring with a Gaussian of variance σ = 5 
pixels, (3–4) Rotation of +10 and  −5 degrees, (5–6) Translation of (+30, +10) pixels and (+40,  −10) pixels, (7) 
Rotation of  −5 degrees followed translation of (+30, +10) pixels, (8) Zooming out of scale 0.8, (9) Translation 
of (+30, +10) pixels followed by zooming in of scale 1.2, and (10) Translation of (+40, +20) pixels followed by 
zooming out of scale 0.9 plus blurring with a Gaussian of variance σ = 3 pixels. By this method, the dataset is 
artificially augmented from 9 × 62 = 558 to 11 × 9 × 62 = 6138 images.

The errors of prediction of the landmark coordinates are evaluated by means of Euclidean distance and 
Root Mean Squared Error (RMSE). The Euclidean distances are expressed in pixels to comply with the existing 
results in the literature of the domain while the RMSE is expressed in centimeters to provide comprehensive and 
interpretable results for speech analyses purposes. In addition, the percentage of samples (i.e. test images) with 
landmarks presenting distance errors higher than 5 pixels (i.e. outliers), are reported. Moreover, the statistical 
significance of the difference between the means of the distance errors obtained for our methods on the one hand 
and all the other methods on the other hand is evaluated by means of paired t-test.

For the lth landmark, if x y( , )g g l and x y( , )p p l denote respectively the ground-truth and the predicted coordi-
nates, the Euclidean distance dl is calculated as follows:

Figure 4. Architecture of one of the Flat-net networks producing 5 heat-maps corresponding to 5 landmarks.
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d x x y y( ) ( ) (2)l g p l g p l
2 2= − + −

 Using similar notations, the RMSE is calculated as follows:

RMSE
Q

x x y y1 ( ) ( )
(3)q

Q

g p q g p q
1

2 2∑= − + −
=

where Q is the number of considered elements, e.g. all the landmarks of all images, and q is the corresponding 
index.

Most of the landmark localization methods are evaluated in the literature by a hold-out scheme, i.e. by splitting 
the data into train/test sets, for instance 21,997/1,000 for the HyperFace method23, 2,000/330 for the dlib method39 
or 3148/600 for the DAN method24. In the current application, the ultimate objective is however to localize land-
marks on new speakers, i.e. on speakers where no data were available before. To comply both with the literature 
benchmarks and the specificity of the study, the performances are evaluated via two schemes: (1) the randomized 
10-fold cross-validation (CV) and (2) the leave-one-subject-out cross-validation (LoSo). Note in addition that 
5% of the training data in each training session are randomly set aside in advance for validation purposes and 
tracking the learning curves. The learning would stop when the loss curve of the validation set reaches plateau.

In the CV scheme, the augmented dataset is randomly split into 10 groups, 9 being used for training purposes, 
i.e. 5,525 samples (after rounding), and 1 for test purposes, i.e. 613 samples (after rounding). The training and 
evaluation is then repeated 10 times until each single group has been used as the test set. Each sample is therefore 
being used as a test sample at some point during the process. Note that in this evaluation scheme, the train and 
test sets may share data of same subjects and/or of same articulations, making the two sets not completely inde-
pendent. However, in accordance with the literature in the domain, a very large dataset with many more subjects 
and articulations could be perfectly evaluated through this scheme and is therefore considered in this study. 
Above all, this scheme is considered in our evaluation to assess the validity of the hyper-parameters reported by 
the methods for our environment.

In the LoSo scheme, the 62 images of one arbitrary subject are set aside to serve as the test set. The remaining 
images are then augmented, leading to 8 × 62 × 11 = 5, 456 images, and used for the training. In other words, 
the network is not trained with data from the test subject. The training and evaluation is then repeated 9 times 
until each subject has been used as the test set. Each sample is therefore being used as a test sample at some point 
during the process on a model trained on the other subjects. This scheme is much stricter and challenging that the 
CV scheme as the trained network does not contain any information regarding the tested subject. Note however 
that the train and test sets may still share data of same articulations (but not speakers). This point will be revisited 
in the discussion.

The results for the two evaluation schemes are presented in the section Results. All of the hyper-parameters of 
the methods taken from the literature are set to their default values mentioned in their corresponding studies. The 
training machine was made of an Intel Xeon w-2145 (3.70 GHz) CPU and a NVIDIA Tesla P100-SXM2-16GB 
GPU. Except for dlib, all the methods are trained on GPU. All the implementation are available online on GitHub 
(https://github.com/mohaEs  and https://github.com/christianpayer/MedicalDataAugmentationTool).

Results
As noted in the section Methods, one of the 12 methods considered in this study, the DS-net, did not converge. 
For this reason, unless explicitly mentioned, the results cover only the remaining 11 methods. An overall com-
parison of the performances of the eleven methods are provided in Fig. 5 for both the CV and the LoSo schemes. 
It displays in box plots the Euclidean distances between the predicted and true landmark locations. For each box, 
the central mark indicates the median while the bottom and top edges indicate respectively the 25th and 75th per-
centiles. The whiskers extend to the most extreme data points not considered as outliers, the outliers being plotted 
individually using the ‘+’ symbol.

Regarding the CV scheme, all the methods show good accuracy, with boxes below 2.5 pixels, except the 
MCAM method. This might be ascribed to the design of the method, optimized for joint localization and not 
anatomical landmarks as in the current case. Nevertheless, the method still shows decent results, with 75% of the 
distance errors being smaller than 5 pixels. On the other side, the dlib method presents the best results, possibly 
due to its boosting approach.

By attempting to predict landmarks on a subject not used to train the models, the LoSo evaluation scheme is 
more constraining and presents logically deteriorated – but more pertinent – results in comparison to the CV 
evaluation scheme. The results for the HyperFace, DAN, SFD and MCAM methods appear in particular signifi-
cantly deteriorated. On the contrary, the deterioration appears more limited for the other methods and still lead 
to fairly good accuracy, with boxes remaining below 3.5 pixels.

The results in terms of RMSE and per landmark are provided in Fig. 6. It confirms the lower accuracy already 
noted for the LoSo scheme in comparison to the CV scheme. It also shows that the four methods HyperFace, 
DAN, SFD and MCAM estimate in the LoSo scheme many landmarks for more than 50% of the images with an 
error larger than 0.5 cm (5 pixels), rather problematic for speech production studies. The conv-net, U-net, SCN 
and SCN(U-net) methods display decent results in general but present serious errors on the PL and ET land-
marks. On the contrary, the three methods dlib, p2p-GN and Flat-net still show acceptable results, with almost all 
landmarks for more than 70% of the images having an error lower than 0.5 cm. For these methods, the landmark 
EG is the most challenging one. It means that our method, the Flat-net, performs at least as good as the two best 
methods taken from the literature, namely the dlib and p2p-GN methods. They provide fairly good results in the 
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LoSo scheme despite the limited dataset. The other methods do not appear suitable to handle satisfactorily the 
data and problem presented in this study. A larger dataset with significantly more subjects and articulations might 
solve this issue.

A summary of the results and characteristics of the twelve methods of the study is reported in Table 2. Note 
that the storage space is reported for information but does not play in our eyes a critical role. Moreover, it depends 
on the data format and of the extent of meta-data stored. Also, the training time depends on the learning rate, 
the type of optimizer and the deep learning framework (Pytorh vs. Tensorflow, etc.). In overall, the best results 
in LoSo scheme are reported for our method, the Flat-net method, with a RMSE of 0.36 cm, slightly better than 
for the dlib (0.39) and p2p-GN (0.41) methods. Among all methods, the DL-based methods require significantly 
more training time and storage space. The p2p-GN method in particular has the largest number of weights to train 
and requires the largest space for storage. The dlib method is on the contrary rapidly trained, even on CPU, and 
requires the smallest space for storage.

The results of the t-tests conducted between the distance errors obtained by our method, the Flat-net method, 
also presenting interestingly the best performance, and the errors obtained by the other methods are presented in 
Table 3. It confirms a statistical significance between the means of the distance errors, all of them obtained with  
p = 0.000 except p < 0.04 for the SCN method.

The overall RMSEs per subject in LoSo scheme for the eleven methods considered in the results are displayed 
in Fig. 7. The p2p-GN and Flat-net methods tend to show more homogeneous and lower errors across subjects, 
suggesting that they are the two more accurate and robust methods to predict the landmarks for new and unseen 
subjects. Finally, some examples of practical results for the three best and the two worst methods are illustrated 
in Fig. 8.

Discussion
The present paper described an original method to localize anatomical landmarks of the vocal tract area on 
MRI images and compared its performance to 11 state-of-the-art methods of the literature. A dataset of mid-
sagittal MRI from 9 speakers sustaining 62 articulations and annotated with the location of 21 landmarks has 
been considered. The methods have been evaluated through two schemes, a randomized 10-fold scheme and a 
leave-one-speaker-out scheme, considered as more challenging. Experimental results show the ability of all meth-
ods to cope with the problem in the 10-fold scheme but divergence of performance appear in the more challeng-
ing leave-one-speaker-out scheme. In general, our method, the Flat-net method, outperforms the other methods 
to solve the specific problem of the study and is only approached by two other methods, namely dlib and p2p-GN. 
Interestingly, these two methods include the only method not based on DL (dlib) as well as the method that has 
been adapted the most to fit at best our problem (p2p-GN). Note also that the heat-map-based methods present 
in general significantly better results than the other methods, supporting this approach to tackle the problem of 
landmark localization on medical images. This approach leads to networks without fully connected layers, usually 

Figure 5. Box plots of the overall Euclidean distances between the predicted and true landmark locations for 
the 11 methods considered in the results, for the CV (top) and LoSo (bottom) evaluation schemes. Note the 
y-axis scale, linear in two steps to zoom in the 0–10 pixels range.

https://doi.org/10.1038/s41598-020-58103-6


9Scientific RepoRtS |         (2020) 10:1468  | https://doi.org/10.1038/s41598-020-58103-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

used to transform the feature maps into vectors of landmark locations in output. This may result in an architec-
ture possibly less prone to error propagation, especially for such a limited dataset. Indeed, although heat-maps 
are also somehow part of the DAN and MCAM methods, the design in channels together with the use of adapted 
networks able to output directly these heat-maps proved successful for all the other methods.

The good performance of the dlib method might be ascribed to the use of the boosting approach combined 
with the analysis of the input image in small regions by applying windows, possibly reducing the sensitivity to the 
variability of other regions of the image. In overall, our Flat-net method, the only method entirely developed in 
this study, tends to be more robust and to present better performances. One could object that the better perfor-
mance of the Flat-net network may simply come from its hyper-parameters optimized for the current problem. 
The results obtained in the CV evaluation scheme suggest however that all eleven methods considered in the 
results – except the MCAM method to a certain extent – can perform the task with success, discarding this objec-
tion. These results support the approach using heat-maps in channels and networks without fully connects layers 
to localize landmarks of the vocal tract area on MRI data.

Figure 6. RMSE and percentage of samples with errors higher than 5 mm for the 11 methods considered in 
the results for the CV scheme (top) and the LoSo scheme (bottom). (Left) RMSE matrix for each landmark. 
(Middle) Matrix of the percentage of samples with errors >5 mm for each landmark. (Right) Overall RMSEs 
and percentages.

RMSE in 
CV (cm)

RMSE 
in LoSo 
(cm)

Distance error 
in CV (pixels)

Distance 
error in LoSo 
(pixels)

Number of 
weights

Number of 
epochs

Training 
time (min)

Storage 
space 
(MB)

dlib 0.08 0.41 0.59  ±  0.59 2.94  ±  2.74 — — 55 (cpu) 45

HyperFace 0.18 0.96 1.49  ±  0.99 8.02  ±  4.91 35,168,006 200 50 402

DAN 0.19 0.69 1.66  ±  0.91 5.81  ±  3.53 2  ×  23,104,092 2  ×  120 2 × 130 2 × 280

SFD 0.36 0.64 2.85  ±  2.21 5.23  ±  3.51 6,248,029 150 — 25

MCAM 0.45 0.96 3.96  ±  1.96 8.47  ±  4.18 14,500,480 60 150 210

DS-net — — — — 2,056,741 — — 16

conv-net 0.18 0.65 1.39  ±  1.14 3.34  ±  5.47 9,933,349 40 117 78

U-net 0.17 0.91 1.29  ±  1.17 3.07  ±  8.38 2,662,181 80 198 21

SCN 0.20 0.54 1.52  ±  1.38 2.66  ±  4.61 1,240,958 100 225 10

SCN(U-net) 0.19 0.73 1.51  ±  1.21 2.92  ±  6.55 3,718,602 60 175 30

p2p-GN 0.12 0.39 0.89  ±  0.85 2.93  ±  2.51 7 × 54,420,483 7  ×  60 7 × 55 7 × 440

Flat-net 0.16 0.36 1.12  ±  1.13 2.39  ±  2.47 5  ×  2,958,533 5 × 30 5 × 88 5 × 34

Table 2. Summary of the results and characteristics of the twelve methods of the study. The lowest occurrence 
for the four left columns is emphasized in bold. The sign ‘—’ means that the information is not relevant or not 
available. Remember that the DS-net method did not converge in our study.

dlib HyperFace DAN SFD MCAM Conv-net U-net SCN SCN (U-net) p2p-GN

CV 0 2.2e-150 0 0 0 2.1e-72 1.7e-29 3.6e-125 5.3e-137 5.5e-70

LoSo 9.1e-28 0 0 0 0 5.3e-44 3.9e-10 0.037 4.6e-08 1.7e-28

Table 3. p-values of paired t-tests for distance errors between the Flat-net and the remaining 10 methods 
considered in the results for the CV and LoSo schemes.
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Regarding the localization of the landmarks, the overall RMSEs in LoSo scheme for the three best methods 
identified above and for a subset of 13 out of 21 landmarks are displayed in Fig. 9: the 11 landmarks mentioned in 
the section Methods plus the landmarks N on the one hand and NM and EG on the other hand, presenting respec-
tively the best and worst results. Note that these results are a zoom of the results presented in Fig. 6a. All these land-
marks are more accurately located by the Flat-net method, occasionally at the same precision than other methods. 
Except for NM, PL and EG, the RMSEs stay below 0.35 cm, a fairly good result considering the challenge associated 
with these landmarks and comparable to the overall RMSE achieved by the method. The landmarks UT and LT 
in particular, not visible on MRI and giving many problems in articulatory speech studies48, are estimated with 
a respective accuracy of 0.25 cm and 0.3 cm for new speakers without additional a priori information. Similarly, 

Figure 7. Bar plots of the overall RMSEs per tested subject in LoSo scheme for the 11 methods considered in 
the results.

Figure 8. MRI images of three different subjects and articulations zoomed in the region of the vocal tract and 
superimposed with the 21 ground truth (green crosses) and predicted (red crosses) landmarks for the best three 
methods (dlib, p2p-GN and Flat-net) and the two worst methods (HyperFace and MCAM) reported for the LoSo 
scheme. The first test image is also presented with results of the CV scheme.
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the landmark TS, important for speech articulations and challenging to identify49, is estimated with a precision of 
0.25 cm. This emphasizes the robustness of the chosen approach through deep learning and the potential of these 
results for speech studies. The worst results are achieved for the landmarks NM, outside the range of the vocal 
tract area, and EG and PL, in the larynx area. Although the larynx plays an important role in speech production, it 
remains at the margin of the vocal tract area and does not play a central role in articulatory speech studies3.

It should also be noted that some landmarks do not exhibit very salient characteristics, such as the junctions 
between the wet and dry vermillion of the lips (ULV and LLV) or the sublingual cavity posterior point (TS) 
when the tip of the tongue is in a low position. Similarly, some regions tend to be hardly interpretable in terms of 
anatomy, such the anterior part of the larynx associated with the landmark EG. Annotating manually their exact 
location on the images was a challenging task at the first point, questioning the quality of the ground-truth data 
and possibly explaining the lower accuracy achieved for EG. Furthermore, a detailed analysis of the results such 
as presented in Fig. 8 reveals that the location of some landmarks may appear occasionally more accurate in out-
put of the presented methods than in the original so-called ground-truth. This is a well known effect of machine 
learning methods, and DL methods in particular, which tend to avoid encoding noise and outliers by means of 
regularization techniques50,51. In general, a larger dataset labelled by several experts may limit the impact of the 
uncertainties in the ground-truth data and reinforce the robustness the DL methods and their resistance to noise.

The methods have been evaluated by means of two schemes, the CV and LoSo schemes. Strictly 
speaking, the most rigorous scheme would have been to leave both subject and articulation out, i.e. 
leave-one-subject-one-class-out (LoSoCo), to ensure that the network does not contain any information regard-
ing the new tested image. In this scheme, all the articulations of one subject and one specific articulation for all 
subjects would be discarded in the training and the same specific articulation of the left subject would be tested. 
This would lead to 62 × 9 = 558 training sessions for each of the twelve methods. According to the times reported 
in Table 2, it would take more than a year, making this evaluation unrealistic in practice. However, the challenge 
of the problem lies rather in the estimation of the landmark locations for a new speaker than for a new articu-
lation. Indeed, the corpus of 62 articulations can be considered large enough and representative of the French 
phonemic repertoire so that one articulation could fairly well be estimated from the 61 others3. For this reason, 
the LoSo scheme appears as a valid approximation to evaluate the methods on our problem.

In summary, the method proposed in this study (Flat-net) outperforms the state-of-the-art methods. It 
supports the description of landmarks locations in terms of heat-maps in channels and the generation of these 
heat-maps by means of DL networks without fully connected layers for such a variable and limited dataset. Future 
works may include the combination of successful features from the dlib method, showing very promising results, 
with DL approaches to create more robust methods, such as for instance the methods using deep forest net-
works52,53. In addition, since the accuracy of the heat-map-based methods for all landmarks are not same, it seems 
reasonable to combine them to form so-called machine learning ensemble methods. For example, the p2p-GN 
and Flat-net methods present good accuracy for the landmarks ET, PL, TE and TS but not for the landmarks EG 
and NPX while on the contrary the SCN method presents good accuracy for the landmarks EG and NPX but not 
for the landmarks ET, PL, TE and TS. Combining these methods to take advantage of their relative assets may 
therefore lead to higher accuracy in the localization of vocal tract area landmarks from MRI data together with 
more robustness. Furthermore, considering the recent rise of real-time MRI for speech production studies12, the 
next steps will be to adapt this technique to real-time MRI data.

Data availability
The source codes of the methods are available at https://github.com/mohaEs. The trained models are available 
from the author A.S. on reasonable request. Authors have not a permission to share the data.
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