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Baseline vs. cross-sectional MRi of 
concussion: distinct brain patterns 
in white matter and cerebral blood 
flow
nathan W. churchill1,2*, Michael G. Hutchison1,2,3, Simon J. Graham4,5 & tom A. Schweizer1,2,6

neuroimaging has been used to describe the pathophysiology of sport-related concussion during early 
injury, with effects that may persist beyond medical clearance to return-to-play (RTP). However, studies 
are typically cross-sectional, comparing groups of concussed and uninjured athletes. It is important 
to determine whether these findings are consistent with longitudinal change at the individual level, 
relative to their own pre-injury baseline. A cohort of n = 123 university-level athletes were scanned with 
magnetic resonance imaging (MRI). Of this group, N = 12 acquired a concussion and were re-scanned 
at early symptomatic injury and at Rtp. A sub-group of n = 44 uninjured athletes were also re-imaged, 
providing a normative reference group. Among concussed athletes, abnormalities were identified for 
white matter fractional anisotropy and mean diffusivity, along with grey matter cerebral blood flow, 
using both cross-sectional (CS) and longitudinal (LNG) approaches. The spatial patterns of abnormality 
for CS and LNG were distinct, with median fractional overlap below 0.10 and significant differences 
in the percentage of abnormal voxels. However, the analysis methods did not differ in the amount of 
change from symptomatic injury to Rtp and in the direction of observed abnormalities. these results 
highlight the impact of using pre-injury baseline data when evaluating concussion-related brain 
abnormalities at the individual level.

Concussion in sport and recreation is a significant health concern, with an estimated 3.8 million occurring every 
year in North America1 and growing evidence of potential long-term health consequences2. At present, symptom 
status, brief cognitive screening, and balance assessments form the cornerstones of concussion management in 
sport and recreation3. Diagnosis is mainly based on an observed mechanism of injury and behavioural manifes-
tations; safe return to play (RTP) is subsequently determined based on symptom resolution and the completion 
of a graded exercise protocol3. Although the clinical features of concussion have been well-characterized4–7, these 
assessments only indirectly reflect the underlying brain injury and recovery process, which remain incompletely 
understood in humans.

Advanced magnetic resonance imaging (MRI) has been used to describe the pathophysiology of concus-
sion and to determine whether recovery persists beyond medical clearance to RTP8,9. Diffusion tensor imaging 
(DTI) has been widely used to assess altered white matter microstructure among concussed athletes10–14. In addi-
tion, arterial spin labelling (ASL) has been increasingly used to evaluate changes in cerebral blood flow which 
occur after a concussion, particularly during the early symptomatic phase of injury14–17. Despite the rapid pace of 
research, however, consensus guidelines do not yet consider these tools to be sufficiently mature to inform clinical 
practise3.

One barrier to clinical relevance is the limited amount of prospective, subject-specific neuroimaging data, 
with the majority of MRI literature comparing groups of concussed and uninjured athletes9. Our present under-
standing of concussion pathophysiology, and whether the brain is recovered at RTP, is therefore mainly based 

1Neuroscience Research Program, St. Michael’s Hospital, Toronto ON, M5B 1M8, Canada. 2Keenan Research Centre 
for Biomedical Science of St. Michael’s Hospital, Toronto ON, M5B 1M8, Canada. 3Faculty of Kinesiology and Physical 
Education, University of Toronto, Toronto ON, M5S 2C9, Canada. 4Department of Medical Biophysics, University of 
Toronto, Toronto ON, M5G 1L7, Canada. 5Sunnybrook Research Institute, Sunnybrook Hospital, Toronto ON, M4N 
3M5, Canada. 6Faculty of Medicine (Neurosurgery), University of Toronto, Toronto ON, M5T 1P5, Canada. *email: 
nchurchill.research@gmail.com

open

https://doi.org/10.1038/s41598-020-58073-9
mailto:nchurchill.research@gmail.com


2Scientific RepoRtS |         (2020) 10:1643  | https://doi.org/10.1038/s41598-020-58073-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

on the assumptions that (1) the uninjured group is representative of the pre-injury brains of concussed athletes 
and (2) group means provide an effective summary of concussion effects at the individual level. However, MRI 
studies have reported significant baseline variations in brain physiology between individuals17–20, and both neu-
roimaging21 and clinical studies22 have reported significant inter-individual variability in acute presentation and 
the timeline of recovery. Therefore, it is imperative to also investigate the effects of concussion at the individual 
level, relative to athletes’ own pre-injury brains. While there is a growing literature base examining concussion 
effects at the individual level23,24, including emerging results with pre-injury baseline data25–27, this remains an 
under-studied area of research. It is as of yet unclear whether concussion-related abnormalities identified in lon-
gitudinal analysis relative to baseline imaging are distinct from those identified in cross-sectional comparisons 
to uninjured cohorts.

The present study investigated this issue, by imaging a large cohort of athletes at the start of their athletic 
season, using DTI and ASL. Athletes that had sustained a concussion during sport participation were re-imaged, 
both at the early symptomatic phase of injury (SYM) and at RTP. As a normative reference, a group of athletic 
controls (i.e., athletes that did not sustain a concussion) were also re-scanned at the end of their competitive 
season. The study compared brain abnormalities detected at the individual subject level using a cross-sectional 
analysis approach (i.e., comparing the brains of concussed athletes, relative to brains of athletic controls) and 
using a longitudinal analysis approach (i.e., comparing the brain changes of concussed athletes from baseline to 
post-injury, relative to longitudinal changes of athletic controls). It was hypothesized that longitudinal analyses 
would detect concussion-related brain abnormalities that are distinct from cross-sectional analyses, both at SYM 
and RTP.

Results
Demographics and clinical data. A total of 123 athletes were imaged prior to the start of their competi-
tive season. From this group, 12 athletes (10% of the cohort) sustained a concussion over the course of the study 
(median and [Q1, Q3]: 85 [15, 217] days from baseline imaging). They were re-imaged at both SYM (4 [3, 6] 
days post-concussion) and RTP (38 [17, 97] days post-concussion), with N = 10 for DTI and N = 11 for ASL 
(symptomatic) and N = 11 for DTI and N = 12 for ASL (RTP). Athlete symptoms were assessed using the sport 
concussion assessment tool (SCAT), at baseline and both post-concussion timepoints. In addition, a group of 
44 athletic controls, drawn from the remaining athletes that did not sustain a concussion, were re-imaged at the 
end of their athletic season. This group provided normative data for identifying brain abnormalities of concussed 
athletes, both cross-sectionally and longitudinally.

Table 1 summarizes the cohort demographics. The concussed athletes had elevated SCAT symptom sever-
ity and total symptoms while symptomatic, relative to their baseline (p = 0.008 and p = 0.013 respectively, 
non-parametric paired Wilcoxon tests), whereas at RTP, symptom severity and total symptoms were no longer 
elevated relative to their baseline (p = 0.490 and p = 0.474, respectively). Baseline symptom severity for the N = 12 
concussed athletes was also shown to be comparable to the athletic control group (p = 0.452 and p = 0.490, 
2-sample Wilcoxon tests). For the concussed athletes at baseline, 4 had prior concussion (N = 2 had one previous 
concussion and N = 2 had 2 previous concussions; all were sustained between 12 and 49 months prior to baseline 
imaging). Table 2 summarizes athlete numbers by sport for the complete athletic cohort, the normative subset and 
the concussed athletes. All groups consisted of a mixture of different sport types, including non-contact, limited 
contact and collision28.

neuroimaging data: normative group. For all athletes, DTI was used to measure the fractional ani-
sotropy (FA) and mean diffusivity (MD) within white matter tracts and ASL was used to quantify cerebral 
blood flow (CBF) of grey matter tissue. For the group of 44 athletic controls, Fig. 1 plots distribution statistics 
for cross-sectional (CS) pre-season baseline data, as well as the longitudinal (LNG) changes from baseline to 
post-season. For athletic control CS data, the coefficient of variation was measured over baseline scan values 
at each voxel, and summarized by the median and [Q1, Q3] over voxels, for FA (0.0586, [0.0468, 0.0766]), MD 
(0.0423, [0.0324, 0.0664]) and CBF (0.443, [0.368, 0.562]). For athletic control LNG data, coefficients of variation 
over longitudinal change values were substantially higher, for FA (7.47, [4.37, 15.81]), MD (2.26, [1.63, 3.88]) and 
CBF (2.99, [2.27, 4.27]). The longitudinal median percent signal change relative to baseline was also measured at 
each voxel and was summarized by the median and [Q1, Q3] over voxels, for FA (−0.12%, [−0.55%, 0.33%]), MD 
(1.41%, [0.76%, 2.02%]) and CBF (−1.87% [−2.55%, −1.32%]).

All baselines Control group

Concussed

Baseline Symptomatic RTP

Age 20.3 + −2.0 20.0 + −1.8 20.3 + −1.5 — —

Female 61/123 (50%) 24/44 (55%) 5/12 (42%) — —

previous concussion 57/123 (46%) 18/44 (31%) 4/12 (33%) — —

SCAT total symptoms 2 [0 5] 2 [1 4] 2 [1 7] 5 [4 14] 0 [0 2]

SCAT symptom severity 2 [0 7] 2 [1 6] 2 [1 17] 5 [5 35] 0 [0 3]

Table 1. Participant demographics. Age is reported as mean ± standard deviation. Clinical statistics are based 
on the Sport Concussion Assessment Tool (SCAT) and reported as median and [Q1, Q3]. Results are reported 
for a total of N = 12 subjects, however scanning N = 10 for DTI and N = 11 for ASL (symptomatic) and N = 11 
for DTI and N = 12 for ASL (RTP).
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neuroimaging data: concussed athletes. Brain abnormalities were identified for concussed athletes 
using both the CS and LNG analysis methods. For CS, a normative distribution was fit to athletic control baseline 
scan data at each voxel; for concussed athlete brain maps, significantly abnormal voxels were then identified at a 
False Discovery Rate (FDR) of 0.05. For LNG, a normative distribution was fit to athletic control brain changes 
(post-season – baseline) at each voxel; for concussed athlete brain maps of change (post-injury – baseline), sig-
nificantly abnormal voxels were then identified at an FDR of 0.05. In both cases, the normative distributions were 
obtained using a robust kernel density estimator to minimize distributional assumptions. In Fig. 2, selected slices 
of the thresholded abnormality maps are shown for each concussed athlete, at both SYM and RTP time points. In 
general, the concussed athletes exhibited a high degree of variability in both the localization and spatial extent of 
brain abnormalities. Moreover, when comparing the CS (red) and LNG (blue) abnormality maps within subjects, 
there was often limited spatial overlap (purple) between the analyses.

The similarity of CS and LNG thresholded abnormality maps was evaluated for each subject and 
post-concussion time point using the Jaccard index, which measures fractional overlap and ranges from 0 (no 
overlap) to 1 (perfect overlap). As shown in Fig. 3A, the analyses tended to identify distinct spatial patterns of 
brain abnormalities, as all MRI parameters had median overlap values that were below 0.10. In addition, no dif-
ferences were seen in the overlap between analysis approaches for SYM and RTP time points (p ≥ 0.074 for all 

All baselines Control group Concussed

Volleyball (13 M, 12 F) Volleyball (3 M, 1 F) Volleyball (1 F)

Ice hockey (17 M) Ice hockey (6 M) Ice hockey (4 M)

Field hockey (24 F) Field hockey (13 F) Field hockey (1 F)

Soccer (10 M, 7 F) Soccer (2 M, 3 F) Football (2 M)

Football (9 M) Football (4 M) Rugby (1 M, 2 F)

Rugby (3 M, 9 F) Rugby (1 M, 1 F) Basketball (1 F)

Basketball (7 F) Basketball (4 F)

Lacrosse (9 M, 2 F) Lacrosse (4 M, 2 F)

Water polo (1 M)

Table 2. Athlete numbers by sport, for both male (M) and female (F) groups.

Figure 1. Normative data from the 44 athletic controls used to perform cross-sectional (CS) and longitudinal 
(LNG) analyses, including voxel-wise median and interquartile range (IQR). The CS maps are from baseline 
MRI parameter values and LNG maps are from the longitudinal changes in MRI parameter values from pre-
season to post-season. Representative slices are shown for DTI data (x = + 0, z = + 18) and ASL data (x = + 0, 
z = + 0). The plots show expected normative ranges of variability for all MRI parameters.
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Figure 2. Areas of significant abnormality for individual concussed athletes, at the early symptomatic phase 
of injury (SYM) and medical clearance to return-to-play (RTP). A single representative axial slice is displayed 
per athlete, chosen to have greatest number of abnormal voxels, averaged over both analyses and time points 
(reported in Montreal Neurological Institute (MNI) space coordinates). No FA or MD results are shown for 
athlete #1 (SYM and RTP) due to missing baseline data, and no FA, MD or CBF results are shown for athlete #3 
(SYM) as they could not be scanned during the symptomatic phase. Plots show variability of individual level 
abnormality maps, across subjects, analysis approaches and time points.

Figure 3. Fractional overlap of thresholded abnormality maps (False Discovery Rate = 0.05). This includes (A) 
comparison of cross-sectional (CS) and longitudinal (LNG) abnormality maps obtained at each time point, 
and (B) comparison of maps obtained at early symptomatic (SYM) and at return to play (RTP) time points 
obtained using both analysis approaches. Circles represent individual subject values and grey boxes denote the 
distribution quartiles. Relatively low spatial overlap is observed between CS and LNG models and between SYM 
and RTP time points, for all MRI parameters.
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MRI parameters, paired Wilcoxon tests), therefore pooled statistics are reported. The overlap values were lowest 
for FA (0.007, [0.004, 0.015]), while MD had intermediate values (0.020, [0.011, 0.042]) and CBF had the highest 
values (0.120, [0.030, 0.156]).

The Jaccard index was also used to evaluate the similarity of thresholded abnormality maps identified at SYM 
and RTP time points, for each subject and analysis method. As depicted in Fig. 3B, the two time points identified 
substantially different spatial patterns of abnormalities, as all MRI parameters had median values below 0.20. 
No differences were seen in the overlap between time points for CS and LNG analyses (p ≥ 0.106 for all MRI 
parameters), therefore pooled statistics are reported in text. Overlap was highest for FA (0.212, [0.095, 0.246]), 
followed by MD (0.095, [0.071, 0.261]) and CBF had the lowest values (0.067, [0.033, 0.147]). For both CS and 
LNG analyses, the amount of spatial overlap between time points was not significantly correlated with the time 
interval between scans (|ρ| ≤ 0.293 and p ≥ 0.400 for all analyses).

Subsequent analyses compared the extent of abnormal voxels for CS and LNG analyses, at both SYM and 
RTP time points. Table 3 reports the percentage of significantly abnormal voxels for each MRI parameter, with 
the effects of analysis method and time point evaluated within a generalized linear mixed effects model. The 
LNG approach identified a higher percentage of abnormal voxels than CS for FA (t(39) = 3.23; p = 0.002) and 
MD (t(39) = 2.41; p = 0.021) but not for CBF (t(43) = 0.70; p = 0.48), whereas there were no significant differences 
between SYM and RTP (p ≥ 0.335 for all MRI parameters). For LNG analyses, the percentage of abnormal voxels 
was not significantly correlated with time from baseline imaging (|ρ| < 0.360 and p ≥ 0.307 for all MRI parame-
ters). Additional analyses of pre-injury baseline data using the CS approach also identified abnormal voxels prior 
to injury, for FA (0.43%, [0.17%, 1.71%]), MD (0.34%, [0.13%, 0.58%]) and CBF (1.26%, [0.70%, 4.79%]), with 
percentages that were not significantly different from acute injury (p ≥ 0.361 for all MRI parameters).

Table 4 reports the fraction of abnormal voxels that had “positive” abnormalities for each MRI parameter (i.e., 
values that were high relative to athletic controls; the remainder were low relative to athletic controls). There were 
no significant differences between CS and LNG analyses (p ≥ 0.095, for all MRI parameters) and FA showed no 
significant changes from SYM to RTP (t(39) = −0.61; p = 0.547). Conversely, MD showed a significant longitudinal 
increase (t(39) = 2.20; p = 0.034) and CBF showed a significant longitudinal decrease (t(43) = −2.62; p = 0.012) in 
positive abnormalities. For LNG analyses, the fraction of positive abnormalities was not significantly correlated 
with time from baseline imaging (|ρ| < 0.450, p > 0.192). Additional analyses of the pre-injury baseline data using 
the CS approach found values intermediate between SYM and RTP for FA (0.316, [0.052, 0.876]) and CBF (0.627 
[0.267, 0.782]), whereas MD had values lower than both SYM and RTP (0.546, [0.181, 0.713]), although not sig-
nificantly different from acute injury (p ≥ 0.054 for all MRI parameters).

neuroimaging data: spatial localization. Although this study focused on individual subject 
concussion-related abnormalities, supplemental analyses identified the brain regions most consistently exhibit-
ing abnormalities. Figure 4 depicts the frequency that brain abnormalities are identified within each brain region, 
summed over all subjects and both post-concussion time points. For FA, abnormalities were most consistently 
seen across both analyses in the right posterior thalamic radiation, with 11 for CS (CS-SYM: 6, CS-RTP: 5) and 8 
for LNG (LNG-SYM: 4, LNG-RTP: 4); along with the right anterior corona radiata, with 14 for CS (CS-SYM: 7, 
CS-RTP: 7) and 5 for LNG (LNG-SYM: 1, LNG-RTP: 4). For MD, abnormalities were most consistently in the left 
superior corona radiata, with 10 for CS (CS-SYM: 4, CS-RTP: 6) and 10 for LNG (LNG-SYM: 5, LNG-RTP: 5); 
along with the genu of the corpus callosum, with 12 for CS (CS-SYM: 5, CS-RTP: 7) and 5 for LNG (LNG-SYM: 
2, LNG-RTP: 3). For CBF, frequencies of abnormalities were highest and were most consistently identified in 
the right middle temporal gyrus, with 21 for CS (CS-SYM: 10, CS-RTP: 11) and 19 for LNG (LNG-SYM: 8, 

FA MD CBF

CS-SYM 0.30% [0.21, 0.68]% 0.49% [0.19, 1.26]% 2.48% [0.60, 5.98]%

CS-RTP 0.36% [0.27, 0.76]% 0.46% [0.29, 0.81]% 1.45% [0.69, 5.58]%

LNG-SYM 1.06% [0.25, 2.21]% 0.46% [0.24, 1.10]% 1.88% [1.32, 6.22]%

LNG-RTP 0.98% [0.52, 1.88]% 1.16% [0.31, 1.73]% 1.54% [1.06, 3.40]%

Table 3. The percentage of brain voxels that are identified as abnormal. Values are reported as median and 
[Q1, Q3] for both cross-sectional (CS) and longitudinal (LNG) analyses, at both early symptomatic (SYM) and 
return to play (RTP) time points.

FA MD CBF

CS-SYM 0.469 [0.075, 0.865] 0.689 [0.096, 0.882] 0.790 [0.450, 0.967]

CS-RTP 0.256 [0.050, 0.738] 0.900 [0.582, 1.00] 0.203 [0.053, 0.885]

LNG-SYM 0.630 [0.375, 0.947] 0.378 [0.121, 0.651] 0.862 [0.473, 0.984]

LNG-RTP 0.609 [0.371, 0.785] 0.696 [0.268, 0.914] 0.312 [0.100, 0.712]

Table 4. The fraction of abnormal voxels that have “positive” abnormalities (i.e., values higher than controls; 
the remaining abnormal voxels are lower than controls). Values are reported as median and [Q1, Q3] for both 
cross-sectional (CS) and longitudinal (LNG) analyses, at both early symptomatic (SYM) and return to play 
(RTP) time points.
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LNG-RTP: 11); along with the left middle temporal gyrus, with 19 for CS (CS-SYM: 9, CS-RTP: 10) and 15 for 
LNG (LNG-SYM: 7, LNG-RTP: 8). The concordance of the CS and LNG frequency maps was also evaluated for 
each MRI parameter, by measuring the Spearman correlation between regional frequency values (along with 
the bootstrapped 95% confidence interval). Moderately high concordance was observed for FA (0.486, [0.113, 
0.526]), lower concordance was seen for MD (0.363, [0.058, 0.449]) and relatively high concordance was seen for 
CBF (0.793, [0.568, 0.773]).

Neuroimaging data: threshold effects. A second set of supplemental analyses determined whether the 
primary findings of this study (i.e., low overlap between CS and LNG methods) were dependent on the choice 
of threshold. Figure 5 plots the median overlap between CS and LNG, for both SYM (red) and RTP (curve) time 
points, under different thresholding schemes. The left column plotted results for a range of FDR thresholds, the 
middle column plotted results for a range of uncorrected p-value thresholds, and the right column plotted results 
for a range of percentile thresholds. Across all thresholding schemes, the overlap remained relatively low. In 
general, FDR results were unaffected by choice of threshold, whereas p-value and percentile methods produced 
increased overlap under more liberal thresholds, but the median fractional overlap did not exceed 0.15 for any of 
the studied MRI parameters.

Figure 4. Heat maps showing brain regions most consistently exhibiting abnormalities for both cross-
sectional (CS) and longitudinal (LNG) analyses. Maps depict the total number of analyses showing a significant 
abnormality at each brain region, summed over all participants and both imaging time points (both early 
symptomatic injury (SYM) and return to play (RTP)). Brain regions are segmented for FA and MD based on the 
John Hopkins University (JHU) white matter atlas and for CBF based on the automated anatomical labelling 
(AAL) atlas. Brain abnormalities are most prevalent in right posterior thalamic radiation and anterior corona 
radiata (FA); left superior corona radiata genu of the corpus callosum (MD); and bilateral middle temporal gyri 
(CBF).
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Discussion
In this multi-modal MRI study, concussion-related brain abnormalities were examined at the individual sub-
ject level, as this remains an understudied area of research. The focus of this study was on whether analyses of 
longitudinal change post-injury relative to pre-injury baseline (LNG) identified substantially different concus-
sion effects than cross-sectional analyses of post-injury data (CS). This was evaluated for multiple different MRI 
measures (FA, MD and CBF), at the early symptomatic phase of injury (SYM) and following medical clearance 
to return to play (RTP). The primary study finding was that CS and LNG analyses identified distinct patterns of 
post-concussion brain abnormalities, indicating that the localization of concussion effects at the individual level 
is highly dependent on the choice of normative reference.

The primary findings were quantified in terms of Jaccard overlap between thresholded abnormality maps for 
CS and LNG analyses. Although individual subjects exhibited variable overlap values, the median for all MRI 
parameters was below 0.10. In addition, for DTI measures, the LNG analyses tended to identify a higher percent-
age of abnormal voxels compared to CS analyses. However, CS and LNG analyses were not significantly different 
in the amount of overlap between SYM and RTP time points, or the fraction of abnormal voxels with “positive” 
abnormalities. This suggests that the two approaches may have similar sensitivity for some aspects of concussion, 
and the differences are mainly in the specific brain regions identified. Comparing MRI parameters, CBF maps 
had the highest overlap between CS and LNG analyses, suggesting that it may be least influenced by baseline 

Figure 5. Jaccard overlap of thresholded cross-sectional (CS) and longitudinal (LNG) abnormality maps at 
both early symptomatic injury (SYM; red) and at return to play (RTP; blue), for different thresholding schemes. 
Solid lines denote median values, with interquartile error bars. This includes False Discovery Rate (FDR) 
thresholding, uncorrected p-values and a fixed percentile threshold. Low overlap is consistently observed 
between CS and LNG, for all thresholding approaches.
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differences, which is consistent with FA and MD being intrinsic markers of neuroanatomy that exhibit significant, 
reliable differences between individuals29.

In interpreting the spatial overlap results, baseline imaging may provide a more robust reference, as it con-
trols for sources of pre-injury brain variability, which include demographic factors of age, sex and concussion 
history17–20, along with more complex genetic contributions30,31. However, the LNG design also comes with some 
limitations, as the interval between scans for athletic controls includes more season play than for concussed 
athletes. In this time, there may be additional longitudinal changes driven by physical exertion32, exposure to 
sub-concussive impacts in contact/collision sports33–35 and other factors including differences in psychological 
stress36,37, which may influence estimates of normative variability. However, correlation analyses failed to find a 
significant association between time since baseline imaging and the extent or direction of brain abnormalities, 
suggesting a limited impact on the present study findings.

Other issues of demographic matching may affect both CS and LNG analyses; brain function and structure 
show systematic differences associated with age, sex, history of concussion and participation in contact/colli-
sion sports17,33,35,38–40, leading to potential biases (positive or negative) in the detection of brain abnormalities. 
However, this study evaluated overlap for a range of different thresholding approaches, which confirms that dif-
ferences between CS and LNG analyses are not driven by differences in sensitivity. Potential biases in the LNG 
design may be quantified in future studies, by imaging athletic controls at multiple points throughout their com-
petitive season and evaluating the effect of time on the detection of concussion-related abnormalities. Future 
work should also examine whether improved demographic matching of normative cohorts significantly affects 
the results of CS and LNG analyses.

This study also examined the evolution of brain abnormalities from SYM to RTP at the individual level. 
Limited spatial overlap was seen between time points, for both the CS and LNG analyses. Although subjects 
exhibited variable overlap values, the median for all MRI parameters was less than 0.20. This indicates extensive 
change in the spatial patterns of abnormalities seen at the individual level over the course of clinical recovery, 
consistent with existing literature showing longitudinal brain changes16,41. In addition, the DTI measures showed 
greater spatial overlap than CBF, indicating that concussion-related changes in white matter may be more spa-
tially stable than CBF over time. Interestingly, the percentage of abnormal voxels did not decline significantly 
from SYM to RTP, suggesting that brain recovery may be incomplete at the time of RTP. These findings are con-
sistent with group-level MRI studies reporting persistent effects at RTP for brain function and structure, both in 
this cohort42 and in others41,43–45.

In contrast, the direction of abnormality (positive or negative relative to uninjured athletes) showed significant 
effects of time, for both MD and CBF. MD tended to be low in symptomatic concussed athletes, which is con-
sistent with prior literature10,43,44, although elevated diffusivity also been identified in some symptomatic athlete 
groups12,46. Interestingly, while the present study identified a longitudinal change from low to high MD, longi-
tudinal group studies have typically reported the direction of effect to be unchanged or resolved over time12,43,44. 
The analysis of individual subject abnormality maps may therefore be able to track more complex, spatially het-
erogeneous changes in white matter diffusivity longitudinally. These findings may be contrasted with the lack 
of significant longitudinal effects for FA, suggesting that this DTI metric may be more variable in direction of 
change. For CBF, the values tended to be high at symptomatic injury but low at RTP. This is consistent with studies 
of young adults where elevated CBF has been reported at early injury, followed by a delayed decrease at or beyond 
the first week post-injury14,47,48.

Analyses of pre-injury baseline data using a CS approach also identified abnormalities in all MRI parameters 
prior to the concussion event of interest. This may reflect limitations of the CS approach, i.e., false positives due to 
brain variability unrelated to the most recent concussion, including prior history of concussion and exposure to 
subconcussive impacts. A similar LNG analysis, with multiple pre-injury scans, is required to determine whether 
such abnormalities are specific to the CS approach. This also suggests a method for refining brain map thresh-
olds, i.e., using receiver operating curve techniques to optimally balance rates of true positives (post-concussion 
abnormalities) against false positives (pre-concussion abnormalities)49. However, pre-injury abnormalities may 
also of clinical interest, as potential early indicators of concussion risk. Studies have identified demographic and 
serum biomarkers risk factors in concussion50,51, but this has not been established for neuroimaging data to our 
knowledge. This suggests an intriguing area of future research and cautions against presuming pre-injury abnor-
malities to be uninformative false positives.

Although this study emphasized concussion effects at the individual level, supplemental analyses also identi-
fied the most consistently affected brain regions for the group. Analyses of the DTI parameters found the corona 
radiata and corpus callosum to be most consistently affected by concussion. This is consistent with prior mod-
els of brain injury biomechanics52 which found central white matter structures to be among the most vulner-
able to injury. Moreover, it is aligned with a prior meta-analysis of DTI in mild TBI53, along with literature on 
sub-concussive impacts33, in which effects were most frequently seen in the corona radiata and corpus callosum. 
For CBF, the most reliably affected brain regions were the temporal lobes, which have been previously identified 
as vulnerable to primary impacts from concussion54,55, although interestingly the effects seem less prevalent fron-
tally, which has been similarly identified as a vulnerable grey matter region55,56. Nevertheless, the analyses of the 
most affected brain regions are generally consistent with the existing conceptualization of brain injury biome-
chanics and associated pathophysiology.

This study focused on the detection of statistically significant brain abnormalities among concussed ath-
letes, relative to a normative cohort. While the main objective of concussion neuroimaging research is the 
quantification of changes in brain physiology, threshold-based analysis plays a key role in current practise. A 
statistical criterion is needed to determine whether post-concussion brain physiology is different from unin-
jured brains in a way that exceeds normal variability. Moreover, thresholding is widely used to simplify and 
summarize high-dimensional brain images, providing regions of interest in which we can further quantify the 

https://doi.org/10.1038/s41598-020-58073-9


9Scientific RepoRtS |         (2020) 10:1643  | https://doi.org/10.1038/s41598-020-58073-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

changes in MRI parameters. This study focused on FDR-based thresholding of univariate p-value maps, but also 
assessed thresholding based on uncorrected p-values and percentiles. This is by no means exhaustive and other 
approaches may be used, including alternative univariate thresholds (e.g., based on cluster size), multivariate 
tests of abnormality (e.g., Mahalanobis distance) and machine learning methods (e.g., one-class classifiers). An 
important area of future investigation will be the evaluation and comparison of alternative procedures for detect-
ing concussion-related abnormalities.

There is growing recognition of the importance of considering the individual when using MRI to eval-
uate concussion. Substantial inter-individual differences have been seen in the patterns of concussion-related 
pathophysiology23,24,27 potentially stemming from injury biomechanics52, but also likely confounded by varia-
tions in pre-injury brain physiology17–20. Although the present study was based on a limited sample size, the 
findings, in combination with emerging literature26,27,57, underscore the importance of research that includes 
baseline pre-injury data, to better characterize the neurobiology of concussion and validate existing group-level 
cross-sectional studies. The primary study finding, of distinct spatial patterns of concussion-related abnormalities 
for baseline and cross-sectional analyses, suggest that the use of pre-injury baseline data may be most critical in 
the identification of most sensitive brain regions for biomarkers and/or interventions9. Although it may be infea-
sible to collect pre-injury MRI data in many non-athlete cohorts, these findings may help to determine methods 
for improving future cross-sectional analyses, such as improved selection procedures for matched controls.

Materials and Methods
Study participants. A total of 123 athletes were imaged at the start of their competitive season, drawn from 
volleyball, hockey, soccer, football, rugby, basketball, lacrosse and water polo. From this group, 12 athletes (10% 
of the cohort) were re-imaged after sustaining a concussion, (1) at the early symptomatic phase of injury and at 
time of RTP. In addition, 44 athletic controls, drawn from the remaining athletes that did not sustain a concus-
sion, were re-imaged at the end of their competitive season. For concussed athletes, diagnosis was determined by 
a staff physician following events where athletes sustained direct or indirect contact to the head with the presence 
of signs and/or symptoms as per the Concussion in Sport Group guidelines58 and RTP was determined based on 
symptom resolution following a graded exertional protocol3.

All athletes completed pre-season Sport Concussion Assessment Tool (SCAT)59,60 assessments. Furthermore, 
all athletes with concussion completed SCAT assessments as part of initial concussion assessment and at RTP. This 
study was carried out in accordance with the recommendations of the Canadian Tri-Council Policy Statement 2 
(TCPS2) and with approval of the research ethics boards at the University of Toronto and St. Michael’s Hospital, 
with participants giving free and written informed consent in accordance with the Declaration of Helsinki.

Magnetic resonance imaging. Athletes were imaged using a 3 Tesla MRI system (Magnetom Skyra) 
with a standard multi-channel head coil. Structural imaging included the following protocol: three-dimensional 
T1-weighted Magnetization Prepared Rapid Acquisition Gradient Echo imaging (MPRAGE: inversion time (TI)/
echo time (TE)/repetition time (TR) = 1090/3.55/2300 ms, flip angle (FA) = 8°, 192 sagittal slices with field of 
view (FOV) = 240 × 240 mm, 256 × 256 pixel matrix, 0.9 mm slice thickness, 0.9 × 0.9 mm in-plane resolution, 
with bandwidth (BW) = 200 Hertz per pixel (Hz/px)), fluid attenuated inversion recovery imaging (FLAIR: 
TI/TE/TR = 1800/387/5000 ms, 160 sagittal slices with FOV = 230 × 230 mm, 512 × 512 matrix, 0.9 mm slice 
thickness, 0.4 × 0.4 mm in-plane resolution, BW = 751 Hz/px) and susceptibility-weighted imaging (SWI: TE/
TR = 20/28 ms, FA = 15°, 112 axial slices with FOV = 193 × 220 mm, 336 × 384 matrix, 1.2 mm slice thickness, 
0.6 × 0.6 mm in-plane resolution, BW = 120 Hz/px). To rule out potential structural abnormalities, the MPRAGE, 
FLAIR and SWI scans were reviewed in a 2-step procedure, with initial inspection by an MRI technologist during 
the imaging session and later review by a neuroradiologist with clinical reporting if abnormalities were identified. 
No abnormalities (white matter hyper-intensities, contusions, micro-hemorrhage, or statistical outliers) were 
found for the concussed athletes and controls in this study.

Diffusion tensor imaging. A diffusion weighted imaging protocol was performed (66 axial slices with 
FOV = 240 × 240 mm, 120 × 120 matrix, 2.0 mm slice thickness, 2.0 × 2.0 in-plane resolution, BW = 1736 Hz/
Px), consisting of 30 diffusion-weighting directions (TE/TR = 83/7800 ms, b = 700 s/mm2, with 9 b0 scans). This 
sequence was from an earlier study in which multiple different b-values were acquired61,62. Due to time limitations, 
only the b = 700 was collected for participants in this study, as it had greatest sensitivity to concussion-related 
brain changes61. The DTI data were processed using utilities from the fMRIB Software Library (FSL; https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki) and software developed in-house. The FSL eddy protocol was used to perform simulta-
neous correction of eddy currents and rigid-body head motion, FSL bet was used to mask out non-brain voxels, 
and FSL dtifit was used to calculate voxel-wise FA and MD. Co-registration of brain maps was based on the FSL 
FDT protocol: (1) masked subject FA maps were eroded by 1 voxel width at brain edges, and co-registered to the 
FMRIB58 template via affine transform using FSL flirt; (2) a symmetric, study-specific template was computed by 
averaging transformed FA maps, then re-averaging with flipped left/right orientations; (3) the average template 
was used as a reference and non-linear registration of FA maps performed using FSL fnirt, which were used to 
update the study-specific template; (4) the FA maps were registered to the new template via fnirt and the mean 
template was updated. During the final registration step, images were resampled to 3 × 3 × 3 mm resolution, and 
prior to analysis all images were convolved with an 8 mm FWHM 3D Gaussian smoothing kernel to minimize the 
effects of local variation in white matter structure. All analyses were performed within a mask of regions with a 
mean FA > 0.25, to restrict analyses to white matter tracts.

Arterial spin labelling. 2D pulsed arterial spin labelling (ASL) was acquired using the PICORE QUIPSS II 
sequence (TE/TR = 12/2500 ms, TI1/TI1s/TI2 = 700/1600/1800 ms, FA = 90°, 14 oblique-axial slices with 
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FOV = 256 × 256 mm, 64 × 64 matrix, 8.0 mm slice thickness with 2.0 mm gap, 4.0 × 4.0 mm in-plane reso-
lution, BW = 2368 Hz/px). A single M0 calibration scan and a series of forty-five tag-control image pairs were 
acquired. Data were processed and analyzed via a combination of Analysis of Functional NeuroImages (AFNI; 
https://afni.nimh.nih.gov), FSL and software developed in-house. Rigid-body motion correction of tag-control 
scans was performed using AFNI 3dvolreg, aligning the images to the M0 scan. We then performed filtering 
of outlier tag-control pairs using the protocol of63, followed by spatial smoothing with AFNI 3dmerge, using a 
6 mm isotropic 3D Gaussian kernel. Voxel-wise CBF estimates were calculated in units of mL/100 g/min based 
on the mean difference over all tag-control pairs, using the kinetic modelling parameters previously applied 
in14. Co-registration of CBF images was obtained by (1) the rigid-body transform of each participant’s mean 
functional volume to their T1 anatomical image via FSL flirt, and (2) the 12-parameter affine transformation of 
their T1 image to the MNI152 template using flirt. These transformation matrices were concatenated and the net 
transform applied to all functional data, resampled at 3 × 3 × 3 mm resolution. Analyses were restricted to a mask 
of grey matter regions, where mean CBF for controls was >20 mL/100 g/min.

neuroimaging data: normative controls. The normative data were displayed for reference, including 
maps of the voxel-wise medians and interquartile ranges (Fig. 1). As summative measures of inter-individual var-
iation, the coefficient of variation CoV = std(X)/|mean(X)| was also calculated at each voxel and reported as the 
median and [Q1, Q3] over all voxels. In addition, the median percent signal change was calculated longitudinally 
in the control data CHG = 100 ∗ ([post−season] − [baseline])/[baseline] and also reported as the median [Q1, Q3] 
over all voxels.

neuroimaging data: concussed athletes. Brain abnormalities of individual concussed athletes were 
identified for FA, MD and CBF brain maps. Voxel-wise normative distributions were obtained for athletic con-
trols via kernel density estimation (KDE), which were then used to identify significantly abnormal voxel values 
for concussed athletes. The KDE approach provides a flexible non-parametric technique for identifying outlying 
values with minimal assumptions about the underlying dataset. This approach was chosen because, while data 
on average were well approximated by a normal distribution, a non-trivial fraction of voxels exhibited signif-
icant deviations from normality (FA-CS: 5.3%, FA- LNG: 21.2%, MD-CS: 18.3%, MD- LNG: 16.7%, CBF-CS: 
10.6%, CBF- LNG: 13.8%, voxel-wise Shapiro-Wilk tests, at a threshold of FDR = 0.05). Given the relatively sparse 
nature of abnormalities and low overlap values, mismodelling within these voxels may therefore have a substantial 
impact, particularly since the extent of non-normality varies by MRI parameter and analysis method.

The KDE was applied to control datapoints Xctl(n) (n = 1…Nctl) using a Gaussian kernel basis. The kernel band-
width h was obtained by performing leave-out-out cross-validation across a range of kernel sizes (0.01 to 10 times 
the sample standard deviation) and identifying the value minimizing mean squared error: ∫= ˆCV h f x dx( ) ( )b

2

− ∑ = f̂ X( )
N n

Nctl
b n ctl n

2
1 , ( )

64. The Gaussian kernel weights were subsequently determined for control datapoints using 
the robust KDE approach65 with code adapted from [web.eecs.umich.edu/~cscott/code.html#rkde] and a Hampel 
loss function. The KDE distributions were then evaluated for concussed data points Xconc(n) (n=1…Nconc), to 
obtain cumulative probability values Pconc(n), which were converted into 2-tailed cumulative probabilities 

= ∗ −′P P P2 min([ , 1 ])conc n conc n conc n( ) ( ) ( ) , reflecting the probability of a value as extreme or larger originating from 
the control distribution.

This approach identified voxel-wise abnormalities in concussed athlete brain maps, using two different anal-
ysis approaches. For cross-sectional analysis (CS), the normative data were athletic control baseline scan values; 
for each concussed athlete scan, probabilities were calculated for both SYM and RTP time points. For longitudinal 
analysis (LNG), the normative data were athletic control changes in scan values (post-season – baseline); for each 
concussed athlete scan, probabilities were calculated on the changes (post-injury – baseline), for both SYM and 
RTP time points. This produced probability maps for each concussed athlete, MRI parameter and post-injury 
time point. The maps were then thresholded to produce binary maps of brain abnormalities, at a False Discovery 
Rate (FDR) of 0.05, with an additional minimum cluster-size threshold of 3 imposed, to remove singleton clus-
ters. The thresholded abnormality maps were displayed for all concussed athletes and time points, with CS and 
LNG abnormality maps shown with overlapping regions. A representative axial slice was chosen per athlete, by 
ranking axial slices of each of the 4 abnormality maps (SYM/RTP x CS/ LNG) by total number of abnormal vox-
els, then selecting the slice of highest mean rank.

The similarity of CS and LNG abnormality maps was evaluated using the Jaccard index, which quantifies frac-
tional overlap. For binary brain maps X and Y, this is defined as:

∩ ∪=X Y X Y X YJ( , ) /

This value was calculated for each subject and time point, and differences in overlap between SYM and RTP 
were evaluated using nonparametric paired-measures Wilcoxon tests. In addition, longitudinal changes in abnor-
malities were assessed by measuring the Jaccard index for subject SYM and RTP maps, with a lower overlap 
indicating greater longitudinal change in spatial pattern. This value was calculated for each subject and analysis 
method, and differences in overlap between CS and LNG were evaluated using nonparametric paired-measures 
Wilcoxon tests.

The abnormality maps were also characterized in terms of spatial extent and direction of effect. The spa-
tial extent was evaluated by calculating the fraction of voxels showing significant abnormality, for each subject, 
analysis method and time point. In addition, the direction of effect was evaluated by determining, for abnormal 
voxels, whether they were “positive” (i.e., in the upper tail Pconc(n) ≥ 0.975; high relative to athletic controls) or 
“negative“ (i.e., in the lower tail Pconc(n) ≤ 0.025; low relative to athletic controls). The fraction of abnormal voxels 
that were positive was then calculated for each subject, analysis method and time point. For both measures, the 
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effects of analysis method and time point were evaluated in a generalized linear mixed effects model (GLMM), 
with analysis model and time as fixed effects, and a random-effects intercept for each subject. To account for 
strictly positive response variables, a Gamma distribution was modeled with log link function and with maxi-
mum pseudo-likelihood fitting using the Matlab R2017b fitglme package (The MathWorks, Natick MA).

neuroimaging data: spatial localization. To summarize brain regions most consistently identified as 
abnormal, the following steps were performed: anatomical subdivisions of the brain were defined, using the John 
Hopkins University (JHU) white matter atlas66 for FA and MD and the automated anatomical labelling (AAL) 
grey matter atlas67 for CBF. Each abnormality map was then parcellated into spatially contiguous clusters. For 
each cluster, all overlapping anatomical regions were identified; if no regions directly overlapped, the template 
region was identified whose center of mass had the shortest Euclidean distance from the cluster center of mass. 
For each anatomical region, the number of abnormality maps having at least one cluster assigned to the region 
was then calculated. This was used to produce a frequency map, with higher numbers indicating greater fre-
quency of abnormality.

Neuroimaging data: threshold effects. To verify that the main findings of this study generalized beyond 
the fixed FDR = 0.05 threshold, overlap between CS and LNG maps was also calculated under different thresh-
olding schemes. This included a range of different FDR thresholds (0.005 to 0.10), a range of nominal uncorrected 
p-value thresholds (0.005 to 0.05), and a range of percentile thresholds (99.9th to 95th). In each case, the median 
and [Q1, Q3] of the overlap values was plotted.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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