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Analysis of uncoated LPGs written 
in B-Ge doped fiber under proton 
irradiation for sensing applications 
at CERN
Gaia Maria Berruti1,2,4*, Patrizio Vaiano2,4, Giuseppe Quero2, Tiago Filipe Pimentel Das Neves1,3, 
Alessandra Boniello2, Marco Consales2*, Paolo Petagna1 & Andrea Cusano2

In this contribution, a complete dissertation concerning the behavior of a Long Period Grating 
(LPG) inscribed in a B-Ge co-doped optical fiber by means of an excimer laser and exposed to proton 
irradiation during a recent extensive campaign performed at the European Organization for Nuclear 
Research (CERN) with a fluence of 4.4·1015 p∙cm−2 is provided. The experimental results have been thus 
combined for the first time to the best of our knowledge with numerical simulations in order to estimate 
the variations of the major parameters affecting the grating response during the ultra-high dose 
proton exposure. From the correlation between experimental and numerical analysis, the irradiation 
exposure was found to induce a maximal variation of the core effective refractive index of ~1.61·10−4, 
responsible of a resonance wavelength red shift of ~44 nm in correspondence of the highest absorbed 
radiation dose of 1.16 MGy. At the same time, a relevant decrease close to ~0.93·10−4 in the refractive 
index modulation pertaining to the grating was estimated, leading to a reduction of the resonant dip 
visibility of ~12 dB. The effect of the proton beam on the spectral response of the LPG device and on the 
optical fiber parameters was assessed during the relaxation phases, showing a partial recovery only of 
the wavelength shift without any relevant change in the dip visibility revealing thus a partial recovery 
only in the refractive index of the core while the reduction of the refractive index modulation observed 
during the irradiation remained unchanged.

In the framework of the High Luminosity Large Hadron Collider (HL-LHC) project1,2, an upgrade of the most 
powerful accelerator and particles detectors of the world is foreseen at the European Organization for Nuclear 
Research (CERN). The novel configuration, planned for 2024, relies on several technological innovations with 
the aim to further increase the rate and energy of the particle collisions, thus resulting in ten times higher level of 
radiations, in terms of both ionizing dose and particle fluence. In this context, the development and the integra-
tion of new instrumentation for monitoring the ambient parameters, such as temperature, humidity and radiation 
levels, capable to withstand and operate at radiation doses well exceeding the MGy level and particle fluences 
above 1015 particles/cm2, is mandatory for the correct operation of the experiments.

To date, optical fiber-based sensors (OFS) represent an attractive solution to overcome in particular the limi-
tations of the traditional miniaturized capacitive hygrometers3–5, due to their radiation resistance6, intrinsic elec-
trical insulation, insensitivity to electromagnetic fields and possible application in hostile environments. So far, 
several studies about the development of humidity sensors based on fiber optic technology have been proposed, 
recently reviewed in7. The use of polyimide coated Fiber Bragg Gratings (FBGs) for relative humidity monitor-
ing in high energy physics experiments at CERN has been successfully demonstrated by our multidisciplinary 
research group since 20118–11. Afterwards, our investigations moved to the development of a second generation 
of hygrometers based on metal oxide-coated Long Period Gratings (LPGs)10,12. The results collected demon-
strated that these innovative devices are characterized by extreme relative humidity sensitivity, particularly below 
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5 %RH, i.e. where both miniaturized capacitive sensors and polyimide coated FBGs substantially lose accuracy. 
Nevertheless, to assess their possible application in the new generation of detectors foreseen within the HL-LHC 
project, a clear understanding of the physical and optical mechanisms involved during the LPGs radiation expo-
sure is mandatory, together with a systematic study of their behavior under realistic radiation levels with respect 
to those expected at HL-HLC.

Certainly, massive knowledge concerning the effects of irradiation on optical fibers and optical fiber-based 
devices has been collected over the years, but still not all the factors involved are completely clear and known. 
In 2018 Girard et al. published a very interesting review about the recent advancements on the radiation hard-
ened fiber optic-based systems13, highlighting the potential and the future challenges of this innovative tech-
nology for the application in harsh environments. In ref. 13 the authors also provided an overview of the main 
radiation-induced effects on several classes of fiber optics and fiber optic-based technology, including both point 
sensors and distributed sensors. It is well-assessed that radiation alters the fiber properties by creating point 
defects in silica-based material due to ionization or displacement damage processes leading to structural modifi-
cations in the pure or doped amorphous host silica matrix of both fiber core and cladding14,15. Therefore, the fiber 
chemical composition, in terms of dopants and concentrations, plays an important role. Numerous experimental 
and theoretical studies have been devoted to this topic, most of them are based on the characterization of the 
structure, optical or electronic properties of the point defects in pure silica15,16. On the other side, the number of 
available studies decreases significantly for Ge-doped silica and furthermore for other dopants relevant for optical 
fibers. In case of Ge-doped optical fiber, the most important radiation-induce defects, which are responsible for 
optical absorption bands, are the so-called Ge(1), Ge(2), E’Ge and GeX17. The Ge(1) is considered as an unpaired 
electron trapped on four-fold coordinated Ge atom while the E’Ge defect is formed by an unpaired electron 
localized on a three-fold coordinated Ge atom. The Ge(2) is considered to be a variant of the Ge(1)18. Finally, 
the structure of the GeX defects is still unknown15. As to the radiation-induced effects in B-doped optical fiber, 
it was found in literature that during γ-irradiation Si-substituted borons trap holes to form boron-oxygen hole 
centers (B-OHCs). Moreover, trapped electron-type B-E′ centers are created upon irradiation16. Point defects are 
responsible of the two main radiation-induced macroscopic effects such as radiation-induced attenuation and 
radiation-induced refractive index change which degrade the properties of optical fibers and optical fiber-based 
sensors when exposed to radiations. The radiation-induced attenuation (RIA), corresponds to an increase of the 
optical absorption of the fiber6,13,14,19. The change of the absorption spectra corresponds to a modification of the 
refractive index of the fiber, according to the Kramers-Krönig relation13, with the magnitude of the attenuation 
depending on several parameters related to both the irradiation conditions (e.g. dose rate, type of radiation, 
temperature) and the composition of the fiber under analysis6,13. Besides the RIA effect, high energy particles or 
ionizing radiations were also found to induce an additional refractive index change due to the densification of the 
glass, via the Lorentz-Lorenz formula13.

These effects have been widely investigated in case of FBGs for which it is well-known that the basic character-
istics such as peak wavelength, spectral width and amplitude are affected by radiation and that the magnitude of 
these changes is very dependent on the grating type and fabrication technique6. However, in contrast with FBGs, 
there are only few papers available about LPGs under irradiation, all concerning their response to γ-ionizing 
particles. An extensive overview of the state-of-the-art can be found in14,20–22. The first contribution was provided 
by Vasiliev et al. in 1998 in ref. 23, where the response of LPGs written in Ge and N-doped fiber by means of CO2 
laser was reported, demonstrating that gratings written in Ge doped fibers exhibit high resistance to γ-radiation. 
In 2013 Kher et al. presented the first in-situ measurements of the refractive index changes due to a high-level 
gamma radiation using an LPG inscribed in B-Ge doped fiber through CO2 laser24. Recently, the effects of mixed 
neutron and gamma flux on the spectral and sensing response of arc-induced LPGs fabricated in various optical 
fibers have been presented in25, showing that radiations cause only a slight change of the temperature sensitivity 
of the devices. Combining these experimental results with a numerical model, the same authors provided an esti-
mation of the effect of γ-irradiation in terms of variation of the optical fiber refractive index, clearly depending on 
the fiber type and composition, for doses up to several hundreds of kGy25,26.

The radiation field at HL-LHC will be characterized by the presence of both leptons and hadrons of different 
kind, masses and energies. Protons seem to be better candidates to simulate the combined effect of Total Ionizing 
Dose (TID) and Displacement Damage (DD), typical of this field. However, for what concerns the study of the 
behavior of optical fiber gratings under proton irradiation, only few works about FBGs can be retrieved27–29 with a 
maximum proton radiation dose absorbed by the samples of 100 kGy, while no contribution concerning LPGs has 
been found in literature. The first experimental results on LPGs subject to proton irradiation have been recently 
presented by our team in30. It should be noted that, in order to decouple the effects of proton irradiation on the 
LPG from those possibly linked to the presence of the oxide coating required for humidity sensing, therefore 
establishing a sound reference for future studies, in this initial phase we have decided to focus the attention on 
uncoated LPGs.

The analysis conducted on the existing literature shows that, even though there is a significant growing interest 
of the researchers towards the study of these devices applied in radiation environments, the majority of the works 
published on this topic are limited to the study and comparison of the experimental behavior of fiber optic-based 
gratings written in several kinds of fibers and with different fabrication techniques in various irradiation condi-
tions. The aim of the present work is to fill up the gap in literature in this sense: to provide a unique and complete 
dissertation which starts from the analysis of the experimental results and the individuation of the main observ-
ables involved in the irradiation process and which allows then to estimate, by a suitable combination of experi-
mental results and numerical simulations, the variations of the major parameters affecting the grating response 
during the radiations exposure.

The paper was organized accordingly. In the first section, we summarize the main results presented in30, col-
lected during the very first proton irradiation campaign of an uncoated LPG inscribed in a single-mode B-Ge 

https://doi.org/10.1038/s41598-020-58049-9


3Scientific Reports |         (2020) 10:1344  | https://doi.org/10.1038/s41598-020-58049-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

co-doped optical fiber, with a broad focus about the LPG resonance wavelength shift and transmitted power vari-
ations in both the irradiation exposure and relaxation phases. The next sections are devoted to the explanation of 
the numerical model applied to correlate the observed spectral changes with the physical and optical parameters 
related to the LPG such as the refractive index of the optical fiber core in both the regions perturbed and unper-
turbed during the writing process. Finally, the results of the numerical simulations are discussed.

On-line monitoring during the irradiation.  The irradiation campaign under analysis was performed at 
the CERN proton irradiation facility, named IRRAD31, where a primary beam with a momentum of 24 GeV/c is 
directly extracted from the Proton Synchrotron accelerator. The details concerning the fabrication of the sam-
ple under analysis as well as the description of the experimental irradiation set-up are presented in the section 
“Methods” at the end of the paper.

The irradiation experiment consisted in two main stages: in the first 146 hours, the LPG was irradiated up to 
~1.16 MGy with an average dose rate of ~2.36 Gy/s. Thereafter, once the proton beam was stopped, the sample 
was moved out from the beam and the relaxation started. Since we benefited of the exclusive use of the part of 
the bunker where our sample was installed, we had the opportunity to monitor the response of the sensor in both 
the over-mentioned phases. Figure 1 provides a synthesis of the spectral evolution of the sample under analysis, 
starting from its installation in the cavern with the proton beam being off, passing through the beam operation 
and the exposure to incremental radiation doses, until the end of the relaxation. From the spectral responses of 
the sensor, acquired with a scanning time of 3 minutes, through a post-processing procedure, we retrieved the 
variations of the LPG resonant wavelength Δλ and of the spectral dip visibility |ΔPower| = |Power − Powerbaselin

e|. Results are reported in Fig. 2(a,b), where the two main phases of the data acquisition are well highlighted and 
related with the dose absorption. As evident, the irradiation was not continuous during our experiment. Indeed, 

Figure 1.  LPG spectral responses during the irradiation experiment.

Figure 2.  (a) LPG resonance wavelength shift (left axis) and visibility changes (right axis) during the full 
observation period (both irradiation and relaxation phases); (b) dose absorbed by the grating during the 
experiment.
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the proton beam was turned off three times for some hours in the first 2 days of acquisition, due to the normal 
activity of the LHC accelerator. To help in the comprehension of the reported data, we labeled these short breaks 
as “BEAM OFF” in Fig. 2(a).

Coherently with reported literature for both FBGs10,14,23,27–29 and LPGs14–23 under irradiation, as soon as the 
proton beam was started, a shift of the LPG resonance dip towards longer wavelengths was observed, as shown 
in Fig. 2(a). By the end of the experiment, a final Δλ of ~44 nm was recorded in correspondence of the maximal 
dose of 1.16 MGy and no saturation phenomenon occurred. This is in contrast with what observed by Taylor et al. 
in27 for a lightly Ge-doped silica FBG under protons for which a Bragg wavelength saturation was evaluated at 30 
kGy. It should be noted however that in27 the irradiation conditions were quite different from our test settings. As 
a matter of fact, the authors referred to a proton flux four orders of magnitude higher than the one applied during 
our irradiation, and the maximal dose reached was much lower. It is important to remark that data reported in 
Fig. 2(a) are not compensated for the effect of the temperature as negligible variations of the order of ±0.2 °C were 
measured in the IRRAD bunker. Indeed, taking in account the LPG temperature sensitivity of about −0.5 nm/°C, 
as evaluated during the pre-irradiation characterization of the sample30, the above-mentioned temperature varia-
tions resulted in a negligible resonance wavelength shift of ~0.1 nm, which is two order of magnitude lower than 
the total resonance wavelength shift registered at the end of the irradiation.

In Fig. 3(a) it is shown the irradiation-induced shift as a function of the accumulated dose. An associative 
exponential fitting defined as the sum of two exponential decays with different time constants, provided the best 
fit to the experimental data. The parameters of the fitting curve are summarized in Table 1. A two-step behavior 
of the radiation-induced shift with respect to the dose was observed, with extremely high irradiation sensitivity 
shown by the sample in the very first hours of the exposure. These results open up solid perspectives for the pos-
sible development of reliable ultra-high dose dosimeters based on LPG technology to be applied in the extremely 
harsh environment of the future accelerators.

As to the effect of the radiations on the LPG dip visibility, we observed a gradual and significant decrease of 
the power, for a total reduction of 12 dB in correspondence of the highest absorbed dose, as results from Fig. 2(a). 
Figure 3(b) shows the attenuation of the optical transmitted power with respect to the gradual absorption of dose 
by the sample. Similarly to the Δλ vs. Absorbed dose curve, the same fitting function was successfully applied to 
the |ΔPower|, as shown in Table 1.

Once the proton beam was turned off, we observed a reversed direction of the Δλ (e.g shift towards lower wave-
lengths), as evident from Fig. 2(a). A post-irradiation recovery shift of ~6 nm was measured after 7.5 days from the 
interruption of the beam. This corresponds to a recovery of the 14% of the total wavelength shift experienced during 
the full irradiation. On the other hand, no noticeable recovery in the LPG transmitted power occurred.

Figure 3.  (a) LPG resonance wavelength shift and (b) visibility changes as a function of the absorbed dose 
during the irradiation. Data collected during the three short beam breaks were not taken in account in these 
plots.

Associative exponential fitting: y = y0 + A1 * (1 − exp(−x/t1)) + A2 * (1−exp(−x/t2))

y0 A1 t1 A2 t2 R2

Δλ vs. Absorbed dose 0.65899 11.55319 0.01059 63.76648 1.621716 0.99

|ΔPower| vs. Absorbed dose 15.1544 −5.06094 0.033165 −6.915 0.481976 0.99

Table 1.  Parameters of the best exponential fitting curves reported in Fig. 3(a,b).
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In Fig. 4 the LPG relaxation data collected during the very first 2.5 hours of every proton beam stop are shown 
for the sake of comparison. The first three data sets refer to the recovery of the sensor during the three short beam 
breaks registered in the first two days of the data acquisition, due to the LHC normal operation. The fourth data 
set corresponds to the LPG recovery at the very end of our irradiation experiment. As evident, in the abovemen-
tioned four beam interruptions, the sample LPG did not show the same dynamics. As a matter of fact, during 
the first beam stop, a fast Δλ decrease in the first minutes of the relaxation was followed by a slower dynamic 
towards the end of the observation period. An associative exponential fitting was applied to match the experi-
mental results collected during the first beam interruption while in case of the last three interruptions, a single 
constant time exponential model with constant times quite similar to each other was sufficient to correctly fit the 
experimental data. The parameters of the exponential fittings applied to the abovementioned data sets of Fig. 4 
are reported in Table 2.

Numerical simulations and discussion.  In order to correlate the experimental results shown in the pre-
vious section with the dose effects on the main physical parameters pertaining to the LPG device, an extensive 
numerical analysis has been carried out.

This section is divided in three main parts: the first one relies on the description of the theoretical and numer-
ical model used for the simulation of LPGs; the second one pertains to the analysis of the dependence of the LPG 
spectrum on the physical parameters of the fiber, which are expected to change with the dose; finally, the third 
part is devoted to the correlation between the experimental changes in the spectrum observed during and after 
the protons exposure and the modifications in the physical parameters of the fiber expected from the numerical 
model.

Theoretical model.  Over the years, our research group has developed a powerful, highly versatile environ-
ment for the design and simulation of LPG devices that can provide excellent matching between numerical and 
experimental results. Our simulation tool, implemented in MATLAB® programming language, is based on the 
coupled-mode theory32,33 and the LP approximation is used to solve the modes within a cylindrical dielectric 
waveguide34. The algorithm proceeds through successive steps, after which the solution becomes progressively 
more precise.

The first step is the calculation of the propagation constants of the fundamental core mode and cladding 
modes. These provide a first estimate of the spectral location of the excited resonances, through the well-known 
phase-matching relation32

λ = − ⋅ Λ(n n ) (1)res,j eff,01 eff,0j

where λres,j is the resonant wavelength corresponding to the excitation of the jth order cladding mode, neff,01 and 
neff,0j are the effective refractive indexes of the fundamental core and the excited cladding modes, respectively, 
while Λ is the grating period.

Figure 4.  LPG relaxation phase during the very first 2.5 hours of the 4 stops of the proton beam in comparison. 
The choice of this observation time window corresponds to the duration of the shortest beam stop (the third 
OFF reported in Fig. 2(a)).

Associative exponential fitting: y = y0 + A1 * (1 − exp(−x/t1)) + A2 * (1 − exp(−x/t2))

y0 A1 t1 A2 t2 R2

First beam OFF 1.8818 −4.0420 19993.3852 −0.5029 430.7403 0.99

Second beam OFF −0.2022 2.1064 0.382423 0 — 0.99

Third beam OFF −0.2628 2.0048 0.475601 0 — 0.99

Fourth beam OFF −0.2243 1.9177 0.441618 0 — 0.99

Table 2.  Parameters of the best fitting curves reported in Fig. 4.
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This is followed by the calculation of the coupling coefficients, which allows improving the estimation of the 
resonance wavelength according to the modified Bragg condition33:

π
λ

⋅ − + ⋅ ζ λ − ζ λ =
π

Λ( )2 (n n ) s ( ) ( ) 2
(2)eff,01 eff,0j 0 01,01 0j,0j

Here, s0 is the coefficient of the first Fourier component of the sinusoidal grating, while ζ01,01 and ζ0j,0j are the 
self-coupling coefficients of the core and the jth cladding modes, respectively.

The coupling coefficients also help to determine the value of the transmittance i.e. the power transferred from 
the fundamental core mode to that of the cladding, at the resonant wavelength35:

= κ ⋅( )T cos L (3)0,j
2

01,0j

In this relation, L is the grating length, and k01,0j is the coupling coefficient for the jth cladding mode, which is 
a function of the overlap integral of the core and cladding modes and of the refractive index modulation induced 
by the writing process.

Finally, the coupled modes differential equations are solved for the calculation of the full transmission 
spectrum.

By adopting this numerical model, various LPG configurations have been demonstrated by our group, includ-
ing single36 or double37 coated LPGs operating in modal transition and the combination of the dispersion turning 
point and the modal transition38.

Analysis of the dependence of the spectrum on the physical parameters of the fiber.  The LPG 
under investigation was written in a photosensitive single-mode B-Ge co-doped optical fiber PS1250/1500 pro-
vided by FiberCore, featuring a cladding diameter of 125 µm, mode field diameter between 8.8 µm and 10.6 µm 
at 1550 nm and numerical aperture of 0.12–0.14. The refractive indices of the core and the cladding are 1.4498 
and 1.4440, respectively. These values are referred to a wavelength of 1550 nm and dispersion is not taken into 
account. A grating period of 308 µm was used in order to excite the cladding mode LP0,8 with a resonance at 
around 1540 nm. The grating length was set to 2.36 cm and the spectrum was evaluated in air. In order to obtain 
a perfect match between experimental spectrum and numerical simulation, a core refractive index modulation 
depth (Δnco), defined as the difference between the refractive index of the core in the regions written by UV 
(nco,high) and the one related to the non-perturbed regions of the core (nco,low), of 2.55·10–4 was found.

The comparison between the measured pre-irradiation spectral response of the LPG sample at room temper-
ature and the spectrum obtained from simulation is shown in Fig. 5.

From previous studies reported in literature, the exposure to radiation of an LPG device is expected to induce 
two main effects, namely the RIA and radiation-induced silica densification14,24. Therefore, two main parameters 
pertaining to optical fibers are affected by ionizing radiation: the optical fiber losses and core refractive index14,24. 
Nevertheless, the limited length of the grating-based devices (up to few centimeters) allows us to neglect the 
optical losses effects and to focus the attention exclusively on the changes induced on both nco,low and nco,high. The 
variation of other parameters, including the grating period and the refractive index of the cladding, is neglected 
according to previous works24,26.

Specifically, the effect of a numerically simulated perturbation of nco,low on the LPG spectrum, with Δnco fixed 
to the pre-irradiation value of 2.55·10–4, is reported in Fig. 6(a). An increase of nco,low leads to a red shift of λres 
with a linear behavior and a sensitivity of 3.292·105 nm/RIU, coupled to a small linear decrease of |ΔPower| with 
a sensitivity of -6405 dB/RIU, as shown in Fig. 6(c). In particular, the trend obtained for λres is clearly consistent 
with the one described by Eqs. (1) and (2). On the contrary, a decrease of Δnco, with nco,low fixed to its nominal 
value of 1.4498, leads in the simulations to a blue shift of λres and a significant decrease of |ΔPower|, as evidenced 
in Fig. 6(b). Specifically, a sensitivity of 3.164·105 nm/RIU was found for λres, while a polynomial dependence (of 
the fourth degree) is found for |ΔPower|, as reported in Fig. 6(d). These trends find their confirmation in Eqs. (1) 
and (3), respectively.

Figure 5.  Comparison between the experimental pre-irradiation LPG spectrum at room temperature and that 
obtained from numerical simulation.
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Numerical-experimental correlation to derive the physical variations induced in the fiber by the 
dose.  After this first step, focusing on a separated evaluation of the relationships between the transmission 
spectrum and the physical parameters of the device susceptible to changes induced by the proton beam expo-
sure, a further numerical analysis has been devoted to assess the LPG spectral behavior (i.e. λres and |ΔPower|) 
when both nco,low and Δnco are considered as simultaneously changing variables. The results obtained from this 
multi-parametric simulations were then compared with the experimental trends of λres and |ΔPower| shown in 
Fig. 3(a,b) with the aim of retrieve the evolution of the core refractive indexes (nco,low, nco,high, nco,mean = (nco,low + nc

o,high)/2) and Δnco as a function of the dose, as reported in Fig. 7. For this class of parameters as well, the function 
that best describes the results reported in Fig. 7 is an associative exponential fitting, whose coefficients are shown 
in Table 3. As expected and in agreement with the literature14,24, the absorbed dose leads to an increase of the core 
refractive index, affecting both nco,low and nco,high. Focusing on nco,mean, a maximum variation of ~1.88·10−4 was 

Figure 6.  Results from numerical simulations: LPG spectra evaluated after (a) a positive variation of 
nco,low in the range 1.44980 ÷ 1.45005 with a step of 1·10–5 and (b) a negative variation of Δnco in the range 
1.35·10−4 ÷ 2.55·10−4 with a step of 0.5·10–5. Resonance wavelength and visibility and their corresponding fitting 
functions due to changes in (c) nco,low and (d) Δnco.

Figure 7.  Variations of (a) nco (on the left axis) and of Δλ (on the right axis), (b) Δnco (on the left axis) 
and |ΔPower| (on the left axis) as a function of the absorbed dose. In both the plots, for each data set, the 
corresponding fitting curves are also reported.
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estimated in correspondence of the highest absorbed radiation dose. This effect has a major role in determining 
the dose-induced wavelength shift observed during the irradiation tests, as also confirmed by the remarkable sim-
ilarity between the Δλ vs. Absorbed dose and nco,mean vs. Absorbed dose curves, as a clear consequence of Eq. (1).

As a matter of fact, the mean core refractive index depends on the increase of the refractive index in both the 
unperturbed and perturbed areas. Moreover, during the irradiation exposure, we have observed a reduction in 
|ΔPower|, which can be correlated to a decrease of the modulation strength of the grating (Δnco). Specifically, 
the perturbed regions (nco,high) have a lower sensitivity to radiation due to the previous exposure to UV during 
the fabrication process, while the unperturbed regions (nco_low) show a higher sensitivity. A reduction in the 
grating modulation depth Δnco of ~0.93·10−4 was estimated in correspondence of the highest absorbed radiation 
dose, as results from Fig. 7(b). A similar behaviour was observed in previous works39,40 where, in addition to the 
radiation-induced Bragg wavelength shift, a reduction in the reflectivity was also reported. Here, according to 
the authors, the sections of the fiber core that received different UV-fluences during grating inscription possess 
different sensitivities to radiation39.

Since the position of the resonance of an LPG is governed by the phase-matching condition (Eq. (1)), which 
depends directly on the effective refractive indices of the core and the excited cladding mode, the variation of 
these parameters as a function of the absorbed dose was evaluated according to the expressions reported below30:

λ =
β λ λ

π
·n ( ) ( )

2 (4)co,eff
co

λ =
β λ λ

π
·n ( ) ( )

2 (5)cl,eff
cl

where βco(λ) and βcl(λ) are the propagation constants of the core and the LP0,8 cladding mode, respectively.
As shown in Fig. 8, a maximum variation of 1.61·10−4 RIU was evaluated for nco,eff, while the ncl,eff referred to 

the LP0,8 cladding mode was found to increase only of 4.72·10−6 RIU, in agreement with the results reported by 
Kher et al. in24.

The numerical analysis has been also extended to the evolution of the LPG spectrum due to beam-stops expe-
rienced during the irradiation tests and to the relaxation undergone after the end of the irradiation, reported in 
Fig. 2(a). In this case, the aim of the analysis was to understand how the physical parameters of the LPG device 
changed as the proton beam was turned off. In particular, we compared the time variations of λres and |ΔPower| 
with those obtained by a multi-parametric simulation involving a simultaneous modification of both nco,low and 
Δnco. As a result, the calculated variation of nco,low, nco,high, nco,mean and Δnco as a function of time is reported in 
Fig. 9(a). In addition, Fig. 9(b) shows a zoomed view of the time variation of nco,low and nco,high occurred during the 
very first 2.5 hours of the 4 stops of the proton beam, similarly to the measured values of Δλ reported in Fig. 4. 
The main evidence is the partial recovery pertaining to nco,mean of 0.05 ÷ 0.07 ·10−4 after each beam stop, including 

Associative exponential fitting: y = y0 + A1 * (1 − exp(−x/t1)) + A2 * (1 − exp(−x/t2))

y0 A1 t1 A2 t2 R2

(Δnco,low, Absorbed dose) 0.02606 0.5435 0.01857 2.587 1.041 0.99

(Δnco,high, Absorbed dose) 0.001625 1.915 1.534 0.3622 0.01057 1

(Δnco,mean, Absorbed dose) 0.01703 2.19 1.168 0.4468 0.01485 0.99

(Δ(Δnco), Absorbed dose) 0.009602 −0.91 0.7678 −0.2324 0.04016 0.99

(Δnco,eff, Absorbed dose) 0.01797 0.377 0.01858 1.823 1.054 0.99

(Δncl,eff, Absorbed dose) 0.0005503 0.01132 0.01853 0.05172 1.01 0.99

Table 3.  Parameters of the best exponential fitting curves reported in Figs. 7 and 8.

Figure 8.  Dose calibration curve related to the core and cladding effective refractive indices evaluated by 
merging numerical simulations and experimental data.
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the end of the irradiation. However, differently from the beam-on phases simulation shown in Fig. 9, here the 
recovery featured the same variation of both nco,low and nco,high revealing a relaxation phenomenon occurring at 
constant modulation depth. This behavior is consistent with the blue wavelength shift and the negligible visibility 
changes observed in the beam-off phases and in the final post-exposure relaxation.

Conclusions and outlook.  In this work we provide a follow-up analysis of our recent investigations con-
ducted for the first time to analyze the spectral behavior of uncoated LPGs inscribed in a commercial photosensi-
tive single-mode B-Ge co-doped optical fiber exposed to a proton fluence of 4.4·1015 p∙cm−2 for a total absorbed 
dose of 1.16 MGy.

The aim of the present work was to correlate the experimental results, including wavelength shift and dip 
visibility changes, with the effects of proton irradiation on the main physical parameters pertaining to the LPG 
device, such as the optical fiber core refractive index and the core refractive index modulation.

In particular, we found that the radiation-induced increase of the core refractive index in the unperturbed 
regions of the fiber is the main responsible of the wavelength red shift observed during the experiment, while the 
decrease of the LPG resonant depth is correlated to a reduction of the core refractive index modulation in the 
fiber portions perturbed during the fabrication of the grating. More specifically, the irradiation exposure induced 
a maximal variation of the core effective refractive index of the LPG device of ~1.61·10−4 and a decrease of the 
modulation of the core refractive index of ~0.93·10−4 in correspondence of the highest absorbed radiation dose of 
1.16 MGy, in agreement with previous studies reported in literature, limited to the effects of radiations on LPGs.

Moreover, the time variations of the optical parameters of the LPG device showed that during the beam off 
phases and in the final relaxation at the end of the irradiation campaign, a partial recovery of nco,mean was recorded 

Figure 9.  (a) Time variations of nco,low, nco,high and nco,mean (left axis) and of Δnco (right axis) during the whole 
LPG spectrum acquisition campaign. These trends were evaluated by merging multi-parametric simulations 
and experimental data. (b) Extended view of the time variation of nco,low and nco,high occurred during the very 
first 2.5 hours of the 4 stops of the proton beam.
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in correspondence of a blue shift of the resonant wavelength, while no variations in the core refractive index 
modulation were observed, coherently with the invariance of |ΔPower|.

In particular, after 7.5 days from the end of the exposure, a recovery of 0.15·10−4 was recorded for nco,mean in 
correspondence of a blue shift of the resonant wavelength of about 6 nm with negligible changes in core refractive 
index modulation as a consequence of the minimal variations in the transmitted power.

The results presented in this paper pave the way for the development of a novel class of miniaturized optical 
dosimeters potentially providing a single device with high sensitivity from very low to ultra-high ionizing doses. 
Suitable compensation schemes have to be be judiciously designed in order to decouple the radiation-induced 
effects from other environmental factors (temperature, humidity in case of coated devices, just to name a few 
examples). Accurate investigations are currently running to verify if wavelength shift and visibility changes may 
be opportunely combined to provide a temperature self-referenced dosimeter platform without requiring any 
external thermal compensation. This might have a very positive impact on the complex task of radiation monitor-
ing in future high energy physics detectors, where the state-of-the art approach for on-line radiation monitoring 
is represented today by the CERN RadMon41 system. As a comparison, this system, developed for the challenges 
at LHC, is a multi-sensor system gathering in a volume of the order of 20 × 20 × 10 cm3 a set of three RadFET 
dosimeters for TID measurement, three silicon diodes for DD monitoring, and SRAM memories to account for 
High Energy Hadrons and thermal neutrons.

In view of the on-going development of coated LPG-based hygrometers for CERN experiments, this 
study will be complemented through a detailed experimental campaign devoted to assessing the effects of the 
humidity-sensitive coating on the spectral changes observed during the absorption of strong doses of radia-
tion. Moreover, it will be interesting to investigate the radiation-induced response of several types of LPGs, writ-
ten using different kinds of fabrication techniques. In this regard a series of dedicated irradiation campaigns at 
high irradiation doses will be launched in order to estimate the variations of the major parameters affecting the 
response of different types of gratings (excimer, arc-induced, femtosecond laser LPGs) during the radiations 
exposure.

Finally, it is important to remark that this study gives perspectives for promising applications and exploitation 
of the LPG technology for innovative multi-parametric sensing in high radiation environments.

Methods
LPG sample fabrication.  The sample under analysis was fabricated through a point to point technique, by 
means of a KrF pulsed excimer laser (LightBench 1000, Optec, Belgium) operating at the wavelength of 248 nm36, 
with pulse width of 5–6 ns. The system includes a motorized rectangular aperture (MRA) mask, characterized by 
horizontal and vertical dimensions separately selectable in the range 0 ÷ 2500 μm. The spot size of the focused 
beam on the target is defined by the sizes of the selected MRA and by the demagnification of the focusing objec-
tive. During the experiment, the demagnification coefficient was 10:1. A CCD camera provides a real-time 
monitoring of the laser operation on the sample by a dedicated monitor. At the same time, it provides a real-
time control of the sample positioning at the focal distance from the objective which can be adjusted by proper 
micro-positioning system acting on the vertical position of the focal lens. With regard to the sample positioning, 
the micromachining system is equipped with an additional X-Y micro-positioning system with resolution of 1 μm 
and maximum excursion of 10 cm for each axis. It is worth noting that the laser fluence must be properly selected 
during excimer laser micromachining process. The used system allows controlling the laser fluence on the target 
by fixing the output laser energy between 0–20 mJ and by acting on an external energy regulator leading to the 
possibility to finely control the amount of output laser energy reaching the sample42. In order to proceed with the 
grating realization, the fiber was mounted on a customized automatic rotation stage. In particular, the rotation 
stage consists of two rotating chucks on which the two fiber terminations are fixed allowing a uniform rotation of 
the fiber itself during the writing procedure. This method guarantees the realization of a uniform refractive core 
index modulation along the azimuthal fiber axis and, as consequence, the optical spectra are independent on the 
light polarization. Moreover, both the rotation stage and the laser action are completely controlled and synchro-
nized by a personal computer in order to select the grating pitch (translation stage step and MRA dimension), 
the grating length (number of irradiated points) and the induced refractive index change (number of laser pulses 
per point and fluence).

Figure 10.  (a) Schematic of the experimental set-up used in the IRRAD proton irradiation facility at CERN; (b) 
position of the LPG support with the respect of the proton beam.
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Irradiation set-up.  A sketch of the experimental set-up in the IRRAD proton facility at CERN is presented 
in Fig. 10(a). An uncoated LPG sample inscribed in a B-Ge co-doped fiber by means of an excimer laser was 
installed in a temperature-controlled radiation area, mounted on a designed ad-hoc support to keep the sensor 
under constant pre-strain conditions for the full duration of the experiment. The holder was positioned at an 
angle of 12° in respect to the proton beam direction, as shown in Fig. 10(b), thus ensuring to be fully exposed to 
the beam itself (beam size of ~12 mm FWHM, exposed fiber length of ~55 mm). The interrogation system, repre-
sented by a sm125 Micron Optics interrogator featuring a 80 nm wavelength bandwidth in the range [1510–1590] 
nm, was placed in the control room of the facility, a non-radioactive zone accessible during the irradiation. The 
sensor under analysis was subjected to a fluence of ~4.4·1015 p∙cm−2 ± 7%, which corresponds to a proton flux of 
about 0.8·109 p∙cm−2∙s−1.
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