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General surface circulation controls 
the interannual fluctuations of 
anchovy stock biomass in the 
central Mediterranean Sea
Bernardo patti1, Marco torri1,2   & Angela cuttitta1,3

The sustainable exploitation of small pelagic fish populations, characterized by short life span and early 
age at first reproduction, is typically more influenced by the success of annual recruitment rather than 
by fishing mortality. Recruitment strength, in turn, is related to the high environmental variability 
characterizing the pelagic fish habitats, able to strongly affect the survival of early stages, from 
hatching to recruitment. Here, we consider the case study of anchovy (Engraulis encrasicolus) stock 
in the Strait of Sicily (Central Mediterranean). The interannual fluctuations exhibited over an 18-year 
long period by this fish population was found to be mainly linked to surface circulation patterns, as far 
as they are able to control retention/dispersal processes of larval stages. We firstly used Lagrangian 
simulations to reproduce the fate of anchovy early stages during their planktonic phase. Larval 
retention indices constructed from the output of the simulations were able alone to explain a large 
proportion of variance (up to 70%) in yearly biomass of the anchovy population, outclassing the other 
environmental factors considered in this study. Such results are relevant for fisheries management, for 
all fish stocks characterized by potentially high vulnerability of early life stages.

The importance of environmental forcings as drivers for the interannual variability in the standing stock biomass 
of small pelagic fish species has been well documented in several papers1–3. In general, this applies to r-strategist 
fish species, characterized by short life span, early age at first reproduction, high number of offspring and low 
offspring survival rates, which in turn can heavily affect recruitment success and stock biomass levels. Conversely, 
effects of variations in fishing pressure may have a limited impact on the recruitment and on the standing stock 
biomass4–6. This pattern is enhanced in highly variable marine environments such as the Northern side of the 
Strait of Sicily (SoS).

Here, surface circulation is dominated by the flow of the Modified Atlantic Waters, locally named Atlantic 
Ionian Stream (AIS)7. The role of AIS in mimicking the “fundamental triad” of factors underlying favorable fish 
reproductive habitats8, i.e. (i) nutrient enrichment, (ii) concentration of larval food distributions, and (iii) local 
retention of eggs and larvae, has been reported for the SoS in many papers so far9–11.

Actually, the study area is characterized by strong coastal upwelling events, which are able to enrich the typ-
ically oligotrophic Mediterranean waters12–14. However, the advection of surface waters from coastal areas may 
be detrimental for the survival of larval stages due to food availability constraints characterizing the offshore 
environment15–17.

The hydrographic circulation in the Northern side of the SoS affects the distribution of eggs and larval stages 
of the European anchovy (Engraulis encrasicolus, Linnaeus, 1758), and it was also found to be potentially relevant 
for the success of the yearly recruitment of this fish resource17. Actually, the fate of early larval stages under the 
effect of local surface circulation during the summer (spawning season) is able to impact on the larval survival 
rates, depending on food availability differences between inshore/offshore areas.
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The role of hydrodynamic processes on anchovy eggs and larvae distribution in Northern SoS was firstly 
investigated by Lagrangian numerical simulations using as Eulerian input the velocity fields provided by the 
Mediterranean Sea Forecasting System (MFS), taking into account the small-scale 2D and 3D dynamics18–20. This 
approach confirmed previous empirical observations about the impact of the wind-induced coastal current in 
transporting anchovy larvae from spawning areas to the recruiting area off the Sicilian south-eastern tip12,16,21. In 
addition, it also evidenced that the significant cross-shore transport, induced by the combination of strong north-
westerly mistral winds and topographic effects, is able to deliver larvae away from the coastal “conveyor belt”.

Previous studies about the potential spawning habitat of anchovy stock in the study area also showed the high 
interannual variability characterizing the distribution patterns of the main anchovy spawning grounds over the 
continental shelf of the study area22,23.

Anchovy spawning activity in the study area spans from April to October but is more intense during the 
summer, with a peak in June-July24. On the other hand, surface circulation is quite variable during the anchovy 
spawning period in the study area25. An obvious consequence is that the fate of anchovy offspring is expected to 
be highly variable due to the very different environmental conditions characterizing the areas where larvae are 
advected from hatching up to the end of their planktonic life.

The importance of environmental forcings in controlling the dynamics of anchovy population is also indi-
rectly confirmed by the very high level of biomass fluctuation, which locally appears to be largely unrelated to the 
levels of fishing pressure26–28.

The basic assumption of this paper is that the higher the proportion of post-larval specimens retained in a 
certain year in areas favorable for their survival (i.e. shelf areas, characterized by higher chlorophyll-a concen-
trations compared to offshore areas), the greater the probability of these retention processes in contributing to a 
strong yearly recruitment the following year. Considering that the bulk of anchovy stock biomass off the southern 
coast of Sicily (FAO Geographical Sub-Area 16, GSA16) is represented by age class 129, information about larval 
retention is expected to be relevant for inferring predictions on the anchovy standing stock biomass.

An ancillary hypothesis tested in this paper is whether information about the variable locations across years of 
the main anchovy spawning grounds, as obtained by the ichthyoplankton surveys carried out from 1997 to 2013, 
may be relevant for obtaining more accurate biomass predictions of the anchovy population than considering a 
uniform distribution for its spawning activity. This hypothesis was tested using two different approaches for the 
releasing sites of particles representing larval specimens in the Lagrangian simulation runs, corresponding to the 
two assumed spawning patterns. To this aim, information on the anchovy potential spawning habitat as deter-
mined by a previous study was also used22.

Finally, other environmental data (namely, the average sea surface temperature and chlorophyll-a concentra-
tion over the shelf areas of GSA 16 during the anchovy spawning period and during the pre-juvenile development 
period) were also incorporated in a multifactorial modelling approach, in order to test their possible role in 
improving the ability of model predictions.

Materials and Methods
Anchovy standing stock biomass estimates. Hydro-acoustic biomass estimates of the anchovy popu-
lation over the period 1998–2014 are available for the study area28. These biomass estimates were used as response 
variable in different linear and non-linear statistical modelling approaches. The aim was to investigate the rela-
tionship between a proxy for larval and post-larval retention (and enhanced survival) at time (t) and the strength 
of the anchovy stock recruitment to local fisheries the following year, at time (t + 1). The choice of using total 
anchovy biomass as a proxy of the yearly recruitment is supported by the available information on the age struc-
ture of anchovy population during the summer. In general, during the summer age classes 1–2 were shown to 
dominate the yearly anchovy stock biomass29,30. Over the period 2009–2014, ages 1–2 account for 81.2% in num-
bers and 91.0% in weight of the whole population, with age class 1 alone representing more than 2/3 of total 
biomass28,31. So, each one of the yearly estimates of anchovy biomass is mostly the result of the success of the 
recruitment processes characterizing the stock from the spawning period of the previous year onwards.

Anchovy catch data. Over the period 1998–2014, average anchovy landings in Sciacca port were about 
2,000 metric tons, with large interannual fluctuations unrelated to changes in the anchovy standing stock biomass, 
whereas fishing effort (fishing days) remained quite stable26. For each year over period 1998–2014, total landings 
(in tons) comprised between July at year (t) and June at year (t + 1), labelled as “mid-year landings”, were used to 
build the time series “biomass + catch”. This series represents the acoustic biomass estimates at year (t) integrated 
by the “mid-year landings”, which approximately correspond to the fish production between two consecutive 
summer acoustic surveys. This new variable along with the standard yearly acoustic stock biomass estimate were 
used as dependent variables in the statistical modelling approaches, in order to explore their relationships with 
the larval retention indices as defined below. The amount of these mid-year landings in the considered period was 
on average about 40% of the stock biomass estimated from the summer scientific surveys.

Plankton sampling. Plankton samples were collected using a bongo net (40-cm opening) towed obliquely 
from the surface to a 100-m depth, equipped with a 200-µm mesh size net.

Samples were immediately fixed after collection and preserved in a 10% buffered-formaldehyde (and/or 70% 
alcohol) and sea-water solution for further sorting in laboratory by stereomicroscopy. For each sampling station, 
the resulting counts of anchovy eggs were standardized to numbers per cubic meter using the volume measure-
ments of filtered sea-water, obtained by mechanical flowmeters (General Oceanics Inc., FL, USA).

For each one of the yearly summer ichthyoplankton surveys considered in this study (1997–2013), having 
a typical duration of about 2–3 weeks, the geographical coordinates of the stations over the continental shelf 

https://doi.org/10.1038/s41598-020-58028-0


3Scientific RepoRtS |         (2020) 10:1554  | https://doi.org/10.1038/s41598-020-58028-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

(bottom depth < 200 m) scoring the top ten highest anchovy egg density were selected as starting points for the 
Lagrangian simulation runs (see Fig. 1).

Transport model. The advection of Lagrangian elements (particles) released at different sites and dates in 
the study area, representing anchovy eggs and developing larvae32–34, were simulated using the GNOME software 

Figure 1. Anchovy egg distributions in the summer surveys carried out in the study area from 1997 to 2013. Circle 
sizes are proportional to egg concentration. In green the locations of the top 10 stations over the continental shelf 
areas in terms of anchovy eggs densities, by year, used as releasing points in the Lagrangian simulation runs; in 
yellow the other positive stations for the presence of anchovy eggs in the samples. Sampling stations are indicated 
using “x” symbol. Continental shelf bathymetry (200 m depth) is also depicted with a continuous black line.
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package35–37. In this study, the main Eulerian input for Lagrangian simulation runs were from daily satellite-based 
estimates of the surface current velocity fields. In addition, the effect of wind on the sea surface was also consid-
ered as an additional physical forcing affecting the displacement of the particles in the surface layer over time.

Specifically, daily fields of surface currents used for the simulation runs were from altimeter products 
(Absolute Geostrophic Velocities), as distributed by Copernicus marine environment monitoring service 
(CMEMS, http://marine.copernicus.eu/). Dates considered were 90-day long periods comprised between the 
1st of June and the 31st of August for each year from 1997 to 2013, over the space domain 33–40°N and 8–20°E.

The influence of wind on surface circulation patterns was evaluated using a value-added 6-hourly global grid-
ded (2.5° of latitude × 2.5°) analysis of ocean surface winds (NCEP Reanalysis data)38, available for download 
at http://www.esrl.noaa.gov/psd/. A detailed description on how the wind effect has been incorporated in the 
Lagrangian simulations is provided in the Supplementary Methods.

Daily surface current fields and wind data were included as external drivers for the whole duration of 
each simulation run. Finally, horizontal diffusion was also accounted for and incorporated in simulations as 
a random-walk process calculated from a uniform distribution35,39 using the GNOME default coefficient of 
105 cm2 s−1.

The simulation runs aimed at evaluating the distribution patterns of developing anchovy early stages (eggs + larvae) 
under the effect of hydrological and wind forcings during their planktonic phase40. The duration of the simulation runs 
was fixed at 28 days, the age at which anchovy larvae are considered able to swim fast enough to influence their hori-
zontal motion within the current field41,42. Actually, during most of the larval life stages, the speed and the duration of 
swimming episodes are very limited43 and the energetic costs linked to the locomotory activity are very high due to the 
viscous environment in which frictional forces dominate44,45. So, despite fish larvae may have an active role on dispersal 
processes46, in general they can be considered with a good accuracy as passive particles drifted by the currents occur-
ring in the upper layers40. Our assumption is also in agreement with findings by Faillettaz et al., who found a more 
efficient (coastward) larval behavior in species characterized by a relatively short pelagic larval duration (PLD = 13–18 
days) compared with the longer ones (PLD = 28–38 days), such as the European anchovy46.

Two simulation scenarios were adopted. In the first scenario (Scenario 1), for each one of the 17 summer 
surveys carried out over the period 1997–2013, the 10 most important stations in terms of anchovy egg concen-
trations were selected and considered as representative of the spatial distribution of the main yearly spawning 
grounds in the study area, so accounting for their interannual variability (Figs. 1 and 2). Their locations were used 
as releasing points for Lagrangian simulation runs (1,000 particles for each of the 10 stations).

In the second scenario (Scenario 2), a uniform eggs distribution was applied, taking into account information 
about the anchovy spawning behavior in the study area22. Specifically, particles were released from two fixed 
transects positioned over the continental shelf, in numbers proportional to their lengths (2,700 points and 7,300 
points, respectively; see Fig. 3).

In both simulation scenarios and for each year of time series, 4 different releasing dates were selected and 
used, at constant intervals 20 days apart (i.e.: June 1st, June 21st, July 11th and July 31st). This choice was made in 
order to account for the expected effect of the intra-annual variability in the main physical factors (surface current 
and wind) driving the distribution of particles (representing anchovy pre-juvenile stages) in the study area over 
the considered period (June-July).

The geographical positions of released particles at the end of simulation runs were determined and classi-
fied in relation to the bottom depth (shelf/slope areas) and to the subdivision of Mediterranean waters into the 
Geographical Sub-Areas (GSAs) adopted by the General Fisheries Commission for the Mediterranean (GFCM). 
Information about local bathymetry, as extracted from ETOPO1 database, 1 Arc-Minute Global Relief Model, 
hosted on the NOAA website was used to this aim47,48.

In both the adopted simulation scenarios, the effect of wind on larval advection was considered incorporating 
information about the expected vertical distribution of anchovy larvae in the water column. More detailed infor-
mation about the handling of wind data are given in Supplementary Material.

Larval retention indices (LRIs). The Larval retention indices (LRIs) adopted in this study are based on the 
total number of particles whose final positions at the end of the simulation runs occurred over the continental 
shelf (bottom depth < 200 m) area of GSA 16 (“South of Sicily”).

The rationale of this choice is that anchovy potential juvenile habitat is characterized by highly productive 
inshore waters23,25, where the environmental conditions are expected to be more favorable for the survival and 
development of early life stages. Different LRIs were constructed, integrating information from the four releasing 
dates available for each year of the time series (1997–2013) in both scenarios. Specifically, for each of the releasing 
dates and for each year included in the analysis, LRIs were evaluated singularly or averaged as groups of contig-
uous dates (Scenario 1: 3 groups of two dates, 2 groups of three dates, and finally 1 group with all dates, this last 
one covering the entire peak spawning period; Scenario 2: 1 group of two dates, 1 group covering the entire peak 
spawning period).

The remote sensing dataset. Remote sensing data on sea surface temperature (SST) and chlorophyll-a 
concentration (CHL-a) collected during the spawning period and in the immediately following period (hereafter 
in the manuscript indicated as “post-spawning” period) have been used in this study. These two parameters, 
more relevant for growth and survival processes21,49,50, were considered as indicative of the environmental con-
ditions experienced by the anchovy population in the study area during the planktonic and pre-recruitment 
stages. Monthly-mean SST (0.04° × 0.04° of spatial resolution) and CHL-a (0.01° × 0.01° of spatial resolution) 
data were firstly obtained from satellite products (L4, gap-free) made available by the Copernicus programme 
(http://marine.copernicus.eu/). Specifically, for each year over the period 1997–2013, average SST and CHL-a 
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concentration values over the continental shelf of GSA 16 during the anchovy peak spawning (June-August, year 
t) and post-spawning (from September, year t to January, year t + 1) periods were calculated. These environmen-
tal factors were then used as independent variables in the modelling approaches aimed at predicting the biomass 
of the anchovy population at year (t + 1).

The statistical models. The hypothesis of linear correlation between LRIs at year (t) and the recruitment 
success at year (t + 1) was firstly tested. Regressands were both the yearly anchovy biomass and the variable 

Figure 2. Final positions of particles released in each simulation run (duration: 28 days) for Scenario 1, by 
year. Colors of points corresponds to the selected 4 different releasing dates (June 1st, June 21st, July 11th, July 
31st) within each year. Yellow triangles represent the positions (variable by year) of releasing starting points for 
particles (i.e., the stations scoring the 10 top highest anchovy eggs densities in #/m3 in each summer survey, 
from 1997 to 2013; see also Fig. 1).
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“biomass + catch” previously defined. The multiple hypothesis testing issue was also taken into account by using 
the highly conservative criterion based on Bonferroni correction51.

Further statistical modeling approaches included the Generalized Linear Models (GLMs) and the Generalized 
Additive Models (GAMs).

The distribution of response variables has been evaluated using Shapiro-Wilk normality test. Gaussian distri-
bution and an “identity” link between the response variable and the systematic part of the model was considered 
in all models.

Figure 3. Final positions of particles released in each simulation run (duration: 28 days) for Scenario 2 by year. 
Colors of points corresponds to the selected 4 different releasing dates (June 1st, June 21st, July 11th, July 31st) 
within each year, whereas yellow lines represent the (fixed) positions of releasing starting points, placed on the 
main spawning grounds as detected by Basilone et al. (2013).
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Concerning the GAMs, the potential non-linear relationships between covariates and the dependent variables 
were investigated by cubic regression splines. The possible issue of multicollinearity prior to model selection was 
also checked52. All LRIs were significantly correlated with the dependent variables, but only the one that allowed 
the estimation of the best model in terms of AIC was selected for the subsequent analysis.

Other statistical models were implemented for exploring the cumulative effect of the selected LRI and the 
environmental conditions occurring during the spawning (SSTspawn and CHLspawn) and the post-spawning 
period (SSTpost and CHLpost) on the two response variables considered.

Finally, all models were runs both including and excluding the first year of the time series (1997). The rationale 
was to verify its impact on the analysis of the egg concentration data obtained from the 1997 ichthyoplankton 
survey, which were considered potentially biased by the exploratory character of this first survey in the study area.

Akaike’s Information Criterion (AIC) was used for models’ comparison and selection53. Statistical analyses were 
implemented using Statistica for Windows software (v. 10) and the package “mgcv” of R software, version 3.3.254.

Results
The effect of surface circulation (larval retention indices). Figure 1 shows the density distributions 
of anchovy eggs (in #/m3) collected in the study area for each of the 17 summer surveys considered in the pres-
ent study. The locations of the stations scoring the 10 top highest anchovy eggs densities over the continental 
shelf areas of GSA16 by year highlight the inter-annual spatial variability of main spawning grounds over time. 
Generally, the spawning grounds are displaced off the southern coast of Sicily, mainly at bottom depth in the 
range 50–100 m. However, in some years (e.g., in 2001 and 2010) spawning activity mainly occurred on the con-
tinental shelf area located in the NW side of the study area (Adventure Bank).

The final particle distributions resulting from the two simulation scenarios described above are shown 
in Figs. 2 and 3. The yearly pattern distributions show a dominant Eastward advection in both scenarios, as 
expected due to the direction of main physical forcings (surface current and wind). However, inter-annual and 
intra-annual variations are quite evident. This variability affects the yearly values of the adopted larval reten-
tion (pre-recruitment) LRIs, which are somewhat correlated each other (Fig. 4), but with significant deviations 
from the general pattern depending on the releasing dates (e.g., in Scenario 1 see values for years 2000–2001, 
2004–2005 and 2010–2011). However, it is worth noting that yearly deviations in Scenario 2 appear to have a quite 
different pattern compared to fluctuations observed in Scenario 1.

The difference between Scenario 1 and Scenario 2 are reflected in the relationships among yearly LRIs and 
biomass estimates (integrated or not by fish production) as reported in Table 1. Highly significant correlations 
were obtained in Scenario 1 using as independent variable the average LRI obtained assembling data from the two 
“central” releasing dates (June 21st and July 11th; see Table 1). The spatial distribution of particles generating this 
LRI can be found in the Supplementary Figures S1 (Scenario 1) and S2 (Scenario 2).

Quite similar results were obtained switching the regressand “biomass” with the variable “biomass + catch”. 
Figure 5a,b shows the trends in the yearly LRI (from 1997 to 2013) calculated for central dates under Scenario 1, 
compared to the anchovy biomass and to the biomass + catch variable one year ahead (from 1998 to 2014).

However, it is worth noting that, for both the dependent variables used in the analysis, even higher correla-
tions values were obtained removing the first year (1997) from the time series (Table 1).

Figure 4. Interannual fluctuations of estimated larval retention indices (LRIs) for different groupings among 
the adopted releasing dates. For Scenario 1 (space dependent, based on the estimated main yearly spawning 
grounds areas; time series depicted with continuous lines), average indices for all the four dates and for all 
combinations with two or three dates grouped and averaged are shown (denoted with a starting “P” in the 
legend)). For Scenario 2 (fixed releasing locations for all years, uniformly distributed over the continental shelf 
of the study area; time series depicted with dashed lines), only average indices for all releasing dates grouped 
together and for “central dates” are shown. “Central dates” are 21st June and 11th July, and the corresponding LRI 
in Scenario 1 is evidenced with a thicker line. See text for further details.
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Results were still significant even taking into account the multiple hypothesis testing issue (Miller, 1981), at 
least when adopting as regressor the LRI calculated over the central dates. Conversely, none of the estimated cor-
relations were significant for Scenario 2 (p > 0.05 in all cases), even though higher values were always obtained 
using the central dates (Table 1).

When regressing time series, a possible problem that needs to be controlled is the non-stationarity of the vari-
ables included in the analysis. Actually, it is well known that spurious correlations between variables may arise in 
presence of common trends. In our case, all the independent variables (LRIs) used in the simple linear regression 
analysis have a significant decreasing trend (a decreasing trend is also present in the dependent variables, though 
it is not significant). So, in order to verify the effect of these trends on the detected linear relationships, additional 
regression models were estimated considering (or not) the year 1997 and removing the linear trends from both 
independent (LRI according to Scenario 1 and considering “central dates”) and depended variables (biomass 
or biomass + catch) before the analysis. The best linear correlation coefficients were estimated by models that 
exclude 1997 from the time series (Biomass ~ LRI: r = 0.7242, p-value = 0.001; Biomass + catch ~ LRI: r = 0.7831, 
p-value < 0.001). However, significant correlation terms emerged also from models that include this year and 
consider biomass (r = 0.6655, p-value = 0.004) or biomass + catch (r = 0.7145, p-value = 0.002) as dependent 
variables.

Scenario 1 Scenario 2

LRI1_4 LRI1_3t LRI1_3b LRI1 _2c LRI1_2b LRI1_2t LRI2_4 LRI2_c

1997–2013

Biomass
0.521 0.649 0.515 0.723 0.261 0.580 0.270 0.437

p = 0.032 p = 0.005 p = 0.035 p = 0.001 p = 0.312 p = 0.015 p = 0.295 p = 0.080

Biomass + catch
0.449 0.591 0.468 0.704 0.208 0.512 0.195 0.395

p = 0.071 p = 0.013 p = 0.058 p = 0.002 p = 0.423 p = 0.036 p = 0.453 p = 0.117

1998–2013

Biomass
0.701 0.780 0.677 0.815 0.348 0.752 0.320 0.491

p = 0.002 p = 0.000 p = 0.004 p = 0.000 p = 0.186 p = 0.001 p = 0.227 p = 0.054

Biomass + catch
0.675 0.762 0.678 0.833 0.328 0.729 0.266 0.474

p = 0.004 p = 0.001 p = 0.004 p = 0.000 p = 0.215 p = 0.001 p = 0.319 p = 0.064

Table 1. Linear correlation coefficients among LRIs and response variables “biomass” and “biomass + catch”, for 
Scenario 1 (LRI1) and Scenario 2 (LRI2), and for periods 1997–2013 and 1998–2013. LRI1_4 and LRI2_4: mean 
of all four releasing dates (June 1st, June 21st, July 11th, July 31st). LRI1_3t: last three dates (June 21st, July 11th, July 
31st). LRI1_3b: first three dates (June 1st, June 21st, July 11th). LRI1_2c and LRI_2c: “central dates” (June 21st, July 
11th). LRI1_2b: first two dates (June 1st, June 21st). LRI1_2t: last two dates (July 11th, July 31st). Significant results 
(p < 0.05) are in bold, in bold and underlined the most significant results satisfying the Bonferroni’s correction 
(see text).

Figure 5. Trends in larval retention index (LRI) on Scenario 1 calculated on “central” dates (June 21st–July 11th) 
for the period 1997–2013, compared to (a) anchovy acoustic biomass estimates one year ahead (from 1998 to 
2014) and (b) anchovy acoustic biomass estimates one year ahead (from 1998 to 2014) integrated with landings 
(see text for details).
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In summary, results show that the percentage of variance in yearly anchovy biomass explained by surface cir-
culation in the study area is in the range 44–51% when considering the entire time series and up to 61–70% when 
excluding data of first year from the time series.

GAMs confirmed the linear relationship among variables and highlighted the same patterns evidenced by 
linear regression models.

The cumulative effect of LRI and other environmental factors. GLMs and GAMs were initially used 
in order to investigate the relationship between the anchovy biomass (or biomass + catch) and some selected 
environmental factors characterizing the potential anchovy habitat during the spawning period (June–August, 
parameters SSTspawn and CHLspawn) and during the juvenile growth (September-January, parameters SSTpost 
and CHLpost)49. Moreover, the same statistical methods were applied including the LRI based on the central dates 
under Scenario 1 among the regressors. All models were run with or without the inclusion of the first year of the 
time series (1997). Results are summarized in Table 2 and in Fig. 6.

The selected environmental factors (SSTspawn, CHLspawn, SSTpost and CHLpost) alone did not produce 
significant effects in the multiple linear regression approach. On the other hand, GLMs including the selected 
LRI among considered factors highlighted both the significant positive effect of this index and the negative con-
tribution of the CHL-a concentrations. The fitting performance in terms of deviance explained and AIC improved 
when the variable “biomass + catch” was used as dependent variable. Conversely, no improvements in the fits 
were detected when excluding the first year of the time series from the analysis.

GAMs confirmed these findings and allowed to achieve the best fitting results. The application of the cubic 
regression splines on the selected environmental factors alone did not show significant relationships with the 
regressand “biomass”. However, SST during the spawning period (SSTspawn) was found negatively related to the 
regressand “biomass + catch” (Table 2 and Fig. 6a,b), even though the test statistics was barely significant in this 
case (p = 0.043).

When the LRI factor was included in the GAMs, the fitting performance dramatically improved (with 
deviance explained ranging from 85.7% to 91.9%). LRI was the most significant term in all models, while the 
CHL-a concentration term resulted significant only when “biomass + catch” was used as dependent variable. 
In particular, a positive linear relationship emerged with the CHL-a concentration during the post-spawning 
period (CHLpost), while the CHL-a concentration occurring during the spawning period (CHLspawn) showed 
a non-linear trend, with a negative relationship only at lower values (CHL-a < 0.065 µg/l) (Fig. 6c,d). Similarly to 
what observed using the linear (GLM) approach, no differences emerged when excluding from the analysis the 
first year of the time series.

Model Dataset Dependent variable Independent variables sign terms (estimate) p-value Dev. Expl. AIC

GLM 1997–2013 biomass SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms

GLM 1997–2013 biomass + catch SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms

GLM 1998–2013 biomass SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms

GLM 1998–2013 biomass + catch SSTspawn + CHLspawn + SSTpost + CHLpost non significant terms

GAM 1997–2013 biomass s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) non significant terms

GAM 1997–2013 biomass + catch s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) SSTspawn (Fig. 6.a) 0.043 63.62% 321.84

GAM 1998–2013 biomass s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) non significant terms

GAM 1998–2013 biomass + catch s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) SSTspawn (Fig. 6.b) 0.043 63.62% 321.84

GLM 1997–2013 biomass LRI + SSTspawn + CHLspawn + SSTpost + CHLpost
LRI (2.871) 0.001

80.33% 311.94
CHLspawn (−6.512e + 05) 0.038

GLM 1997–2013 biomass + catch LRI + SSTspawn + CHLspawn + SSTpost + CHLpost
LRI (2.867) 0.001

82.05% 309.51
CHLspawn (−6.078e + 05) 0.037

GLM 1998–2013 biomass LRI + SSTspawn + CHLspawn + SSTpost + CHLpost
LRI (2.871) 0.001

80.33% 311.94
CHLspawn (−6.512e + 05) 0.038

GLM 1998–2013 biomass + catch LRI + SSTspawn + CHLspawn + SSTpost + CHLpost
LRI (2.867) 0.001

82.05% 309.51
CHLspawn (−6.078e + 05) 0.037

GAM 1997–2013 biomass LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) LRI (2.8663) 0.001 85.70% 308.91

GAM 1997–2013 biomass + catch LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost)

LRI (2.9253) 0.005

91.90% 300.66CHLspawn (Fig. 6.c1) 0.035

CHLpost (Fig. 6.c2) 0.038

GAM 1998–2013 biomass LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost) LRI (2.8663) 0.001 85.70% 308.91

GAM 1998–2013 biomass + catch LRI + s(SSTspawn) + s(CHLspawn) + s(SSTpost) + s(CHLpost)

LRI (2.9253) <0.001

91.90% 300.66CHLspawn (Fig. 6.d1) 0.035

CHLpost (Fig. 6.d2) 0.038

Table 2. Outcomes of Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). In GAM, 
the use of s() stands for the application of the cubic regression spline as a smooth term. When significant terms 
(sign. terms) were detected, the model regression coefficients (estimate) and the associated p-value are shown, 
as well as the deviance explained and the AIC index, as an indicator of the model fitting performance.
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Discussion and conclusions
The obtained results are in accordance with previous studies showing the importance of factors other than fishing 
pressure, namely bottom-up processes induced by environmental variability, in affecting the interannual fluctua-
tions on the standing stock biomass of small pelagic species3,6,55. Indirectly, in our study this feature appears to be 
confirmed by the similar model outputs obtained with the two adopted dependent variables (“biomass” and “bio-
mass + catch”). In addition, the available time series for anchovy landings is not correlated with anchovy biomass.

Most of the observed variance was explained by the adopted LRI. The comparison of the two simulation 
scenarios suggests the importance of the yearly location of the main spawning grounds, variable across years, in 
modulating the recruitment strength and, definitely, the fish standing stock biomass available for the exploitation 
of local fisheries. In fact, significant correlations were only observed when using the LRIs of Scenario 1, which 
implies the incorporation of prior knowledge on the spawning grounds.

In general, our results support larval retention hypothesis in evidencing the importance for larval production 
of being retained in natal coastal spawning areas in order to favor the recruitment success56–58.

In addition, our findings confirm the importance of spatially-based approaches aiming at reproducing the 
dynamics of the recruitment of small pelagic fish.

Our results are in line with the findings of previous studies that indicated the central role of ocean circula-
tion in driving recruitment strength and, definitely, resource abundance59,60. These last studies, focused on the 

Figure 6. Trend of the significant cubic regression splines implemented in the GAMs described in Table 2. 
Only significant environmental factors are considered. Upper panels refer to models not including the LRI 
index among the factors, with (a) using the entire available time series and (b) excluding the first year (1997 
for the environmental factors and 1998 for the anchovy acoustic biomass estimate. Panels c1,2) and d1,2) refer 
to models that include the LRI index, again with (c) panels using the entire available time series and (d) panels 
excluding the first year. See text for further details.
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recruitment of the European anchovy in the NW Mediterranean Sea, used Spatially-explicit individual-based 
Models (SEIMBs) to provide operational information that can be used to deliver early predictions of fish abun-
dance indices and improved spatio-temporal management strategies. Actually, the impact of unfavorable trans-
port to offshore waters is very similar to the pattern evidenced by our simulation approach in the Northern SoS. 
In particular, in Scenario 1 on average just about 30% of larvae (particles) were transported to coastal areas, with 
a quite high interannual variability (CV = 52%).

Incidentally, results for Scenario 2 show a higher percentage of larval retention in shelf areas (32%), but a much 
lower variability (CV = 36%), stressing the importance of interannual variability in favoring the success of recruit-
ment processes. Therefore, as well as already shown for the anchovy population in the NW Mediterranean59, prior 
knowledge of the initial spawning grounds may strongly affect recruitment estimates. In addition, in both areas 
the inter-annual fluctuations in anchovy recruitment (which in the study area is also a proxy for total biomass) are 
correlated with the success of larval retention processes, despite the quite low observed retention rate60. However, 
though SEIBMs are very powerful tools in predicting spatio-temporal patterns for recruitment, they are much 
more data (and analysis) demanding compared to the simpler approach adopted in this study. In our case, data 
needs for getting predictions on recruitment strength (and, for anchovy in Northern SoS, also on the biomass of 
the entire fish population) mainly concern the basic information to build the LRIs, i.e. the anchovy eggs distribu-
tion and concentrations (obtained from surveys) and the satellite-based daily surface currents during the anchovy 
peak spawning period in the study area. It is worth noting that our results would allow for an early estimation 
anchovy biomass one year in advance compared to the availability of hydroacoustic-based estimates, which are 
typically delivered after several months following the survey at sea. This represents a very important and relevant 
product in support to fisheries management.

Another important remark is that the observed relationships should be considered at least as partially inde-
pendent on the measured average intensity of yearly spawning activity, as inferred by the absolute fish egg densi-
ties estimated through the yearly summer surveys. Actually, this last information was used in the approach herein 
adopted just for determining the locations of releasing starting points for particles of Scenario 1, variable across 
years. In general, the importance of advection of anchovy fish larvae by the surface currents is evidenced in both 
scenarios. However, the better results obtained within Scenario 1 compared to Scenario 2, which did not produce 
significant relationships, underline the role that regular plankton sampling surveys may have in delivering early 
predictions of the anchovy standing stock biomass. In fact, scientific surveys represent the only way to get infor-
mation on the interannual variability in the distribution of the main spawning grounds within the study area, and 
this knowledge is essential for the construction of the LRIs used in this study.

Another indirect result of the observed correlation patterns between LRIs and anchovy biomass is about the 
timing for anchovy spawning that can be generally considered more favorable for the success of recruitment 
processes in the Northern SoS. In fact, the adopted time span (June-July) for particles releasing in the Lagrangian 
simulation runs was wide enough to catch a subset of dates (in this study, the “central” ones) that are the best ones 
in terms of probability of getting more accurate predictions of recruitment (and population biomass) strength. 
In addition, the consistent correlation results obtained using the different LRIs time series also suggest that 
intra-annual movements of the spawning stock within the study area are most probably quite limited. Namely, an 
important assumption for the validity of the adopted approach is that the main spawning grounds are relatively 
stable within the spawning season, even though only the carrying out of multiple ichthyoplankton surveys during 
the reproductive period would allow for verifying this hypothesis.

GLM and GAM modeling approaches used in this study were also informative on the limited contribution 
that other environmental factors such as SST and CHL-a concentration may have in improving the accuracy of 
anchovy biomass predictions. Actually, even though their contribution in the increasing the explained deviance 
was low, the detected significant patterns are consistent with the present knowledge on the ecology of the anchovy 
population in the Northern side of the SoS. In particular, the detected significant negative impact of SST during 
the spawning period on anchovy biomass is consistent with what is known about the negative effect that high 
temperature regimes may have on eggs production22. In addition, the positive relation between CHL-a concen-
tration during the post-spawning (or pre-recruitment) period and anchovy biomass one year ahead is consistent 
with the expected higher survival rates for juvenile stages during the pre-recruitment phase, when the more 
favorable feeding conditions are able to support faster growth rates24,28,49.

However, further research efforts are needed to investigate the role of other physical forcings, such as temper-
ature and/or chlorophyll concentration, in affecting the mortality rates of advected anchovy larvae (which would 
eventually influence the magnitude of larval retention indices as calculated in the present paper) and even the 
survival of juvenile stages. Moreover, the influence of the larval swimming ability on the dispersion of the early 
life stages represents an interesting research question that could be further investigated. Although this study 
showed that the passive larval dispersion in the first 28 days during the spawning season in one year represents 
the main factor affecting the anchovy stock biomass of the following year, we cannot exclude that a potential effect 
of the active swimming behavior in particular by late larval stages could improve larval retention (and recruit-
ment success), as showed for other demersal species46.

Other relevant fields of investigation are about the factors affecting the general surface circulation and the pat-
terns that are able to favor larval retention processes in Northern SoS. This topic, which is outside the scope of the 
present study, is worth of further research effort because it would permit to speculate on possible future scenarios 
for this fish population in relation to other physical forcings, including the increasing trend in the temperature 
regime of Mediterranean waters.

Finally, the same approach used in this paper for anchovy in Northern SoS could be applied to other small 
pelagic fish species such as European sardine (Sardina pilchardus) and round sardinella (Sardinella aurita) in the 
same study area or in other ecosystems where the variability of the environmental conditions may strongly impact 
on the fate of reproduction offspring.
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