
1Scientific RepoRtS |         (2020) 10:1016  | https://doi.org/10.1038/s41598-020-57924-9

www.nature.com/scientificreports

Likelihood contrasts: a machine 
learning algorithm for binary 
classification of longitudinal data
Riku Klén  1,2,3, Markku Karhunen1,3 & Laura L. elo1*

Machine learning methods have gained increased popularity in biomedical research during the recent 
years. However, very few of them support the analysis of longitudinal data, where several samples are 
collected from an individual over time. Additionally, most of the available longitudinal machine learning 
methods assume that the measurements are aligned in time, which is often not the case in real data. 
Here, we introduce a robust longitudinal machine learning method, named likelihood contrasts (LC), 
which supports study designs with unaligned time points. Our LC method is a binary classifier, which 
uses linear mixed models for modelling and log-likelihood for decision making. To demonstrate the 
benefits of our approach, we compared it with existing methods in four simulated and three real data 
sets. In each simulated data set, LC was the most accurate method, while the real data sets further 
supported the robust performance of the method. LC is also computationally efficient and easy to use.

Many biomedical studies consist of longitudinal data, i.e. data with multiple samples for each individual, taken 
at different time points. Here, we define longitudinal data so that the covariates are measured repeatedly, but not 
necessarily at even intervals or at the same time points for each individual. This type of data turns out to yield 
substantial modelling challenges. For example, the most widely used binary classifiers, such as Lasso1, random 
forest2 and artificial neural networks3, are not designed for this type of data. Therefore, they cannot fully benefit 
from the repeated measurements. Moreover, those machine learning methods which support longitudinal data 
typically assume that the time points are aligned between the individuals4.

Many statistical methods are available for longitudinal data, especially within the discipline of econometrics5, 
but these methods typically also assume the time points to be aligned and evenly spaced. The only main exception 
suitable for biomedical data is the linear mixed-effects model (LME) and its modifications6–9, which support data 
with non-aligned time points. However, the LME model is a regression model for a continuous response variable. 
Many different solutions to turn the model into binary classifier can be envisaged10,11. Here, we present one such 
solution: the method of likelihood contrasts (LC). We introduce this novel method because it exploits all longitu-
dinal data in classification instead of a single time point or average. LC is fast and easy to calculate, and secondly, 
our results show its good performance in simulated and real data sets alike.

We take the univariate LME as the starting point and use it as a building block for our LC algorithm. Briefly, 
we fit LMEs using a standard software package (lme4 version 3.1–131.1)12, and then use their maximised 
log-likelihood functions for inference. We assign each sample to the group where the log-likelihood changes 
most favourably. Thus, this method amounts to a binary classifier. However, contrary to many other machine 
learning methods, LC is computationally very efficient, easy to implement and the need to fine-tune parameters is 
minimal. We provide an open-source implementation of LC at https://elolab.utu.fi/software/.

In this paper, we demonstrate the performance of LC in four simulated and three publicly available real data 
sets. In each data set, we test the discriminatory power of LC regarding the case-control status of the study sub-
jects and compare it to that of widely used machine learning and predictive algorithms, including Lasso1, random 
forest (RF)2, support vector machines (SVM)13, neural networks (NN)3, and LME regression models. Two of the 
real data sets derive from the book of Rizopoulos14 on longitudinal models and are openly accessible15. These 
represent typical clinical data sets used for longitudinal modelling. The third real data set concerns molecular data 
on pediatric Type 1 Diabetes mellitus collected in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) 
study16 and is also publicly available17.
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Methods
In this section, we introduce the method of likelihood contrasts (LC). We also describe other methods used in 
comparison.

Likelihood contrasts. Let zi denote an observation of a new individual i, which may contain data from 
multiple time points, and response variables and covariates alike. The individuals are labelled as δ = 1i  (case) or 
δ = 0i  (control). We estimate two separate models and see which one gives zi a better fit. To this end, let −z i

1  and 
−z i
0  denote training data from cases and controls, respectively, and let θ|− z( )i

1 1  and θ|− z( )i
0 0  denote the maximised 

log-likelihoods of the corresponding two separate models, M1 and M0, with the parameter estimates θ1 and θ0. We 
then calculate the likelihood contrasts as
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and assign zi to the group where dk is larger.
It is also possible to extend the method to yield probability scores. This can be justified by considering the 

log-likelihood difference −d d1 0. Quite intuitively, − =d d 01 0  can be used as a cut-off point in binary classifica-
tion. In this respect, −d d1 0 is comparable to the linear predictor (i.e., the linear combination of covariates) found 
in logit models. In logit models, the linear predictor is mapped to probability score through the inverse of the 
logistic link function. Adopting this approach, we have
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It is quite naturally possible to extend LC into a multinomial classifier. In that case,
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where L is the number of classes. However, we only use binary classification in this paper.

Implementation with mixed models. Above, zi denotes any data, encompassing ni measurements for 
individual i. Here, we use LC in combination with LMEs, which are versatile tools for modelling jointly the effect 
of covariates, confounders and sampling artefacts. In matrix notation, an LME can be defined as
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where y is the vector of responses, X is the matrix of covariates, β is the vector of regression coefficients, and  is 
the error term. A X( ) is the covariance matrix of the measurement errors which may depend on X. An LME differs 
from the usual linear model because A X( ) is not a diagonal matrix. The off-diagonal terms of A X( ) represent 
correlations between the samples, and are considered as the ‘mixed effects’. They arise as a result of study design 
or spatio-temporal vicinity of the samples.

In practice, we assume that the data for each individual i involve a disease-specific longitudinal marker yij and 
a number of covariates denoted by xij. In the sequel, we denote the j th measurement of a marker for individual i 
as yij, and we model the time course of this marker as
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where δi denotes the case-control status, tij denotes time, σ~u NID(0, )i i
2  denotes an individual-specific random 

effect and σ~ NID(0, )ij
2  denotes a measurement error. Here, μ σNID( , )2  means normal, independent and iden-

tically distributed with mean μ and variance σ2. There are two models, as there are two groups of patients (δ = 1i  
and δ = 0i ). The purpose of LC is to distinguish between these groups. An LME-based LC algorithm is imple-
mented in R and is publicly available at https://elolab.utu.fi/software/.

Connection to statistical paradigms. The decision rule of LC resembles the likelihood-ratio (LR) test 
and Bayesian posterior probabilities but differs from both. In this subsection, we discuss these similarities and 
differences. Generally speaking, as compared to LR test, our method is not based on nested models, and is thus 
more general. As compared to Bayesian inference, our method does not require numerical integration schemes, 
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and is thus more efficient. Moreover, our method is suited for situations where the likelihood contribution of 
each individual observation cannot be calculated, as it uses the change of log-likelihood as a proxy for likelihood 
contribution.

In more detail, the LR test statistic is defined as

θ θ= | − |− − − − LR y y y y y y2( ( , , ) ( , )), (7)i i i i i i
1 0 1 1 0 0

This definition is very standard and can be found from statistics text books. It is based on the fact that the 
likelihood ratio thus defined has favourable distributional properties known as the Wilks’ theorem. The LR test, 
however, is based on nested models. For our method, the implied test statistic is

θ θ θ θ− = | − | − | + |− − − −   d d y y y y y y( , ) ( , ) ( ) ( ) (8)i i i i i i1 0
1 1 0 0 1 1 0 0

and it can be calculated for disjoint models. In parallel with this, Bayesian posterior probabilities typically con-
cern the whole data, as the purpose is to choose the optimal model. Contrary to this, LC concerns each observa-
tion separately. To see the connection to Bayesian inference, assume that the information in −y i

0  and −y i
1  is so great 

that it essentially fixes the values of θ0 and θ1. Following this,
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i.e. the maximised likelihood is the likelihood of the whole model. (In other cases, one would need to integrate 
over θk to get π |y M( )i

k ; see Gelman et al.18.) Moreover, let us assume that the observation units are independent, 
and thus, the likelihood is separable as
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Now, if one gives equal prior weights for both models, i.e. π π =M M( ), ( ) 1/20 1 , it follows that
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i.e. the posterior probability of M1 for yi coincides with our probability score, see Eq. (2). Finally, someone might 
ask why we use the likelihood contrasts d0 and d1 to classify individual i, and not just the likelihood contributions 
 θ|y( )i

0  and 
 θ|y( )i

1 . This is because in complex models, such as LME, it is not possible to calculate likelihood con-
tributions as such. Thus, we use the likelihood contrast

θ θ= | − |− − d y y y( , ) ( ) (13)k i i
k

i
k1 1

as a proxy for 
 θ|y( )i

k . Note that LC does not produce a single model with fixed coefficients, but it creates new 
coefficients for each new individual.

Comparison with other methods. We compared the performance of LC to a number of statistical and 
machine learning methods, including LME, linear feature extraction (LF), logit mixed-effects regression (imple-
mented as the function GLMER in the R package lme419), Lasso, random forests (RF), support vector machines 
(SVM), and neural networks (NN). Among the compared methods, LME and GLMER represent statistical meth-
ods, while Lasso, RF, SVM and NN are widely used machine learning algorithms. LF uses a strategy to account for 
the longitudinal dimension, but relies on a standard statistical technique, logistic regression. Below, we briefly 
outline these methods using the notations given above. In all analyses, the task was to predict δi on the basis of the 
covariates xij and the longitudinal marker yij. We denote the averaged value of the longitudinal marker over time 
by yi  and averaged covariates by xi.

In LME, the marker was first modelled as

ˆ β θγ= + + + +′ ′x xy t t u , (14)ij ij ij ij ij i ij

where σ~u NID(0, )i 1
2  denotes an individual-specific random effect, and  σ~ NID(0, )ij 2

2  denotes a measure-
ment error. Then, we averaged the estimated values ŷij over time = …j n1, , i and ran a logit regression of δi on 
the averages. We fitted the LME models using the R package nlme version 3.1–131.112.

In LF, we first ran a linear regression of yij on tij within each individual i to obtain individual-specific slopes and 
intercepts, denoted by bi and ai, respectively,

= + .ŷ b t a (15)ij i ij i

Subsequently, we ran a logit regression of δi on x b a( , , )i i i  to predict δi.
Logistic Lasso was fitted on δ x y t( ; , , )i i i i  using the R package glmnet version 2.0–1320 with ten-fold 

cross-validation. Here ti is the averaged measurement time for each individual.
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The GLMER model was constructed on δ x y t( ; , , )i ij ij ij  using the R package lme4 version 1.1–1519.
The RF model was constructed on δ x y t( ; , , )i i i i  using the R package randomForest version 4.6–1221.
An SVM (more precisely, epsilon regression) was constructed on δ x y t( ; , , )i i i i  using the R package e1071 ver-

sion 1.6–822.
An artificial neural network was constructed with one hidden layer on δ x y t( ; , , )i i i i  using the R package nnet 

version 7.3–1223.
Methods LME, Lasso, RF, SVM and NN involved averaging of values before modelling. We also implemented 

the methods without averaging by considering each time point as a separate measurement. We denote these 
methods by LME2, Lasso2, RF2, SVM2 and NN2.

All machine learning models were built using default parameters. Internal cross validation was used to deter-
mine coeffiecients for the logistic model and the penalty factor in Lasso. RF implemented Breiman’s random for-
est algorithm using 500 trees with sample replacement. In SVM, support vectors were defined using epsilon 
regression with ε = .0 1. NN used one hidden layer and the number of units in the hidden layer was determined 
to be half of the number of variables.

Note that methods LC, LF, LME, LME2, Lasso2, RF2, SVM2, NN2 and GLMER use information for each time 
point, while methods Lasso, RF, SVM and NN use information averaged over time points per subject. Out of the 
compared methods, only LC, LF and GLMER directly make prediction for a new subject, while the other methods 
create a prediction for a single time point. For these methods, we made predictions for each time point for each 
subject, and averaged the predictions to obtain a single prediction for each subject.

Model evaluations. We compared the performance of the different methods on the basis of their binary 
predictions for test data, using cross validations as explained in the sequel. We truncated the probability scores 
given by the different models into binary predictions by using 0.50 probability as the cut-off and then assessed the 
performance of the binary predictions by calculating sensitivity and specificity. We considered 0.50 as the baseline 
value of sensitivity and specificity, assuming that a completely uninformative classifier is equally likely to classify 
the subjects as cases or controls. We used Wilcoxon’s rank sum test to compare the sensitivity and specificity 
obtained from each method to the baseline values. Different methods were compared using paired Wilcoxon’s 
rank sum test. To account for multiple testing, we applied Benjamini-Hochberg false discovery rate (FDR) cor-
rection24 to the Wilcoxon’s rank sum test P-values.

Additionally, we also present the F1 scores, accuracies and receiver operating characteristic (ROC) curves for 
each method and data set in Supplementary material.

Materials
To evaluate LC along with existing predictive methods we used simulated and real data.

Simulated data. In the simulated data, we considered one static covariate, the ‘treatment’ denoted by xi, and 
one longitudinal marker denoted by yij. We assumed here that the distributional form of the marker differed 
between cases and controls, and thus, yij was informative regarding the case-control label δi. Altogether, we con-
sidered four different scenarios described in detail below.

In each scenario, the individuals were equally likely to be cases or controls. We assumed four time points per 
individual ( =n 4i ) and we assumed xi to be Bernoulli distributed with parameter value 0.5 and tij to be uniformly 
distributed on the interval −( 1, 1), i.e. we assumed that the treatment was allocated randomly and the time was 
measured relative to the event. In each scenario, 1,000 replicate data sets were generated to control for the sam-
pling variation.

In Scenario 1, we assumed that the cases and controls reacted differently to the treatment and also that the 
natural course of the marker was different between the groups. Thus, we specified the model as

ε δ

ε δ

= − + + =

= − + + + =

y x t u
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, 1, (16)
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where .~u NID(0, 0 25)i  is an individual-specific random effect and ε .~ NID(0, 0 25)ij  is the measurement error. 
Here, as in Eq. (17) below, the coefficients were chosen to illustrate the biological phenomena explained in the 
text, simultaneously keeping the simulation model as simple and tangible as possible. In this scenario, we used 

=n 401  samples as the training data and assessed the model performance in an independent test data of =n 202  
samples, repeating the process 1,000 times.

In Scenario 2, we assumed that the distribution of yij was more similar between the cases and controls than in 
Scenario 1. We assumed that the controls did not react to the treatment and the natural course of the marker was 
similar between the groups, albeit milder in controls. Thus, we specified the model as

ε δ

ε δ

= . + + =

= − + + + =

y t u

y x t u

0 5 , 0,

, 1, (17)

ij ij i ij i

ij i ij i ij i

where .~u NID(0, 0 5)i  is an individual-specific random effect and ε .~ NID(0, 0 5)ij  is the measurement error. 
Also in this scenario, we used =n 401  samples as the training data and assessed the model performance in an 
independent test data of =n 202  samples, repeating the process 1,000 times.

Scenarios 3 and 4 were the same as Scenarios 1 and 2, respectively, but here we assumed larger training and 
test data sets with =n 1601  and =n 802 .
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Real data. We used two clinical data sets and one high-throughput molecular data set. In each of these real 
data sets, we used 2/3 of the data set as training data and predicted the labels in the remaining 1/3 to assess the per-
formance of the different methods. To control for sampling variation in model evaluation, we repeated the process 
1,000 times which diminished the standard errors more than sufficiently (<0.01 for variables on a scale of 0–1).

Clinical data sets. The two clinical data sets (Pbc2 and Prothro) were chosen from Rizopoulos14, distributed 
in the R package JM (version 1.4–7)15. The sample sizes of the real data sets are summarised in Table 1. In both 
clinical data sets, δ = 1i  means death and δ = 0i  staying alive.

The Pbc2 data set was from a study on primary biliary cirrhosis25. The longitudinal marker in this data set 
was logarithm of blood bilirubin (mg/dl) over time and we used the drug (placebo or D-penicillamine) as a static 
covariate. Time (years) and bilirubin values were scalar numbers and drug status had a binary value.

The Prothro data set was from a study of liver cirrhosis26. The longitudinal marker was prothropin level and we 
used the treatment (placebo or prednisone) as a static covariate. Time (years) and prothrombin levels were scalar 
numbers, and treatment status was a binary variable.

For Pbc2 and Prothro, we used the LME regression (in methods LC and LME) motivated by Rizopoulos14 as

α β γ θ= + + + + +y x t t x u , (18)ij i ij ij i i ij

where xi denotes the medication status of individual i.

High-throughput molecular data set. The high-throughtput molecular data set was from the Finnish 
Type 1 Diabetes Prediction and Prevention (DIPP) study16 and involved preprocessed mRNA expression levels 
measured on Affymetrix Human Genome U219 microarray17. There was a total of 49,386 probes corresponding 
to different genes in the data that were measured over time. The data were downloaded from The National Center 
for Biotechnology Information webpage (https://www.ncbi.nlm.nih.gov/) using Gene Expression Omnibus iden-
tifier GSE30211. Each probe was z-scored. The mRNA data consisted of two separate data sets: seroconverted 
children and progressors. The data set of seroconverted children contained samples from subjects close to the 
time when diabetes-related autoantibodies developed. Samples of the progressors’ data set were concentrated 
close to the diagnosis of diabetes. Here, we focused on the clinical phenotype, i.e. progressors, and defined the 
case-control label as diagnosed (δ = 1i ) or not diagnosed (δ = 0i ) with Type 1 diabetes.

To select the probes to be used as the longitudinal covariates, we first used the data from seroconverted chil-
dren. For each seroconverted child, the first four follow-up samples were selected. Probes with median expression 
lower than the median of median expressions (5.47) were excluded. The remaining 24,693 probes were ranked 
in two ways: 1., a ranking based on Wilcoxon’s rank sum test P-value between cases and controls for all sam-
ples, and 2., a ranking based on Wilcoxon’s rank sum test P-value between cases and controls for subjectwise 
median values. The two rankings were combined by taking the average rank and top five probes were selected. 
The selected probes were 11751509_a_at, 11723996_a_at, 11759536_a_at, 11733701_a_at and 11748922_x_at, 
and they mapped to genes RCN1, GLCCI1, TTC17, FKBP11 and NSMF, respectively. For simplicity, we will refer 
to the probes by using their gene symbols. No static covariates were used.

To construct the predictive models we used the data set progressors. For methods LC and LME, we used age 
as marker yij and top 5 probes as longitudinal covariates xij as

θα= + + + .′xy u (19)ij ij i ij

For the other methods, we trained the models by using averaged information from the 5 top probes and age.

Results
In this section, we represent the results for four scenarios of simulated data and three real data sets. In the simu-
lated data, we considered one static covariate and one longitudinal marker. The four simulation scenarios differed 
in the distributions of the markers and in sample sizes. The real data sets contained two clinical data sets and one 
high-throughput molecular data set. We emphasise that we used multiple simulation replicates for simulated data, 
and exhaustive cross validation for real data.

We compared the performance of LC to a number of statistical and machine learning methods, including 
LF, LME, GLMER, Lasso, RF, SVM and NN, in terms of their sensitivity and specificity. Results for the methods 
LME2, Lasso2, RF2, SVM2 and NN2 are collected in the Supplementary material. Additionally, we present the F1 
scores, accuracies and the receiver operating characteristic (ROC) curves for each method in the Supplementary 
material.

Total number 
of samples (N)

Number of 
individuals (n)

Number of 
cases

Number of 
controls

Number of time points 
per individual ± SD

Pbc2 1,945 312 140 172 6.2 ± 3.8

Prothro 2,968 488 292 196 6.1 ± 3.5

DIPP, seroconverted 68 17 4 13 4.0 ± 0.0

DIPP, progressor 238 40 18 22 6.0 ± 1.9

Table 1. Sample sizes of the real data sets.
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Simulated data. In the simulated data, all methods had fairly good performance (Fig. 1, Supplementary 
Figs. 1–3, and Supplementary Table 1). All other combinations of methods and scenarios had highly significant 
sensitivity (P < 1.0 × 10−6) and specificity (P < 1.0 × 10−6) compared to the baseline value 0.5, except for sensitiv-
ity of Lasso in Scenario 2 (P = 0.90). Thus, it seems that Lasso was not able to distinguish between the cases and 
controls on the basis of the overlapping distributions of the temporal averages. In all scenarios, LC was the best 
method in terms of both sensitivity (in each pairwise comparison P < 1.0 × 10−6) and specificity (in each pairwise 
comparison P < 1.0 × 10−6), closely followed by LF. The F1 scores, accuracies and ROC curves supported similar 
conclusions (see Supplementary Table 1, and Supplementary Figs. 2 and 3).

The simulated scenarios differed from each other so that Scenarios 1 and 3 had greater distinction between 
cases and controls than Scenarios 2 and 4. On the other hand, Scenarios 3 and 4 had more samples than Scenarios 
1 and 2. As expected, most methods achieved the best results in Scenarios 3 and 4, which had higher numbers of 
training samples (Fig. 1, Supplementary Fig. 1). However, for some methods (LC and LME), the difference between 
Scenarios 1 and 3, i.e. a difference attributable to sample size, was very small. Regarding the effect of the sample 
distributions, better results were achieved in Scenario 1 than in Scenario 2, as Scenario 2 had a smaller difference 
between the sample groups. A similar observation holds for Scenarios 3 and 4, as expected (Fig. 1, Supplementary 
Fig. 1). Methods LME2, Lasso2 and RF2 had similar performance compared to the corresponding averaged meth-
ods LME, Lasso and RF. In Scenarios 1 and 3, methods SVM2 and NN2 outperformed SVM and NN.

To conclude, the results obtained from the simulated data sets demonstrated that all methods could deliver 
meaningful results, and LC had a very good performance, as compared to the twelve other contemporary 
approaches tested.

Real data. Although all the methods tested here performed well in the simulated data sets, this pattern 
changed when we moved to the real data sets (Fig. 2, Supplementary Figs. 4–6, and Supplementary Table 2). 
While LC and RF had both specificity and sensitivity highly significantly over 0.50 in all three real data sets 
(P < 10−6), this was not the case for any of the other methods. Instead, all the other methods had either sensitivity 
or specificity below 0.55 in at least one data set. The Prothro and DIPP data sets turned out to be the hardest to 
predict in terms of sensitivity and specificity. In the Prothro data, LC achieved sensitivity of 0.65 and specificity 
of 0.70, and in the DIPP data, sensitivity of 0.84 and specificity of 0.63. The relative difficulty of the real data sets 
was also seen in the F1 values, accuracies and ROC curves (Supplementary Table 2, Supplementary Figs. 5 and 6). 
LC was the only method that obtained accuracy and F1 value higher than 0.7 in all real data sets (Supplementary 

Figure 1. Model performance in simulated data. This figure represents sensitivity and specificity in simulated 
data. The Scenarios refer to data-generating process. The vertical lines around the dots represent standard error, 
when visible. Sensitivity and specificity have been calculated from 1,000 Monte Carlo replicates. Statistics not 
significant at the false discovery rate level of 0.05 have been indicated by asterisk (*).
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Table 2). In all real data sets, methods LME2, Lasso2, RF2, SVM2 and NN2 were slightly outperformed by the 
corresponding averaged methods.

Based on these results, one may conclude that LC was the only robust method among the tested thirteen, as it 
did not fail in any data set analysed in this study.

Discussion and Conclusions
In this study, we examined thirteen methods for binary classification of longitudinal data with non-aligned time 
points, which is a common scenario in biomedical studies. (Most of these methods needed to be adjusted on an 
ad-hoc basis to acknowledge for the longitudinal nature of the data, i.e. we used temporal averages of covariates. 
However, this was not the case for our method.) We introduced the method of likelihood contrasts (LC) and com-
pared its performance to the twelve other approaches, using simulated data and three real data sets. In the simu-
lated data sets, LC clearly outperformed the other methods in terms of sensitivity and specificity (P < 1.0 × 10−6). 
In the real data sets, the performance of all methods was lower than in the simulated data. However, unlike most 
of the other methods, LC provided reasonable classification performance also in all the real data sets (specificity 
and sensitivity significantly over 0.50, P < 10−6), demonstrating its robustness over the other methods.

Another benefit of LC is that it can be generalised to any analysis scenario consisting of two models and a 
measure of model fit. For example, we used the difference of log-likelihood to measure the agreement between 
a new observation and the pre-existing data. In a non-parametric setting, one could use some other measure of 
model fit, such as the difference of mean squared errors.

Presently, we have used LC in combination with two LMEs. This derives from previous modelling tradi-
tion for longitudinal data6,7, but could also be changed. For example, the log-likelihood could be derived from 
a non-linear regression with time. However, a benefit of the LME framework is that it is fairly general, and the 
theory of these models is well-known. Moreover, the LME framework can easily be extended to allow for a wider 
range of applications. For example, it is possible to use penalised random-effects models for automated model 
choice4.

There are multiple studies comparing different binary classifiers for biomedical single time-point data. For 
example, Khondoker et al.27 compared four classification methods using simulated and real data sets. They con-
cluded that linear discriminant analysis gave the best results for small data sets and SVM for data sets with more 
than 20 samples. Johnson et al.28 compared six classifiers in RNA-seq data. They found random forest to be the 

Figure 2. Model performance in real data. Pbc2 and Prothro are clinical data sets, whereas DIPP is a molecular 
data set from Type 1 Diabetes. The vertical lines around the dots represent standard error, when visible. 
Sensitivity and specificity have been calculated by using exhaustive cross validation, thus the small standard 
errors.

https://doi.org/10.1038/s41598-020-57924-9


8Scientific RepoRtS |         (2020) 10:1016  | https://doi.org/10.1038/s41598-020-57924-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

best method, and transcript-level data to be better suited for classification than gene-level data. Babu et al.29 stud-
ied the effect of feature selection for classification methods in cancer. They found that feature selection substan-
tially improved the performance of classification, and in their study, SVM was one of the best methods together 
with Relief-F30 and information gain31.

Given the prevalence of longitudinal data sets in biomedicine, it is surprising that there are so few longitudinal 
binary classifiers. Longitudinal time-series experiments using DNA microarrays have already been performed 
for more than a decade32–34. In line with this, various statistical methods have been developed to detect the differ-
entially expressed genes between experimental groups in the longitudinal data. For example, MaSigPro32 can be 
used to analyse inter-group differences by fitting polynomials of various degrees to expression data. The moder-
ated F-test in limma35 can be used to discover differentially expressed genes by considering intergroup contrasts at 
different time points. Approaches relying on Bayesian statistics for detecting longitudinal differential gene expres-
sion have also been developed33,34. However, none of these methods directly addresses the question of classifying 
the longitudinal samples in two distinct groups, e.g. in patients and healthy controls. This is a shortcoming which 
we try to address by the proposed LC method.

Regarding binary classification of longitudinal data, there are some methods which operate on aligned time 
points4. However, a fully flexible model such as LC has not been developed before. Consequently, it is difficult to 
judge the performance of LC against a pre-existing baseline. Furthermore, regarding binary classification in static 
settings, earlier studies have not been able to highlight a single generally best method. For example, Pirooznia et 
al.36 used eight machine learning algorithms in eight microarray gene expression data sets, and they found SVM 
to have the best performance. In line with this, Castillo et al.37 analysed RNA-sequencing and microarray data 
sets, finding SVM to be more accurate than RF or nearest-neighbour classification. However, Bienkowska et al.38 
used SVM and RF in combination with iterated feature selection in gene expression data. They found RF to out-
perform SVM in three out of four cases, in terms of area under the ROC curve. Such comparisons are numerous 
and can be found in many application areas39,40.

The two real clinical data sets used in our study were taken from Rizopoulos14. As our primary purpose 
was to compare the performance of the different classifiers, we used the same covariates and markers as the 
earlier studies14. In the Type 1 Diabetes data17, the choice of the predictive markers was less obvious. In these 
high-throughput molecular data, there were initially 49,386 measured probes. Following observations from pre-
vious studies, we filtered these features. For example, Pirooznia et al.36 have reported that up to 10% losses in 
predictive accuracy can be expected, if all features are used in place of an optimal feature set.

To conclude, results obtained in this study suggest that LC can be used as an accurate binary classifier in longi-
tudinal data. LC outperformed the conventional machine learning methods in the simulated data. Although the 
three real data sets proved to be more difficult to predict correctly than the simulated data, LC was able to deliver 
statistically significant predictions in all data sets.

Data availability
The data sets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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